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topology. Higher dimensional examples are also described. The Grassmann algebra from which
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1. INTRODUCTION

The purpose of constructing manifolds is to combine a
fixed and manageable local structure with a variety of possi-
ble global topologies. A differentiable manifold is locally dif-
feomorphic to R™, while a supermanifold is locally “super-
diffeomorphic” to B, ™" (the Cartesian product of m copies
of the even part and » copies of the odd part of B, , the
Grassmann algebra over R”). In the context of physics this
local structure is motivated by “superspace”, originally pro-
posed by Salam and Strathdee.!

Precise definitions of supermanifolds vary, both in the
topology used on B, ™" and in the definition of “superdiffer-
entiability” of the transition functions between overlapping
coordinate neighborhoods. The definition used here is that
developed by the author in Ref. 2, which includes other defi-
nitions® but also allows many further possibilities. The natu-
ral definition of “superdifferentiability” of functions of
Grassmann elements, summarized below, is in effect much
more restrictive than that for functions of real numbers, ba-
sically because Taylor series in nilpotent elements terminate.
As a result the class of possible global topologies for super-
manifolds (even with the broader definition) is more restrict-
ed than that for ordinary differentiable manifolds. (A com-
parable situation exists for complex manifolds.)

It is the purpose of the present paper to demonstrate
that supermanifolds exist which are far from topologically
trivial, and also that the broader definition of supermanifold
adopted in Ref. 2 does substantially increase the possible
global structures.

An (m,n) dimensional G * supermanifold over B, is de-
fined? to be a Hausdorff topological space Y together with a
set of charts (U, ,¥,) such that (a) U, U, == ¥; (b) ¥, isa
homeomorphism of ¥ onto an open subset of B, ™"; and (c)
¥, oW, W, (U,nUg)—¥,(U,nU,)is “G =" or “superdif-
ferentiable,”” where in (b} the topology on B, ™" is the usual
topology on B, ™" regarded as a finite-dimensional vector
space and in (c) a function fUC B, ™"—B, is G * if, given
(@8, 4 o) and (@, + Ay, + A, ,)in T,

Fl@y + Biposiy s+ Py )
= flrrttm o)+ S B (Gf Nt 1)
+ O(H(hli""hm + nm)zs
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where the partial derivatives G,/ are in turn differentiable
functions of U into B, . (More details of thisdefinition can be
found in Ref. 2).

2. A FIRST EXAMPLE

The first example is a (1,2) dimensional supermanifold
over B, (constructed from B,'? very much as an Iwasawa
manifold is constructed from C?, Ref. 4). Suppose B,'? is
identified with the set of 3 X 3 matrices of the form

I x »n
0 1 y1
O 0 1

where x is an even element of B,, and y, and y, are odd
elements. This set of matrices forms a (non-Abelian) group
under matrix multiplication, and thus B,"? acquires the
structure of a Group G, summarized by

(Xsyhh)(uxvl,vz) =(x+ uy, + v, +xvp, + 1)2).
Letting 1 denote the unit element of B, and S the odd gener-
ator of B,, an element of B,"? can be written (a1,b,8,6,5)
where a, b, and b, are real numbers. Define D to be the
discrete subgroup of G consisting of elements (m1,n,5,n,53)
where m, n,, n, are integers. Then G /D, the space of left
cosets of D in G (with the quotient topology) can be given the
structure of a G * supermanifold, as is now described.

Let [(x,y,,¥,)] denote the coset containing (x,y,,),); then
[(x.y102)] = [(x".y7,¥5)]if and only if there exist integers m,
ny, n, such that

V2 =y5 + npB,
=y, +nfB+xnp.

Six subsets of B, '* are now specified, in terms of which eight
coordinate neighborhoods on G /D are defined:

Sl = [(al,blﬂ,bgﬂ)la,b,,bzeR,%<a <%},
S, = {(al,b,B.bf3)|a,b,,b,eR,1 < b, <%},
S, = {(al,b,B.b,8)|a,b bRl < b, <4},

x=x"+ml,

T\ = {(alL,b,B.b,B)ab beR, —i<a<i],
T, = {(al,b,B.b:3) a,b;,b,eR, —2<b, <1},
T3 = {(alyblﬁabzﬁ)ta,bpbzeﬂy - %<b2 <%}

Letting V), = S\nS)nS5, V, = T\nS,nS;, V, = SnTonSs,
Vi=S8S085NT,, Vs = TinT NS, Ve = TinS,nT,,
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V, = SnT)nT,, Vg = T\nT,NT,, the eight coordinate neigh-
borhoods U, CG /D are defined tobe U;: = [V ]

(i = 1,...,8) and the eight coordinate maps ¥,:U,— ¥, CB,'*
by ¥.([p]) =p (i = 1,...,8). The U, cover G /D since, given
any (x,p,,y,) in B,'?, there exist integers m,n,, n, (not neces-
sarily unique) such that

x=al+ml, y,=b +nf +an,f3, y,=b,L +n,p
with — 2/5 <a,b,,b, <4/5. The maps ¥, are well defined
because no individual V; contains two distinct members of
the same coset, and they are evidently homeomorphisms of
the U, onto the ¥, which are open subsets of B,

It must now be established that the transition functions
Woow,; LW (UNU Y (UNU), i j=1,..,8 (of which
there are 56 to be considered) are all G ~ (superdifferentia-
ble). One example, W,e¥ ', is calculated in detail here.
Suppose [(x,y,,p,)]JeUnUy. Then (x,p,,y,) = ((@ + m)1,

b +n\f +anB.b, + nf3),wherel <a <4l <b <tand
l<by<tandalso (x,p,.3,) = ((c + m')1,d| B + niB + cnip,
d,f +niB), where —2<c<i lad,<4and —i<d, <2
Thus (x,y,.0,) = ((@ + m)1,6,8 + n.5 + an,B,b,5 + n,f3),
where either

case{l):l<a<? l<b, <% and l<b, <}

orcase (2):i<a<d l<b <% and t<b, <}
Jilcaxy, Lt4a<h <,

orcase (4):2<a<$ l<b,<a—14 and i<b,<t

(
or case and i<b,<$
(

Therefore the set ¥,{UnU) is the union of four disjoint sub-
sets of B,"?, these sets consisting of points (a,,b,3,b,8) in
B, witha, b,, and b, satisfying one of the four sets of condi-
tions listed above; also

in case (1) ¥,o¥ l(Pﬂhqz) =(p.91.92);
in case (2) ¥.o¥ | ' (pg1,92) = (P — 1,492
in case (3) ¥.°¥ ;" '(p.q1.92) = (p.q1 — PB.a> — B);

in case (4) ¥.o¥ | '(p,g1.9,) = (p — 1,4,

The transition function ¥, 0% ' is thus clearly G =,
and in fact G “ (superanalytic). The other transition func-
tions have been calculated and also proved to be G “. Thus
G /D has the structure of a G “ supermanifold.

Since the group G can also be regarded as a simply con-
nected three-dimensional Lie group, with D a discrete sub-
group, G /D can be regarded as a three-dimensional real ana-
lytic manifold, (with fundamental group isomorphic to D,
which is non-Abelian). However, G /D regarded as a super-
manifold (with supermanifold structure defined as above)
will have the same topology as G /D regarded as a manifold,
and thus will also have fundamental group isomorphic to D.
Also G /D can be mapped homeomorphically onto a closed
and bounded subset of R®, and thus shown to be compact.
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3. FURTHER POSSIBILITIES

(1,2) dimensional supermanifolds over B, for any finite
value of L, and also over the infinite-dimensional algebra B
defined in Ref. 2, can easily be constructed in a similar man-
ner by starting with the basic group structure

(1 pala,0,02): = (x + wu; +yy + X050, + o)

once again and considering the quotient of this group by the
discrete subgroup D consisting of elements { p,q,,4,) of B, '~
with p, ¢,, and ¢, “Grassmann integers,” that is

p=ml+mpB B+
g1 =m0+ 1B+ 1P+ n, BBy By + -y
gy =nmB+ By + 035+ niB By By 4 -

where the m,, n,, and n; are integers and 3,,5,,..., [3; are the
odd generators of the Grassmann algebra. In each case the
supermanifold constructed is compact and has fundamental
group isomorphic to D.

Higher dimensional supermanifolds can also be con-
structed in a similar manner by considering multiplicative
groups of upper triangular matrices of higher order. For in-
stance there is a (3,3) dimensional supermanifold G /D,
where G is the group of 4 X 4 matrices of the form

1w, vy u
0 1 v, u
0 O
0 0 0 1

under matrix multiplication, with u, u,, u; even elements of
B, and v, v,, v; 0dd elements, and D is the discrete subgroup
of G consisting of matrices whose elements are all Grass-
mann integers. Again, all such supermanifolds will be com-
pact and have non-Abelian fundamental group.

The definition of supermanifold used here is broader
than the others® largely because a finer topology is used on
B, ™", in fact the coarser topology precludes the existence of
compact, Hausdorff supermanifolds such as those con-
structed here (see Ref. 2, proposition 3.4), and it is thus dem-
onstrated that the broader definition does considerably ex-
tend the range of possible global topologies for
supermanifolds.
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This paper extends to nonlinear evolution equations of odd order the analysis of existence and
structure of the polynomial conserved densities. The results for low order densities are similar to
the case of even order. The situation for densities with high order derivatives is now radically
different. An asymptotic algorithm is presented for the search of such densities, which are shown
to be quadratic in the highest derivatives. The very existence of just one high order conserved
density is shown to severely restrict the evolution equation, and in the third order case it leads,
with some minor additional hypothesis, to the KdV family.

PACS numbers: 02.30.Jr

1. INTRODUCTION

In a previous paper! the polynomial conserved densities
for general evolution equations of even order were analyzed
in detail. As indicated therein, the case of odd order requires
a special treatment since the existence of nontrivial con-
served densities of arbitrarily high order in the field deriva-
tives cannot be excluded in this case (recall, for instance, the
Korteweg—de-Vries equation?).

The present paper discusses some general properties of
the polynomial evolution equations #, = P (u,...,u,,) of odd
order. Concerning densities of low order, the situation is
much alike to the even order case, as proved in Sec. 2, where
criteria are given for the existence of one or two nontrivial
conserved densities of this class. Sections 3 and 4 are devoted
to analyze high order nontrivial densities. In Sec. 3 some
necessary conditions on P are obtained for at least one such
density p(u,...,u v ) to exist, and the quadratic dependence of
p on the two highest derivatives u,, u, _, is established by
direct computation. Section 4 presents an asymptotic algo-
rithm which allows us, first, to show this quadratic character
in full generality, secondly, to limit the order of derivatives
which may enter the coefficients of these quadratic terms,
and finally, to give an explicit differential system for such
coeflicients. The integrability conditions for this system im-
pose strong restrictions on P. As an illustration, we prove in
Sec. 5 that the KdV equation or its modified form are singled
out among the third order nonlinear evolution equations u,

= u; + f(u,u,,u,) as simultaneously possessing one very low
and one high order nontrivial conserved densities.

Notation

We will keep to the notation in Ref. 1. The symbol u,,
denotes the M-derivative of u = u(x,t) with respect to the
real variable x:u,, = "u/dx™ = D ™u, where D, in general,
stands for the total x-derivative. By 5 ,, we shall denote the
set of sufficiently smooth functions F(u,u,,...,u,). Similarly

F y={Fe F \,:F, =0F /du, #0},

Two densities p, p will be called equivalent ( o ~p ) whenever
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p—p=Q,(=DQ),ie.,ifp — pis trivial. Finally C, (P)
will stand for the set of polynomial conserved densities

i

pe S v underu, = P.

2. CONSERVED DENSITIES OF LOW ORDER
Let us consider the (nonlinear) evolution equation
M odd, )

where P is a polynomial in .% },. We are going to see that,
concerning the low order (¥ < M /2) conserved densities of
(1), many of the results obtained in Ref. 1 for even M still
hold in the case of odd M. To begin with, we state the
following

Theorem 1: P, , #0=>A peC\y(P),N<M /2.

Proof: p, ~(6p/6u)P = Q (--,u,, ), requires P to be
linear in u,,.

Remark: The major difference between the odd and the
even case lies in the fact that the existence of p(-+-,u,,),
N> M /2, is only possible for odd M (remember the KdV
equation!). To further emphasize this point let us observe
that even the conclusion of Theorem 1 fails for N> M /2. As
a matter of fact the equation #, = u? admits the conserved
densities p = 1%, Vk>1.

Given a polynomial P, linear in u,,, let us decompose it
in the form

u, = P(u,...,uy),

P=auy +b=A,+B, abBe7, ,, Ac.7}) ,. (2)

Then we have the following:
Criteria:

0#d(B)#d(4 )}
M>3

=V nontrivial conserved p(-, 4y _ 1, )~Au.
A, u, #0=8B,, ., ,
M>3 ]
=V nontrivial conserved p(-u,, _;,,)~Au,

®

(i)

where d (-) denotes the degree of the corresponding polyno-
mial in the variable u,, .

Proof: (1) The conservation of p requires the existence of
Qe 5}, , such that

© 1981 American Institute of Physics 445



ép (6p)
~—A—|+— ) B= . 3
r ou 5u ), Q ©)

By comparing the powers of u,, , we conclude (i).
(ii) The coefficient of u,,, , in

ol aa-(5) ]
— | Z——4—-|-~|B|=0, 4
Su | bu du /1 @
leads to the condition
(mis/i) =B, . JAi . ©)
5“ ] M — M -1 M -1 HM
so that (ii) follows at once. |

Finally we state a necessary condition for the coexis-
tence of (at least) two conserved densities of low order.

Theorem 2: Let p, p be two nontrivial conserved densi-
ties for (1), M >3, of orders <(M — 3)/2, and such that
p+Ap, VAe R. Then

(a) P“.w“w 1 = 0’

(b) b“w NV 2a“w P

Proof: (a) Since p, p are nontrivial and conserved under
u, = P there must exist two functions F,Ge ¥}, , such
that

£y G,

pP= = — . 6)
8p/bu 6p/bu
Let us define
& [
=aF - G, a=-—"[—". 7
£=a Su / Su @
Obviously ae ¥ ,, ; and moreover, since g £Ap,
gi=afeFy, . ®)

Hence ge % ;, _, and Fmust be linearinu,, _, . It
follows that

S,
P=F, /—5§ b (g3 Yiing + Kk Gty 1), ()

and thus (a) is proved.

O®) Let F=8(oytipg 2 Jupr 1 + T(ontipg ),
P=a(uy )y +b(uy_ ). From F, = (8p/du)Pwe
get

o % _
6u Ung 2 5u Uy oz ?
(10)
b [
Su
= Su,\, ) “fn; A CRTIVEPS IR - 4 CR7IVEPY §
So the conclusion follows at once. |

3. CONSERVED DENSITIES OF HIGH ORDER
Let pe % %, N>M + 1>4, be a conserved density un-
der (1). As it is well known this implies (6 /8u)p, = 0. Now,
it is not difficult to show by direct computation that
N N
p.= zpu,Pj=AuM+N+BuM+N—1 +C, 11
ji=o
with
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A EPMNPMM’ B EpuN [Pu,"v, + N(PuM)l] +pu~_, PuM .
(12)
The terms included in € do not contribute to the coefficients
of s on s Uar v 1 iN(8/8u)p,, so that the only nontrivial
contributions to these two coefficients come from:

(___1)M+NDM+N a
Oup
_’( - 1)M+ NAuNuM+2N
—+-(~'-1)1W+N[‘Au,V 1 +(M+N)(Au~)l]uM+2N—l ’
(_1)M+N—1DM+N—1 a
auM+N—1
—’(_1)M+N_‘Bu‘\uM+2N~l s
(_I)NDN_a_
Auy

—(— I)NAu\-uM+2N
+(—=DY[B,, + NA M Jussav—1
d
Uy 1
The coefficient of u,, ., turns out to be
[1 +(—1DM]A,_, which is automatically zero. On the oth-

er hand, the vanishing of the coefficient of u,, , 5 _,
requires

M(pu‘..‘u\)lPuM -2 pu\‘u‘\qu‘” f

(_I)N—IDN—I

—(— 1)NM1Au,V,, Upian 1 -

= (2N— M)pu‘vuv(Pu”)l .
(13)

Consequently p, , € % ,, , and therefore

p~3a Oyl + b (uy 1), N>M+1>4.
(14)
The next proposition quotes some other interesting conse-

quences of (13):
Proposition 1: Let N> M + 1>4. Then:

.8 P, .
(I)E-P #0=>4 pe Cy(P);

Uy

(ii)—(s—PuM LI 0 =kQ2/MP2N/M—1 ,
8u P,, o
where k is a constant and @ is defined by (InQ), =P, /
P

Um

’ (iii) P, , = constant (#0), P, , #0=4 peCy(P).

Assertion (iii) follows from the polynomial character of p.

M -1

It is a simple exercise to prove that for N> M +-4>9

pe=Aupy, n +BuM+1/V\-1 +Cupyn 2

+Dupy, y 3 +E (1%5)
with
2 (N
CEpu\ z (_] )(P“w.,’,z)] +p“.\ 1 [P",w 1
j=0
+ (N* 1)(Pu‘,)l] +pu‘\ zP“w ’
(16)
3 (N
DEPV\ z ( : )(P“.w«1 3)1 +p“\ 1
j=o \J
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2 (N—1
<3 (" He.,,

j=o J

Pury [P + V=20 o Puy -

The terms included in £ do not contribute to the coefficients
of Uy, anseestlng 1 2n—3 10 (8/8u) p,. The vanishing of the
coefficient of u,, , , _, provides no new information. Asto
the coefficient of u,, , ,_ it leads to the condition:

M?42 M
6+ [A“.\ a B“fv ]2 + ? [A“N—] + BuN ]2
+ M [A“N 2 B“N—l + C“'\ ]1 +2 [(Au,\viz )1 - (Cuv\v)l
+4, -8B, ,+C,_ —D,]=0 a7

The vanishing of the coefficient of 4, in (6) requires, having
in mind (14), that:

P, b =0. (18)

Uy Uy _ g UN

In other words

P~ 300y + 38Vt Ny + Sty )
(19)
In fact, one can easily prove that @' = B (s )tips , »
+ Y(- U, 1 ), but we omit the details.

4. A PRACTICAL ALGORITHM OF ASYMPTOTIC
CHARACTER (NV»1)

Two remarkable suggestions arise from the preceding
section. First of all, one suspects that for N> 1 every con-
served density pe Cy (P ) should be quadratic in the highest
derivatives. And on the other hand formula (15) could possi-
bly admit a simple generalization when N» 1, which might
prove useful when computing 8p, /5u.

Indeed it is rather easy to show that given ¢>0, there
exists mqy(q) such that

P, — i “M+m—j[ kgo(:)(PuMHﬁ)k]

Ym>myg). 20)

Relations of the form (20), which express equality only in the
dominant terms containing u,, , ., YUar .y m_ 1 - 1, will
be simply written in the sequel as

L 5 v GO |

>0 k=0

P
e‘j‘IW'}-m—q—-l’

(20

With this notation, the generalization of (15) forape C(P),
N3 1, turns out to be

P = EA(J)uM+N—f ’
Jj>0

21
j =i (N —1i
A(ﬁE . ( )(Pu o R
igop N 'l;;:o k MH'J”)k

Therefore, the vanishing of § p, /5u leads to the equation

n n—j
2()“M+2N—n[ 2 z C,(-,",,),[Af,{\),ﬂijn}m]éo,
n>

j=0m=0

[(M+N—j
C;(?;E _1)![( +m J)+(_1)M+n+m

(22)
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(N —n+j+ m)]
X .
m
The coefficients of u,, , 35 _ s # = 0,1,2,-+(n<N ) in (22)
must be zero, so that after substitution of 4 ' by their expres-
sions {21) one finds the conditions

S5l Se ()

n

ji=0m=0
P ol ] =1 (23),
with
0, n=12,. . M—1IM+1M+3, .,
M42r+1,.-,
h D= (— 1),2‘15‘:)1,“ a(r)EPuN s
>0

n=M+2r, r>0 sufficiently small.

Remark that (23), holds only for n<N. More explicitly,
given n, AN, (n) such that (23),, holds whenever N>Ny(n).
We are now in position to prove that p must be quadratic in
its highest derivatives. We proceed by induction. Since it is
known to be true for the first two terms [see (19)], let us
suppose that

— 1
p=1"S a2 +Riwuy_,), q<N, 24)
j=0

where the functions a” depend on derivatives of low orders
(€N). We want to prove that R must be quadraticinu, _,.

First of all we observe that & ™ depends only on low
order derivatives for 1<, so we can forget them in this
argument.

Let us see which are the contributionsin (23),, , , tothe
coefficient of u,, _ g+l Their sum must be zero, because it is
nothing but the coefficient of uy _, , 1%y, 3n 2,1 InSp,/
Su. Now, the quadratic terms a’u}, _;, 0<j<g — 1, make
no contribution since [a*?],, has only low order derivatives.
Hence the only contribution will come from R, due to the
terms i =gq,g + 1,...,.2¢ + 1,in (23),. Let us put i = g + a,
0<a<q + 1. Then the summation in & forcesj to be >q + a.
And furthermore, the partial derivative with respect to
Uy, i+m_, requires 2g +1 —j— m>g, so that finally we
conclude

g+a+m<j+m<g+1, ie, a+m<l.

Moreover the only way to get uy_, ; in (23),, ,, isby

means of the final D ™ derivative with m > 0. Thus o = 0,
m = 1, i =j = g, which obviously contributes

¢4t P, R, i uy  totheuy .., term. Therefore

R.. uy ur , =0 asannounced. (Remark that ci{*"
~ (= 1M #0, Vgq.)

In the discussion above the precise range of ¢ in the
derivatives has not been fixed. We are now able to show that
a%e F,, , ,;, afact which was already made plausible in the
preceding section. Indeed, for o' to appear in (23),, the only
possibilities are:

(1) i =N —s, s¢N. But then n~N.

(2) i = p and hence n>j>p. Now the partial derivative
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with respect tou,, , ;, ,, _, vanishes unless
N4+j+m—n=N—pie,n=j+m+p>2p+m

As a consequence, the lowest # such that ¢'” may ap-
pear in (23), is n = 2p. However, since ¢’ = 0, this is not
really the case. Thus we must consider the next one,
n=2p + 1. Now (23),,, , contains both a¢'”and a!” separa-
tedly in nonzero terms. If we make the induction hypothesis
thata'e 7, ,;,0< j<p — 1, then it is very easy to see that
the highest derivative in (23),, , , isu,,, 5, , |, so thata'?
€7 s+ 5p» which completes the argument.

We may summarize the conclusions of this section in
the following way:

Proposition 2: Given J >0, there exists N,/ ) such that
every pe Cy(P), N> N,J ), satisfies

J
- _
p~4 > auy,_;+R, ReFy , .,

ji=0
with a'/e .7 ., , ,.. Moreover, the coefficients a'/ satisfy the
differential equations

(tn — 1V/2) n - 2r

{ |
[E rr.lr)na r)]m =h (ni, h = 1’2’(<N)’ (23,)71

r=20 m=20

with
no-2r em N_

e a0

E‘r,m =C0 v mm ( k )[P“u W Zedomoi k ]k‘ .
k—n—-2r—m-—-M

Note: Equation (23'), follows from (23), by suitably
changing the indices. In principle, (23'), allows to calculate
a?, a'",.., in terms of P whenever the function P does not
preclude the existence of solutions. (See, for instance, Propo-
sition 3 in the next section.)

5. APPLICATION TO THIRD-ORDER EQUATIONS

In order to illustrate the power of the asymptotic algo-
rithm, we are going to prove the following.
Proposition 3: If the polynomial P in (1) is such that:
(@) P=us + f (u,u,uy);
(b) Aa(w)e F ¢, conserved under (1);
(c) 3pe Cy(P) for some Np1;
then

P=u,+ (@, +au+auu, aeR. (25

Proof: Hypothesis (c) and the Proposition 1 (iii)=,,
=0, i.e., f=f(u,u,). The conservation of a() requires

O~a, =a'W)P~@"/2u +d f. (26)
Therefore, 3H (1) such that
f= —(a"2au; + HWu, . 27N

The polynomial character of P {(and hence /') forcesa’” =0,
and thus

P=u,+HWu,. (28)
Let us finally apply the asymptotic algorithm (23"),, to the
density p in (c):
n = 1=a" = constant. We choose @' = 1.
2N +1

n=3=a" =
3

[H () + ], a = constant.
29
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n=5=3a? - QN+ 1)N?+N—2)H,

- ZUELH@N - 1)H + )~ NH ]
:h‘i’z——2N3+1 {[H'uz_%H”u% +%Hz]l
+Hu . (30)
The integrability of (30) requires H ""'u? ~0, i.e.,, H'" =0,
which completes the proof. |

Note that (25) covers those f'(u,u,,u,) which are linear
combinations of u, (linear), uu, (KdV) and u"u, (modified
KdVj. It is also remarkable that other sets of weak hypoth-
esis lead to the same conclusion. For instance, Proposition 3
holds if (a), (b), and (c) are replaced by
@)P,, =0
(b") Ja(u), b (u)e 7, conserved and inequivalent

(b (W)~ Aaw));

(¢} peC\(P), some N> 1, with a Ve, .
The proof follows similar lines, by using Proposition 1, (ii).

When H "' = 0, the integration of (30) leads to

g WLy

2PN

NW+DHu,+(N*+N-3)H" i}

18
+QN-D)H+ ) +81, 3D
with /3 constant. One might proceed this way step by step to
determine the coefficients . As H'"' = 0, conserved densi-

ties of arbitrarily high order are known to exist® and thus no
further obstruction would be met. The succesive integration
constants «, 3,--, cannot be determined since their values
can be changed by adding to our p other conserved densities
of lower order.
fa=p8=--=0,H(u)=u,and N =9, then

p=us — Ruug + 13 [90u, + 1701w + -, (32)

which coincides, up to an irrelevant global factor
— 2519424/46189, with the corresponding density given in
Ref. 2.

It should finally be noted that our Proposition 3 gener-
alizes a previous result by Estabrook and Wahlquist,* who
reached the same conclusion (25) under the stronger hypoth-
esis P = u, + f (u)u,, by using their prolongation structure
techniques.
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family of integrable equations.

PACS numbers: 02.30.Jr, 02.30.Qy

1. INTRODUCTION

The initial analysis of the Korteveg—de Vries (KdV)
equation by Gardner, Green, Kruskal, Miura, and Zabusky,
which later developed into a theory of the so-called “integra-
ble systems”, appears now to be a combination of some in-
genious tricks {which have only been applied in the case of
the KdV equation) and the general concept of “inverse scat-
tering”. While the general developments of the theory of
inverse scattering are fairly well known (see, e.g., Refs. 1-4),
the applicability of the ingenious tricks has not been exam-
ined in general; it is the goal of this note to discuss the degree
of generality of the particular trick that has been called the
“Gardner transformation” (see the historical remarks in
Ref. 5, p. 422), which led to the discovery of an infinite num-
ber of conservation laws for the KdV equation.

2. THE GARDNER TRANSFORMATION FOR THE KdV
EQUATION

We recall briefly the actual derivation, which is taken
from Ref. 5. If v satisfies the modified KdV (MKdV)
equation

v, = 6020, ~ Ve (1)
then

u=1v’+v, (2)
satisfies the KdV equation

u, =6uu, —u,,,. {3)
Equation (2} is called the “Miura transformation” (a general

interpretation of it can be found in Ref. 6). Now (3) admits

Galilean symmetry
[ t,

x' = x + 6¢t, U =u+ec, {4)

while (1) does not. Then a suitable combination of (2] and (4)
shows that
u=w+ew, + €W, (5)
the Gardner transformation, is a solution of (3) if w is a solu-
tion of
w, = 6ww, — w,,, + 6eww,
= d(3w* - w,, + 2w, =d /dx, (6)

which can be considered as a deformation of Eq. (3). More-
over, Eq. (6] also possesses an infinite number of conserva-
tion laws [because it becomes equivalent to (1) after a change
of variables]. So we have an integrable deformation. Since
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such deformations are only very rarely integrable, the situa-
tion is quite intriguing. And even if all that were not enough,
formula (5) tells us that Egs. (3) and (6) are in fact equivalent
as evolution fields [in other words, using (5) we can express w
as a formal power series in € with coefficients that are polyn-
ominals in u,u,, w = u — €, + €(u,, — u>)+ - Since
w, = d(3w® — w,, + 2€°w’) we obtain an infinite number of
conservation laws for (3) by inverting (5); half of them are
nontrivial and this completes the “classical’ story of the
Gardner transformation’].

3. INTERPRETATION

The Galilean invariance of the KdV equation which
was used in an essential way in the construction of the defor-
mation (5}, is no longer available for the higher KdV equa-
tions which correspond to the Lax representation

L, =[PL], (7)
with L = — 3% + u. Therefore, if any deformation exists for
the higher KdV equations it must be based on something
other than Galilean invariance. We shall examine this in
what follows.

First, we recall that one of the most important proper-
ties of the Miura map (2)is the fact that this map is a “canoni-
cal transformation” from the natural Hamiltonian structure
a6 /év),

v, = d(EH /6v), (8)
of Eq. (1), namely,
U= 60, — U = A(E/60)(* + W?), (1)

into the second Hamiltonian structure
B, ={—3%+20u + 2ud)s/6u),

u, =(— & + 2ud + 29u)(6h /6u) 9)
of the KdV equation, namely
u, = 6uu, —u,,, ={—3 + 2ud + 29u)(8/5u)u’. (31

The word canonical means that the corresponding Poisson
brackets are compatible with the Miura map (2). Technical-
ly, this statement is equivalent to the equality

(20 + 3920 — ) = — & + 2ud + 20u, (10)

where 2v 4 d = Du/Dv is the corresponding Fréchet deriva-
tive and 2v — d = (2v + d)* is its adjoint operator {for de-
tails see Ref. 2 or 6).

Keeping this in mind it is natural to assume that the
map (3) is also a canonical map from the natural Hamilton-
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ian structure d (6 /6w) of Eq. (6)
w, = 6ww, —w,_, + 66w
= AS/Sw)w® + wx/2 + €w'/2), (11

into some other Hamiltonian structure, which must be noth-
ing else but ((Du/Dw)d(Du/Dw)*16/5u. We have

(Du/Dw) 3(Du/Dw)* = (1 + €9 + 26*w)d(1 — €d + 2€*w)
=0 — € + 26’[(w + ew, + €w)d + dw + ew,

+ €w?)] = 3 + €( — 3 + 2ud + 23u). Therefore the map
{5) is indeed canonical into the Hamiltonian structure B:

= [0+ €/ — & + 2ud + 29u)|(6/6u), (12)

which is just the first Hamiltonian structure B, = 3(6/6u) of
the KdV equation,

U, = butt, — Uy, = /U’ + jui2)

plus € times the second Hamiltonian structure B, of the
KdV equation: B = B, + €8,

Thus we have arrived at the combination (12) of two
Hamiltonian structures for the higher KdV equations. This
means that the Hamiltonians for these equations, if they ex-
ist, are formed in some way from the regular Hamiltonians
H, of the KdV equations. Recall that the sequence H, of
Hamiltonians is such that the equation

:B2(Hn)=Bl(Hn+l) (13)

is the higher KdV equation number 7 (see, e.g., Ref. 2), and
all the Hamiltonians H, commute in both the Hamiltonian
structures B, and B,.

Because the natural initial term H, = u is such that
B\(H,) = 0, we see that Eq. (13) can be written in terms of our
mixed Hamiltonian structure (12) as
u(=B,(H,) = B(H,), (14)
where
kH n—~k*

—6—2 Z(

k=0

(15)

Notice that H, = H, (€)is asingular function of €. For exam-
ple, the KdV equation could be written as

u, =buu, —u

xXXx

[a+e(—a3+2ua+2au)]-—(l-‘i— ——l—i>
€ 2 e 2

and if we consider the linear combination of the KdV fields
which corresponds to H =2 ¢, H,,

u, = By(H), (16)

then the same Eq. {16) in our mixed Hamiltonian structure B
has the Hamiltonian

Hch,.e~2 2 (—

k=0

e VH, . (17)

4. DEFORMATION

The next step is to make sure that every deformed equa-
tion

w, = a(a/b‘w)ﬁ * (18)

where H *(w) = H (u)atu = w + €*w* + ew, and H is taken
from (17), is indeed a deformation of the “unperturbed” Eq.
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(16) in exactly the same manner as (6) is a deformation of (3).
Of course, B |, _, = B, but there is a potential source of
difficulties in the singular dependence of H upon € in (17).

Theorem. Ther.h.s. of the modified Eq. {18) is a polyno-
mial in € for H taken from (17).

Proof: It suffices to check the claim for H = H, from
(15). In this case the r.h.s. of (18) is clearly a finite polynomial
in € and €~ '; we wish to show that this polynomial contains
no terms which involve negative powers of e. This follows
from the regular invertibility of the deformation (5): We can
write w = u 4 27_, €°P,, P, being finite polynomial in
u,l, ..., and therefore w, = d,(u + = €*P,)
= F + 3 " (3P, /8u")3F, where Fis the r.h.s. of {16) and
4" = d*u/dx". Substituting ¥ = w + €*w* + ew, in the last
expression we find w, as a formal series in non-negative pow-
ers of € only. Q.E.D.

Example: The next KdV equation after (3) is

u, = (=3 +2u8 + 20u)8/6u)(w’ + u2/2)
= 9[u® — 10uu® — 5u™? + 104°)

= 0(8/6u)(5/2u* + Suu'* + Lu'?). (19)

Corresponding H = e %(u* + 12 /2)
— €™ u?/2) + € %u/2); this gives a deformation of Eq. (19)
in the form

w, = 9(8/8w)| 3w* + Sww"? + jw'™?
+ [ 5w W' + 3u°] + e'w'h. (20)
Note that the (usual) modified equation associated with (19)
via the Miura map (2) is

v, = (8/80){v° + SvR''? 4 w22}, (21)

5. RELATIONS BETWEEN THE GARDNER AND MIURA
TRANSFORMATIONS

In Secs. 3 and 4 we showed that the deformation (5) is
indeed valid for the whole KdV hierarchy. We now wish to
understand its relation with the Miura map (2).

The map (2} is canonical between the Hamiltonian
structures @ {8 /8v) and B, and therefore it is canonical for the
Hamiltonian structures €23 (8 /8v) and €°B,. If we now make
the translation & = u + c¢~ 7, then the map
+u, +0* {2
is canonical between €3 (8 /5v) and
€1 —3%+2i — ce 3 + 20(u — ce)18/6d

= [ — & + 243 + 204) — 4cd](5/6i), which is exactly
B (i) when ¢ = — 1. To eliminate € in €°9 (5 /8v) we set
v = €0; then (2') becomes

i =ce?

d= —€ 4+ €0 +eb,, 27

which is a canonical map between d (6 /60) and B (#). To
convert (2”) into a regular map we observe that the Hamil-
tonian structure @ {8 /560) has constant coefficients and hence
is invariant under translations of 0. So if we let § = w + b,
(2") will become

= —e /4 + ew + 2ewb + €'b” + ew,. {2")
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Now the regularity condition for (2"},

€b? = 1/4¢€%, (22)
yields
b= 1/2¢ (23)

and (2") becomes (5).

6. DISCUSSION

For each higher KdV Eq. (13) we constructed its defor-
mation (18) which has the following properties:

(1) There exists the reduction map (5) of the deformed
equation into the undeformed one. Therefore the deformed

system is also integrable (meaning: has an infinity of inte-
grals), because all conservation laws (c.1.’s) of the unde-
formed equation become c.1.’s of the deformed equation after
pull back;

{ii} The deformed equation (18) is Hamiltonian; it has
now only one Hamiltonian structure, {8 /6w). In this struc-
ture, all integrals of the deformed equations commute, since
they are preimages of the c.1.’s which were in involution al-
ready, and the reduction map is canonical. Note that there is
no such thing as “Lenard relations” (13} for the deformed
equations.

It will be important to understand whether there exists
any general “integrable deformations” pattern in the theory
of integrable systems. The answer is undoubtedly yes and
will be dealt with elsewhere. Here I shall make brief
remarks.?

A) If one begins with the arbitrary scalar Lax equation
(7) with

L=3"""%+ 3 ud (24)
=0

then one can construct the deformation theory, and general-
izations of both properties (i) and (ii) from the above discus-
sion remain true.

B) When an integrable equation is not bi-Hamiltonian,
Hamiltonian formalism is of little help either to find a defor-
mation or to interpret it.

Examples:

nIf

P =6p,C(1 +€C) —p,,, +26Vp5, (25)
where

C = [sh2evp)/(2ev) + (ch2evp — 1)/(2€%), (26)
then

W=C+vp, (27)
satisfies (6). Thus (25) represents the second deformation of
the KdV equation (3).

(2} If

9, = 9[2¢’ — q.. + 6€°9q2/(1 + 4€°¢%)], (28)
then

w=[(1+4€¢})"/? - 11/26* + q,.(1 + 4€°g})~ " (29)
satisfies (6},
v=q+€q.(1 +4€’q’)" ' (30)
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satisfies (1), and we have the commutative diagram
{2)4{30) = (5)4{27). Thus {28) is the deformation of the MKdV
equation (1), {30) is the reduction map, and (29) is the defor-
mation of the Miura map. This suggests that not only inte-
grable systems but also their relationships are objects of
deformations.

(3) Deformations phenomenon is not the privilege of
only the Lax equations. Consider, e.g., the Benney equations
for long waves on a two-dimensional surface®

a,, =a, .\, +Nna,_ dy,, n=0,12,.. (31)
for the sequence of functions a,, {x,f ). This system has an in-

finity of integrals 4, €a,, + Z{ay,...,.a, _, ] (see Ref. 2).
Proposition 32: Let

An,t =An+ 1,x + nAn —_ IAO,x + G[AOAn,x + (n + l)AnAO,x
+nd,_ (A, — Aoy, /)2, n =012 (33)

Denote by H,€4, + Q[A4o,....4, _ ] the integral #n for
{33). Then the map

a,=A4, +0le, (34)
such that
h,=H, +€¢H,, ,, (35)

maps solutions of {33} into solutions of {31).

C) Evidently conservation laws survive deformations,
1.e., remain nontrivial under deformations. Therefore it 1s
important to know which integrals of the undeformed equa-
tions were nontrivial in the first place.

Let us consider, as an example, the well-known case of
the KdV hierarchy (13). Then the r.h.s. of (18) shows that for
the deformed equation w is the c.l. Therefore inverting the
Gardner transformation (5)

W= 2 h e {36)

one gets an infinity of c.1.’s 4, € where &/ is the ring of
polynomials in u,u, ,--,. If f,g,€7, let us write f~g is
f{1,0,0,+) = g(u,0,-+), and f~0Q if f = Ig.
Proposition 37: h,, ,  ~0,h,, £0.
Proof: 1) Write w = w™* + w™ where
w* =2 hy, ", w™ =2 h,, . """ and substitute this
into (5). Then the part which is odd in € yields
wT —ewS —2e®wtw” =0, 0r
w” = —(2¢)7'dIn(l — 2€’w™). 2) From (5) one gets
u=w+ €w?, so
w=(26%) 71~ (1 - 46'u)?) = 2=, &u"+ ', alle,’s
are different from zero. Thus 4,, ~c,u" * '. Note now that if
f~0 then f~0. Q.E.D.
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We obtain a fast convergent series expansion for the Fermi~Dirac function F {a) for

— 10<a< — 1. We give values of F, [@) foro =n + } 1in=0,1,-

PACS numbers: 02.30.Mv

I. INTRODUCTION

The Fermi-Dirac functions F, (@), where ¢ is a positive
real parameter, is defined for all real numbers a by

x° - 1
R [
Tl st

When o is an integer, this integral may be easily evaluat-
ed by a power series; a complete discussion of this case is due
to Rhodes.' For arbitrary o, there are several expansions
depending on the range of values of @.>* The calculation of
F {a) for a <0 is needed in many questions of quantum sta-
tistical mechanics; for examplé, to solve the equations of
state corresponding to extreme conditions (high pressure
and nonzero temperature). Analytical expansions are avail-
able in all ranges, except when — 10<a< — 1. Previous
evaluations of F («) for this range were made by numerical
integration®’ or by polynomial approximation.® In this pa-
per we obtain a fast convergent series expansion of F, (a) for

— 10ga< ~ 1.

. SERIES EXPANSION FOR — 10<a< — 1
For simplicity, let us define

o o -1
I=Lig =T~ [ *—ax
o ex+rx+l

Substituting y = X + « in this integral gives

tl’—!

&+ 1
Now [ will be calculated as
I = Il + 12 + 13

by dividing the integration interval by the points — p and p,
where 0 < p < |a|. Another restriction on the values of p and
convenient numerical suggestions will appear later.

“Fellow of CONICET (Consejo Nacional de Investigaciones Cientificas y
Técnicas, Argentinal.
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-,6) with & in the same range.

A. Evaluation of /,
First we expand the integrand denominator of

_ P (y+lal)aild 1
I)_J‘—\ou ey+1 y {)

in a series of powers of ¢’

=3[~

ey-f—l 720

This series converges uniformly for [¢’] < 1, that is, fory <0.

Now, by expanding e™ at a convenient point y,, we obtain
n*(y =yl

k>0 k! .

By replacing successively in (1), taking into account the
uniform convergence of the series to exchange the order of
integrals and summations, it follows that

k

L= Y (-1 y

n20 k‘g()k!

e = ™

xf ‘ (y+ lal) "y —yo) dy.
— |

The integrals involved in this expression may be evaluated
using the formula
la + bx)’

J(a—}—bx)""xkdx: A

(— Wa + bx)* e

>

ok k—j+o
Thus,
a ’l "}’0 n
I, =(la} —p) Z zk_ ko
no-0 k-0

where

~ Z — (el —p)* iy + laly

T 05 k—j+o
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B. Evaluation of /;

We notice that
o—1
12 —_ 'ala-—l (y/lal + 1) dy
—p &+ 1

Since 0 < p < ||, the series

() =206

converges uniformly. The same statement holds’ for the
series

1 1 1 {1 —49B !
e+l 2 2& k@2k-1)

when p <, B, being the nonzero Bernoulli numbers. There-
fore, arguments used in Sec. (A) apply here, yielding
L=lal" 3 €, (=—

freg o—2n+1

1 D, )
+ — ) —
ial;;2k+2n—1

where
Ci={o~1p,
C. =C, (o — 2n)lo —2n — 1) (L)z,
(2n + 1)2n e}
D, = =3B/,
and
D.., = (1“4k+1)Bk+1P2

-4, 2k + )2k + 1)

C. Evaluation of /3
Recall that

“(p+la) !
I, = = dy
3 J; o1 'y

Since the expansion of the integrand denominator in a
series of powers of e =7
L y—ipe
ey + 1 nzi
is uniformly convergent for y > 0, by exchanging the integral

and the summation, with the substitution z = a(y + ||} we
obtain

___1n+len]a] @
|

n»l n lie} + p)

z° e *dz

Thus, 7, can be expressed in terms of incomplete Gamma
functions as

(_ 1)n+ lenlal

= Tonp + |al)).

a
n>l

From our numerical investigations we conclude that, in
order to achieve a fast convergence, the values of p and y,
may be chosen as follows:

p=la|/2,if 1<|a] < 5;
p=2.5,if 5<|a|<10
Yo= ~lla| + p)/2.

As an application, values of F_(a) for — 10<ag —1
and o =n + 1 (n=0,1,...,6) were computed with a maxi-
mum relative error of 107°. In particular, we have checked
the accuracy of all previcusly tabulated values.*® In the
course of the computation we have made use of
Abramowitz’s tables’ for Bernoulli numbers. The corre-
sponding computing program is to be published elsewhere.®

TABLE L Values of F {a} for — 10<a< —land o =n + {with n = 0,1,..,,6.
ALPHA F1/2 F3/2 F5/7 F1/2 F9/2 Fl1/2 F13/2
-1.0 1.227050 00 1.5/565D 00 2.602250 Q0 2.294840 00 2-47867D 00 2.58718D 00 2.6483LD OC
-1.1 1.071660 00 1.6:0580 0C 24165020 GO 2.50312D 00 2.71842D 00 2.84684D 00 2.919800 Q0
~1.2 1.11623C 00 1768970 Q0 2.338520 GO 2.728200 00 2.579860 00 3.131580 00 3.218470 00
-1.3 1.160820 00 L.S13840 09 2.523170 GO 2.971190 0D 3.26467L 00 3.44360D 00 3.964751D GO
~l.4 1.203519¢C 00 2.022130 0C 2.716430 00 3.23323D 00 3.57472D 00 3.785360 00 3.90820D0 00
~1.5 1.2493.0 00 2.144870 CC 2.927750 00 3.515470 00 3.911980 00 4415946D 00 4.30516D 00
~1.0 1.29315¢C 0J 2.271990 Q0 3. 148530 00 3.819180 00 4.278550 00 4.568720 00 4.741270 30
~1.7 1.33664UC 00 2.40348, 00 3.382250 00 4,14%630 Q0 4,676590 00 5.016200 00 5.22019D0 GC
1% 1.37964C 00 2.539256 0C 3.6294%5 00 4.496100 00 5.108450 00 5.505160 00 5.74590D 00
-1.9 1.422220 00 24679390 00 3.890320 0C 4.87195p 00 5.576640 00 £.039130D 00 6.322730 0C
2.0 1.46429C 00 2.823720 00 4, 165410 GO 5.274620 00 65.083740 D0 6.621810 D0 6.955340 0C
2.1 1.50584C 00 2.912235 00 4,455170 CO 5. 705520 00 64632530 00 7.257260 00 7.0488¢D U0
~2.2 1.546830 00 3.124870 0O 4.T7600C0 GO 6.166170 00 7.225860 00 7.949790 00 8.408640 0O
-2.3 1.5872,0 00 3.281580 QC 5.0802390 uC 6.658050 00 7.856B00 20 8.70400D GO 9.24084D 00
-2.4 1.62704C 00 3.442300 00 54416450 00 7.18275D 00 8.558550 00 9.524830 00 1.G15170 41
-2.5 1.666310 00 3.606980 GC 5. 768880 GC 7.741880 90 9.304480 00 1.041750 01 lall4dcn 21
~2.6 1.704940 00 3.7i555C ¢C 6.1379/2 00 8.337570 00 1.010810 31 1.138770 01 14223760 Q1
~2.7 1.7429580 00 3.947950 CC 6.524110 QU 8.970030 00 1.097320 o1 1.244120 01 1.34283D 1
{continued )
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~2.8
-2.9
~3.0
-3.1
-3.2
-3.3
-3.4
-3.5
-3.6
-3.7
-3.8
-3.9
-4.)
-4.1
-4.2
-4.3
4.4
-4.5
~4.6
-4 .7
-4 .48
-4.9
-5.9
-5.1
-5.2
-5.3
-5.4
-5.5
-5.6
-5.7
~5.8
-5.9
~6.0
-6.1
-6.2
-6.3
~6.4
-6 .5
-6.6
~6.7
-6.8
~6.9

-T.0
~Ts1

-7.2
=T7.3
=7 .4
-7.5
~7.6
-T.7
-7.8
-7.9
-8.0
~-8.1
-8.2
~-8.3
~Be4
~8.5
-B.6
~B.7
-8.8
~8.9
-9.0
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1.78041L
L.817240
1.853450
1.889150
1.92424C
1.95877¢C
1.992750
2.026150
2053120
2.09153¢0
2.123650
2.15489.
2.18587¢0
2.21639¢C
2.246480
2.276140
24305390
24334250
2.3627T10
2.390810
2.418550
2.4459640
2.472990
20499710
2.926120
2.552220
2.57803D
2.60355C
2.628790
2.653760
2.678480
2.702940C
2.727150
2.751120
2.774870
2.798390
2.821690
2.844770
2.867660D
2.89034D
2.91282D
2.935120

2.95723D
2979100

3.00092D
3.02250C
3.043920
3.065170
3.086270
3.107200
3.12799D
3.14863D
3.16912p
3.18943D
3.209690
3.229771¢C
3.24971D
3.269530
3.28922V0
3.308780
3.328220
3.347540
3.366750

00
00
00
[el¢]
00
ag
00
Y
a0
o0
00
00
00
00
00
00
00
o]¢)
ao
[e]¢]
Q0
00
(¢
00
00
oo
00
Q0
00
00
00
[¢]¢]
[¢1¢]
00
ag
o1
Q0
00
Q0
00
00
g0

00
00

Q0
[e]s]
00
Qo
0C
00
00
00
00
00
00
00
Q0
[s1s}
00
Q0
00
co
[¢14]

44126120
44304010
4.487550
4574690
4.865360
3.059520
54297100
5.4%8050
5.662320
5.869860
6.C8C61D
60294530
64511570
b+.731690
6.954840
7. 160970
7.41005D
1.642040
7.876890
8.114570
8.355040
8.598270
8.844220
$.042850
94344150
3.598070
9.854580
1.011370
1.037530
1.C63940
1.090600
1117510
lal4466D
1.172080
1.199680
1.227550D
1.255650
1.25398D
1.312540
1.34133D
1.370350
1.39959D

1.42905D
1.438730

1.488630
1.51875D
1.549080
14579630
1.610390
1.641350
1.617253D
1.703910
1.735500
1.7673CD
1.799290
1.831490
1.863890
1.89648D
1.929280
1.962270
1.995450
2.028830
2.06240D

[¢1)
00
ac
00
a0
00
oc
cC

A~
9

QG
00

¢o
o]}
Qg
ce
oo
[81¢]
(49
co
00
0ocC
ac
[14]
Q0
oc
Qo
01
Q1
01
01
[¢B3
01
QL
01
o1
o1
01
a1
01
o1
01

01
o1

01
01
o1
01
ol
01
01
o1
cl
01
0l
01
o1
01
01
01
o1
a1
[¢2

6.927673D
7. 349C60
7.788610
8.246690
8.723670
9. 2158450
9.735632
1.027142
1.082740
1.14040D
1.200150
L.26202D
1.32605)
1.39226D
1.460690
1.531370
1.604320
1. 61958D
1.757172
1.83713D
1.919470
2,004240D
2.091450
2.181130
2.273310
2436802
2. 465280
24565120
2.667560
2. 17264D
2.880360
2.990760
3.103870
3.219700
3.33829u
3.459650
3.583810
3.710790
3.84061D
3.9733CD
4.10888D
44247380

4.388810D
4.533200

4. 680560
4.83093D
4.984320
5. 140760
5+ 300250
5. 46284D
5.628530
5.79735D
5.969320
64144460
6.32279D
6.504322
6. 689080
6.877110
7.068390
7.2629170
7.460850
T.662070
T.86663D
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TABLE 1. (Continued ).

00
Q0
Q0
jole]
<o
go
a0
o1
al
01
[¢39
[*33
01
cl
01
01
421
0l
vl
ol
ol
1
oL
01
01
o1
Ol
438
o1
01
oL
01
ol
01
a1
(929
01
ol
[
o1
o1
01

01
01

01
ol
01
01
533
01
01
01
oL
ol
a1
o1
01
01
o1
01
al
o1
[

9.642483
1.035620
1.111290
1.191450
1.27629D
1.365930
1.460750
1.560Q0770
1.666250
1.777390
1.894330
2.017490
2.146570
2.282770
24425400
2.574980
2,73175D
2.895920
3.06774D
3.24744D
3.435250
3.63141D
3.436180
4.04978D
4.272480
4.504530
4.746170
4.997670
5.25929D
5.531270
5. 813300
6.10744D
6.41214D
6. 728300
7.056180
7.39605D
7.748200
8,112910D
8.,49045D
8.881120
9.285210
9.703000

1.01348D
1.058090

1.104150
1.151710
1.20078D
1.25140Q0
1.303610
1.357420
1.412870
1.470000
1.528830
1.58940D
1.651730
1. 715860
1.78183D
1. 849660
1.91938D
1.991040
2.064650
2.140260
2.217900

(continued )

[1¢]
01
ol
o1
0l
01
Ol
ol
01
ol
o1
o1
ol
[

ot

01
0l
0l

01

01

oL
G1

[£]8
01
01
(02
ol
0l
01
oL
01
o1
01
o1
01
01
o1
01
01
01
01
ol

02
02

02
02
02
02
02
[e74
02
02
¢7
02
02
02
02
02
02
02
02
02
02

1.19034D
1.290300
1.397610
1.512710
1.636060
1.76813D
1.929420
2.060460
2.221760
2.39389D
2.57743D
2.772970
2.991140
3.20257C
3.437920
3.687880
3.953150
4.236447D
4.53259D
4.848240
5.182350
5.53561C
5.908920
5.30314D
6.719180
7.157950
7.62044i0
8.10751D
8.620240
9.159720
3.72688D
1.032290
1.094870
1.150570
1.229480
1.301730
1.37744D
1.45674D
1.539740
1.62659D
1.717410
1.81234D

1.91152D
2.015080D

2.12318D
2.235960
2.353570
2.476170
2.603910
2.736950
2.875450D
3.019580
3.16950D
3.325400
3.487440
3.655810
3.830670
4.01223D
4.200670
4.396170
4.59894D
4.809170
5.02706D

01l
21
o1
01
ol
01
[¢3%
01
01
01
63}
01
01
01

01

01

01

01

01

o1l

01

a1
01l

o1
01
01
o1
01
ol
01
01
Q2
02
92
02
a2
02
02
oz
02
Q2
02

062
02

02
02
Q2
02
02
02
02
02
02
02
02
02
a2
02
02
02
02
a2z
02

1.358450
1.482420
1.616750
1.762200
1.91957D
2.089700
2.273500
24471910
2.685930
2.916620
3.165%090
3,43251D
3.720110
4.029180
44361090
4.717250
5.099170
5.508420
54946630
6.415520
6.91690Q0
T.452630
8.024690
8.63512D
9.28605D
9.9718710
1.07184D
1.15046D
1.234080
1.32296D
1.417370
1.517590
1.623920
1.736670
1.856140
1.982670
2.11660D
24258280
2.40808D
2.566360
2.73353D
2.909980

3.096130
3.292430

3.49930D
3.717220
3.94666D
4.188100
4.442060
4.70906D
44989630
5.28434D
5593740
5.918440
6.25903D
64616130
6.990400
7.38249D
7.793080
8.222860
8.672560
9.142900
$.634650
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o1
01
01
o1
[€D3
o1
01
gl
01
o1
01
01
o1l
¢33

01

ol

01

01

ol

01

01

[¢3%
o1
433
o1
o1
02
02
02
02
02
02
02
02
02
02
02
a2
02
a2
02
02

02
02

02
02
02
02
02
02
a2
02
02
02
02
02
02
02
02
02
02
02
02

L.4729..D
1.61486D
1.7€9730
1.938%eD
2.122510
2.3229:2D
2.540970
2.178110
3.0358 1D
3.3159850
3.61979D
3.9495.0
4. 306960
4.69424D
541135¢0
5.567270
6.05787D
6.5880 10
7.1605:0
1.7783171D
B+44471D
9.16289D
9.936440
1.07091D
l.1664:0
1.262717D
1.36623D
1.4773C0
1.596480D
1.724250
1.861246D
2.0€79¢D
2.1649¢D
2.3329¢D
2.512540
2.704420
2.909%9320
3.128000
3.361250
3.6099¢0
3.5748.D
4.156910

4.45714D
4.776480

54115970
5.416710
5.8598LD
6.266440
6.69784D
7.155280
7.6401CD
8.153640
8. 6974060
9.,272940
9.881680
1.05253D
1.120550D
1.192400
1.26826D
1.348320
1.432780
1.521840
1.61571D

01
Gl
Ccl
01
01
01
01
Ul
G1
al
[
ol

Ol
Gl
01
0ol
o1
C1
ol
01
ol
ol
02
02
02
02
02
02
a2
o2
G2
02
G2
Q2
02
02
02
g2
02
02
02

02
02

02
02
02
a2
02
02
02
02
G2
02
02
03
Q3
a3
03
03
Q3
03
03

454



Cont. from Table I.

-9.1 3.385830 00 2.096170 01 8.074550 01 2.297610 02 5.252820 02 1.014860 03 1.714610 03
-9.,2 3,40481D0 00 2.130120 01 8,28587D0 Ol 2.379410 02 5.486650 02 1.06855D 03 1.81876D 03
-9.3 3.423670 00 2.164260 01 8.50058D 01 2.463340 02 5.728770 02 10124620 03 1.92840D 03
-9 .4 3.44243D 00 2.19859D 01 8.718730 01 2.54943D 02 5.97939D 02 1.183150 03 2.,043770 03
-9.5 3.461080 00 2.233110 01 8.940310 01 2.63772D0 02 6.23873D 02 1.244230 03 2.165110 03
-9 .6 3.479620 00 2267810 01 9.16535D0 01 2.72825D 02 6.50701D 02 1.307960 03 2.29270D 03
-9.7 3.498060 00 2.302700 01 S.39388D0 01 2. 821040 02 5.78446D 02 1.37441D 03 2.42680D 03
-9.8 3.516400 00 2.331770 01 9. 625900 0Ol 2.91614D 02 7.071300 02 1.443680 03 2.56768D 03
-9.9 3.534640 00 2.373030 01 9.86144D 01 3.01357D 02 7.36776D 02 1.51586D 03 2.715630 03
-10.0 3.55278D 00 2.408470 0} 1.01005D 02 3.113380 02 7.674090 02 1.591060 03 2.870950 03
'P. Rhodes, Proc. Roy. Soc. A 204, 396 (1950). (1955).

°R. Latter, Phys. Rev. 99, 1854 {1955).

: . .
o el o et oo M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, with

*L. Nordheim, ‘“‘Muller Pomillets Lehrbuch der Physik” 4 (1934) Braunsch- !
weig, as quoted in Ref. 4. Formulas, Graphs and Mathematical Tables (Dover, New York, 1972).

*J. McDougall and E. C. Stoner, Philos. Trans. A 237, 67 (1938). 8A. Baiiuelos, R. A. Depine, and R. C. Mancini (To be published in Com-
SA. C. Beer, M. N. Chase, and P. F. Choquard, Helv. Phys. Acta 28, 529 put. Phys. Commun.)
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On nearest neighbor degeneracies of indistinguishable particles
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Arrangement degeneracies suggested by sufficient statistics associated with binary stationary mth
order Markov chains are discussed, and are shown to correspond and generalize some
degeneracies arising when indistinguishable particles are placed on a one-dimensional lattice with
n compartments. From these statistics it is possible to define an mth order unit. The arrangement
degeneracy obtained from s 1's and 7 — 5 0’s so that lower order units are placed in higher order is
difficult. For this case only the third order arrangement degeneracy is obtained, the first and
second orders being relatively simple. These results are applied in determining the asymptotic

distributions of rare events.

PACS numbers: 02.50.Ga

1. INTRODUCTION

In statistical mechanical treatment of cooperative
phenomena such as magnetic spin, binary alloys,
elasticity, etc., the total energy of interaction E,; is
given as a linear combination of potential energies as-
sociated with certain arrangments of indistinguishable
particles on a one-dimensional lattice. For example,
if only occupied nearest neighbors and next nearest
neighbors of the types 11, 101,111, are of interest then

Ei=n,Vy+ngVin+t2,Vin 1)

where the V’s stand for potential energy and the »n’s
refer to the frequency of occurrence of the neighbor
type. Here 1 refers to an occupied site while 0 refers
to a vacancy. Of interest then is knowledge of the ar-
rangment degeneracy associated with the types of
neighbors. That is, the number of binary sequences

of size n» which satisfy certain restrictions (numbers

of types). Much attention to these combinatorial prob-
lems has been given by McQuistan in a series of arti-
cles in which he considered both simple and complex
particles such as dumbbells, e.g., see Refs. 1-3. Par-
allel to the physical interpretation of arrangement de-
generaciesthereisa purely statistical onein whichar-
rangement degeneracies are usedin approximating impor-
tant distributions suchas the distributions of crossings
and upcrossings of a fixed level by a stationary process
and the distribution of extremes in such processes.
This has recently been dealt with in Ref. 4.

The purpose of this article is to show the connection
between the purely statistical and statistical mechanical
approaches in regard to arrangement degeneracies by
examining sufficient statistics associated with mth or-
der Markov chains. At the same time we shall extend
some of McQuistan results by introducing higher order
degeneracies whose usefulness will be demonstrated
in finding the asymptotic distribution of “rare” events.

It should be made clear that we shall mainly deal with
degeneracies associated with pairs in which the inner
elements do not contain 1’s, but in the last section we
allude to more general degeneracies associated with
more complicated pairs such as pairs of the type 0-1,
0-1-1,1-0-0.

Research supported by AFOSR F49620-79-C-0095.
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2, ACONNECTION BETWEEN NEAREST AND NEXT
NEAREST NEIGHBOR DEGENERACY AND
SUFFICIENCY

Let{X,,f=0,+1,--+} be a two state (0-1) stationary
Markov chain and consider a binary time series from
the chain, X ,... X . The sufficient statistics asso-
ciated with the chain are?’

S= ixi, R, = ix,.x,._l, H=X +X,.
i=1 1=2

In order to find the joint distribution of S,R,,H it is
necessary to determine the number of binary sequences
M (s,7,,h) for which S=s,R,=v,,H=h. This number is
easily found as follows. Form a succession of 0-cells
(O-runs) and 1-cells (1-runs) in one of (?) possible
ways. We can now distribute the 1’s and 0’s in their
respective cells so that none is empty. First place the
s 1I’s in the s —» 1-cclls in

s-1

1
s=r,~1

ways. Next place the n —s 0’s inthe s —» —h+1
O-cells in

n-s-1

S=v,=h

ways. Therefore,

2 s=1 n—-s-1
M (s,v,, k)= n - —— (2)
and the number of sequences for which only the first
two conditions are satisfied is
s-1 n-s+1
Mn(s,rl)=§Mn(s,7l,h)= v, s—r, ) (3)

a result which was also obtained by McQuistan? for the
degeneracy of nearest neighbor pairs.
If the chain {X,} is of second order then* the sufficient
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statistics are S,R,H together with R,=2.7_X.X, ,,
C=2" XX, X;,U=X,+X,.,, V=X X,+X, X, Again
the joint distribution of these statistics requires the
knowledge of the number of binary sequences

M (s,7,¥,,c,h,u,v) for whichS=s,...,V=v. This
was found® to be
2 ax(h,u)\ /7,~1
M {(s,7,,7,,C,h,u,v)= max(h, ) v R
s=v,=h s—r,~1 n=2s+v,+h=-2
X ¥, ~C~v ¥,=C S=v, =¥,+C—h—-u+v}’

(4)
with the convention

-1

1/71
and where (h,u,v) takes value in{(0,0,0),(0,1,0),
(0,2,0),(1,0,0),(2,0,0),(1,1,0)1,1,1),(2,1,1),(1,2,1),
(2,2,2)}. It follows that the number of binary sequences
for which only the first four conditions are fixed is ob-
tained by summing over (k,u,v). We have

‘-ﬂn(srr‘lrrz’c): Mn(s,rl,rz,c,h,u,v)
hestyv)

+
(090, 0)y (01,009 (0, 2,0)  (19040)4 (240,0)9 (1,1, 0)

+ Z +M"(S,71,7’2,C,2,2,2)
(1ele1)y (20121)0 (142, 1)
vi-W\fs=v,-1N\ /s -7, n=2s+r,
¢ Yy,—C Y,—cC S=¥,=7,+C
v s-7,-1 n~-28+7, n=2s+7,
¥, —C §=¥, =¥,+c—1 S =7, =¥,tc~—2
§~-7,—2 s=-r -1 n~=2s+7,
X +2 1
v, =¢C r,—C=1/\s~7 ~r,+c~
+2 n=2s+7r, $~r, -2
S =¥, =¥,+tc -2 v, —c-1
n=25+7, S=r, =2
S=¥, =¥, +C=2] \¥, ~c =2
_ r, =1 s=v -1 s=7, n~28+7,
¢ ¥,—¢C ¥,—-¢C S =7, =¥,+C
+9 n—25+v, n-2s =y,

S =¥, =¥,+c—1 S =¥, =Vytc—~2

- v, =1 $=-7, s=v, -1 n=2s+7r,+2
c Y, =c Yy ~=C S =¥, =¥,+C
(5)
457 J. Math. Phys., Vol. 22, No. 3, March 1981

Upon noting that »,=n,,,c =n,,,,¥, ~C=n,,, where

#; 4., refers to the frequency of ij,...,k in the binary
sequence, we recognize the occupied next nearest
neighbor degeneracy obtained by McQuistan?®

_fn, -1 S =y, s=-n;, =1
Mn(s’nll’nl()l’nlll)-
B R =My 01

n-2s+n,+2
% 11 . (5,)
S =1y, =Ny
Obviously (5’) can be obtained from (5) by linearity.
Here, and in what follows, we use the notation
M (c,,...,c,) to denote the number of binary sequences

for which¢,,...,c, are fixed. It is readily seen that
(5) reduces to (3) by summing over »,—c¢ and c.

3. HIGHER ORDER DEGENERACIES

In the previous section we illustrated via two exam-
ples that arrangement degeneracies may be viewed as
special cases of counting problems associated with suf-
ficient statistics in Markov chains. The next thing
which comes to mind is the question of generalizations.
It is quite clear now that if one wants to look into or
define higher degeneracies one should examine the suf-
ficient statistics and linear functions thereof of higher
order two state Markov chains. By the very definition
of sufficient statistics, it is intuitively clear that every
conceivable arrangement degeneracy can be obtained by
summing over M, of a given order. We need not con-
sider all the sufficient statistics associated with a given
order but only those which define desired neighbor
types. To make this point clear we shall defer the gen-
eral counting problem to the next section while concen-
trating here on straightforward generalizations of (3)
and (5). We shall first illustrate this claim by examin-
ing sufficient statistics associated with third order
chains. In this connection the notion of a “unit” is
useful

Definition: An mth order unit is a binary sequence
which starts with a 1, ends with m separating 0’s, (if
needed to separate it from other units) and in which
each O-run, if not an end run, consists of at most m -1
0’s. Thus a unit is a block made of 0-runs and 1-runs
where the length of the O-runs is restricted while the
length of the 1-runs is unrestricted.

Definition: A free 0 is a 0 which does not belong to
any unit. Observe that an end unit is a unit which does
not need the separating 0’s at the end in order to be
recognized. The notion of a unit is useful as it deter-
mines the general form of a binary series which satis-
fies our predetermined conditions. For example, con-
sider a first order chain and suppose it is desired to
count the number of sequences for which S and R, are
fixed at s and »,. There are s —v, first order units
which we permute with the free 0’s in

S=r+n=-s)~(s=r -1) n—-s+1
s -7, = s=r,
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ways. Next we place a 0 at the end of each first order
unit in one way. This determines the form of the bin-
ary series. Finally distribute the s 1’s in the s -7,
units so that none is empty in

s-1

()
ways. This yields Eq. (3). Equation (5) can be obtained
in the same way by first determining the positions of
the second order units and then placing the first order
units in the second order units. This is followed by
the distribution of the s 1’s. This procedure gives rise
to an immediate extension of (3) and (5).

Consider the third order analog of (3) and (5). The
statistics of interest are S,R,,R,,C, together with
K=2.7 X, X; X, ,X; ,and nwm, “the trequency of 1001
in the sequence These are sufficient statistics (not all
of them!) associated with third order chains. We shall
determine M, (s,7,,75,C,k,%,00,)-

There are (s ~7,) = (¥, =) = 1,4, third order units,

(s =7,) = (r,—c) second order units, and s —#, first
order units. First permute the third order units with
the free 0’s in

n—3s+2r,+v,~c+3

S= ¥ =¥+ C—Hygn
ways. Next place the second order units in the third
order units leaving none empty in

<s -V, =Vt C —-1>
1001

ways. Then place the first order units in the second
order units in

<s —-v, = 1>

¥Yy=C

ways and place the separating 0’s in the respective
units in one way. Put one 1 in each first order unit in
one way. There remainy, 1’s. There are », —c first

order units with two or more 1’s. So choose r, -¢
first order units from s ~#, and put one 1 in each in

S ~7,
<71 - C>
ways. There are ¢ -k first order units with three or

more 1’s. So select ¢ —k first order units from », —¢
and put 1 in each in

¥, —=c

c=-Fk
ways. Finally place the remaining & 1’s in the ¢ -k
first order units allowing “empty” units in

(c -1
k
Whence

ways.
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- - - -7, -1
M (8,7,,75,C, R, 000, )= ¢ " STV T
k J\c~=k/\r,~c/\ r,—cC

x<s—rl-72+c-—l> <n—3s+271+rz—c+3 (6)
b
Mi001 S =V =¥+ C =Nyon

and by summing over n,,, we immediately obtain
- - - -7, -1
M (5,7 75,C k)= c ri=c\ [s=v\ [s-7
k c~k Y -c ¥Y,=C
n=2s+r+2
b
§ =¥, =¥y+C

This last expression yields (5) upon summation over k.
We can rewrite (6) in a form which resembles (5).
Let fz, denote the number of free 0’s associated with a
third order degeneracy. That is, the number of 0’s
which do not belong to any third order unit. Then fz,
=(n-s)=3[(n~-s) = %01 = Rioo1 ~ 1] - 21100y = Myo1, aNd

(6) becomes

-1 ny=n
- (T 1n ="M
M (S 7405 My41 571119 My019 Ma001) = <
LETTR R —Puan
< S =ny <S"nu_l> (s'”u'nmx"1>
X
Ny =My Ny01 M1001

>(<fz3"”s_’111_71101—”1001> . (67)
§ =7y =My ~ Mroor

From (3),(5'),(6”) we see that a pattern of arrangement
degeneracies begins to emerge whereby the highest or-
der units are permuted with the free 0’s then lower or-
der units are placed in higher order units, succes-
sively, then the separating 0’s are placed in one way,
this followed by the distributions of 1’s so that

S My sfyyyse - s fygys e o - 1Mpp0eeeys ATE preserved. In or-
der to arrive at the general result suggested by the
above scheme we shall employ the notation *(n) to
mean a *-run of length m. Then we readily have

M (8,1, - - 3 My0(m-11)

’n1(m+1)vn101’n1001’ et
Rytmy ™ Mym-0 ~Myem Y, .. { "1~ S ="y,
Ny (me1) Ry (my =My (me1) Ry P My =My
Ny § =fyy =ty =1 .
LT 71001
S =Ny =Nyop =+ "Rig(m-21 = 1)
R0 (m~11
Zpt S =My =Nyop =" T Ho0m-10
x m n~n , Q)
§ =Ny =Ny =" “Nioman

where fz, stands for the number of free 0’s and is given
by
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fz,=n=s) -ml(s =Nyy) =Myor =Mooy = * * * ~Mig(m-1)1

=(m =1Myomeyyy - (8)

Observe that the number of mth order units is equal to

Moy = 2Myge = 0t

(8 =1y,) =110y =Pyp0; = * * * =M io(m-11 5 (9)

since we essentially evaluate 2 X;(1 =X,;_)- - (1 =X;_,).
From (7) we obtain (3),(5’),(6’) as special cases.

4. THE GENERAL ARRANGEMENT DEGENERACY
OF MARKOV CHAINS AND ITS APPLICATION TO
THE DISTRIBUTION OF RARE EVENTS

In the previous section we dealt with one way of ex-
tending the next nearest neighbor degeneracy. How-
ever, this is only a special case of the general ar-
rangement degeneracy associated with an mth order
Markov chain where the problem is to count the num-
ber of binary sequences for which all the sufficient
statistics are fixed. This is a challenging problem
for which no general solution exists as far as the pres-
ent author knows. The main difficulty is the fact that
not all the low order units can simply be placed in
higher order units as in the previous section since
some conditions are violated. Clearly, if such a result
is available, numerous arrangement degeneracies can
be deduced from it. This solution will not be attempted
here. However, we shall give the solution for third or-
der chains and this will give us a clue as to the general
behavior of rare events in binary Markov chains.

The sufficient statistics associated with a stationary
third order Markov chain, apart from ends statistics,
are S,R,R,,C,K as above together with

R3=§: xixm,le}': X,»X,-~1Xi.g,R2,=z; XXX
t=z4 124 =

We shall construct a sequence for which S,R,,... R,
are fixed. First observe that
R,~R,, =R, +K=nyy, . (10)

Also define the statistics

A}, =# of second order units which start and end
with 11,

A,., =# of second order units which start and end with
1,
A, =# of second order units which start with 11 and
end with 1,

A,_,,=# of second order units which start with 1 and
end with 11,

A, =# of second order units which contain exactly
two consecutive 1’s,

A, =4# of second order units which contain exactly one
1.

Clearly

ApntAya+A+A L +A +A=(S-R)-R,-C),

Ap+Aya+ 11-1'(R C)‘(Rlz -K), (11)

A +Au -t -u'(R C) (Rn K)7

which means that if A, A, and 4, _, are known then
soare A _,, 4,,,and A . As it turns out our problem
is simplified greatly if A A”,A“_“ are added to the
other eight conditions. The reason for introducing the
A’s is that it is difficult to keep track of R,, and R,,,
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while from (11) it is seen that when the A’s are fixed
in addition to S,R,,R,,C,K, so are R ,,R, . When the
arrangement degeneracy is obtained the A’s can be
removed by summation.

Recall that there are

(s~7)~(ry=C)=(rg =7, =7, +k)
third order units and

(n=5)=3lis =7))=(ry=c)=(ry =7 —ry+k)~1]

=2y =7, =Tyt k)= (r,~c)

free 0’s which we permute in
(n=8)=2(s =7 )+ (r,-c)+3
(s=v)=-(ry—c)=(ry—r,—v, +k)

ways. There are (s -7 ,) - (r, = ¢) second order units
which we place in the third order units in

(s=7r)—(r,-c)-1
Vy=F1g =¥tk

ways. Place the separating 0’s in one way. Now, we
cannot place the first order units in the second order
units as we did in the previous section as R, ,R,,
change. This is precisely why we need the A’s. So ac-
cording to A, , A, A, A4 .,,4,,.11,4,.,, assign “types”
to the second order units. That is let 4,,.,, second or-
der units start and end with 11, A, ., second order
units start with 11 and end with 1, etc. This can be
done in

(s ~7)~(ry—~c)
A LA LA A A LA

1127711-1197 71112

ways. There are now v, —c 0’s left which we distribute
inA, ., +4, ,+4,,+A _ second order units “non~
empty” in

r,—c=1
A tApa+A+4,, -1

- ¥p,=c =1
(s~7r)=(ry~c)-(A,+A)-1

ways. This takes care of the 0’s and the first order
units as welll It remains now to distribute the 1’s.
According to the type assignment place 11 and 1 in the
second order units as needed in one way, and then put
1 in every empty first order unit (1-cell or 1-run) in
one way. There are », —c {irst order units with two
or more 1’s. But we have already A,,.,+A,.,,+24,,_,
+A4,, first order units with two 1’s. So select (r, -¢)

- (A, +A ., +24,, _,+4,) first order units from
(S—r )-(A 11-1+A -11"'2"(1 +Au)“’(Au-x+A1-u+2A1-1
+A,) first order units in

11-1

11-11

(r,-c)-(A +2A

11'1 1-11 11‘11 )

Cs =7 )=(Ay A, 424, L+ 1) (A,,-A _1,+2A SHA, ))

ways and put one 1 in each. We now have », - ¢ first
order units with exactly two 1’s, since previously no
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first order unit was empty. There are ¢ — % first order
units with three or more 1’s. From the » ~c first or-
der units which contain exactly two 1’s select ¢ =k
units and put one 1 in each in

()

ways. We now have ¢ -k first order units with exactly )

M (S,71,%,,C,%3,7 12,V a1, By A, A LA

11 11‘11)

“11 11-11

three 1’s. Finally, there remain % 1’s which we place
in these ¢ —k first order units allowing “empty” units in

c~k+k-1\ fc-1
c~-k-1 k

ways. It follows that

11

= (c . 1)<Tl —C) (s =7,) -2(A11-11+A11-1+A1-11+A1-1) - (A11+A1) 7p=c =1
E J\c—-k (r,=c)=(A,+A4, ,+24, _ +A (s=7r)=(ry=c)=(A,+A)) -1

(5 '7’1)_(7’2—6)

x
<A17A11 ’All'll’yl —C=7p+k ‘Au -A

11=117

(n=—s)=2(s =7 )+ (r,-c)+3

< (s~-7r)=(ry-c)-1
Vo=V =Ty +h (s=r)=(r,=c)=(ry=r, -7

where A, is obtained from (11) in terms of A, ,A,,
A|,S8,71,¥,,C,¥ 5,7y, #, and is too long to write. Thus
the desired arrangement degeneracy is obtained by
summing over 4,,,4,,.,,,4,, adhering to the convention

G

We have

M,,(S ,1’1,72,6',73,'712,1"21,/?)

- <c—1 ¥y, =c (s-rl)—(r2—c)—1>
k ) (c—k) ( Vy=Vp=Vyu+k
(n-s)=2(s =7 )+ (r,-c)+3

X (13)

(S —7"‘)—(7’2—0)—(7’3‘7’12-7214-;3)

x Z B (8,71,75,C Vg3 ¥y ¥ay By AL AL AL )
AlvAnArr-n
where B, is equal to the product of all the coefficients
in (12) which involve 4,,,4,,4,,.,. Note that

Y B(s,0,0,...,0,A,,4,4,,,)=1, (14)

A1 AL ALl F11
since A, =s and the rest of the 4’s vanish.
Now the joint distribution of a binary time series
from a third order stationary Markov chain is given by

P, Xy e e, X,)= (DOWETS N X, Xy, X5, X5 X oy s Xy

= ke - ~C= Ry T3~Toy~T12+RHR ¢k pC-Rk
X pr2ar Ry 127y T Cr | p#Ry T p=C Ty 4Ry T3 T o Ty g
plou Piio Poion Pi3o L6 P PinePon

F1oCor g+RA Y ~C Y21 +R, T 20+ R SrYTYoHCTT 342421 "R
x puoo poou 0110 [pmoopoool]

X ps-zrl —12+26+r12-hps-271 “rp+2C4+7 1 R
0100 0010

pn-/lgq»:;r“z(rz-c)+r3-rlg—rz]+k-3 (15)
000 ’

wheTe Py v o Lo P =K SETIPS. CILE S o
=x,_,), from which it follows that the joint distribution
of S,RI,RZ,C,RS,Rlz,Rzl,K,Xl,XZ,XS,X"_Z,XH,X" is
the product of (15) and the arrangement degeneracy of
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k))

Yy=C=¥ytk "Au ‘A11-111A1—1>

(12)

(these statistics. But when X, ,X, X, X, _,,X ,,X, are
equal to O this arrangement degeneracy is asympto-
tically, as n—~, the same as (13). Therefore from
(13), (14), and (15)

PS=s,R,=0,R,=0,...,K=0,X,=X,=X =X, =X, ,=X,=0)

n~3s+3 -
~ ( )PfoooP3001P3100P3010P0033'3 .
s
Assume that as n—- >

(i) The 1’s become rare separated by long O-runs so
that the event {§,=0,R,=0,...,K=0,X =Y ,=X,=X,
=X,.,=X,= 0} becomes a sure event;

(ii) p 1000~ O such that np o=, fixed;

(111) P o001 ~Por00 ~Pooro ~Poooo= 1 =P 1000-

Then from (16), as n becomes large,

(n~3s+3)! (g)s 1. n-s-3
(n—-4s+3)Is! \n n

- 503 ()
st n n n n

e*as
s!

Py(S=s)~

) (17)

a result which is well expected.’

This procedure for finding the asymptotic distribution
of S as n~ < can be easily extended to the n/th order
case. Arguing as above we have from (7) (as the last
binomial coefficient in the most general case is given
by the last coefficient in (7) which stands for the num-
ber of permutations of the mth order units with the
free 0’s)

. n—WS+m e
Pr(s=s)- ( >pp
s
ozs(n—ms)---(n—(m+l)s+1)( a)" as
~— 1l——} -—e™,
s n® n s!
(18)
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where n-~= and p ..o~ 0 such that np ....,= .

More results of this nature can be obtained once the

arrangement degeneracy of a specific order is known,
For example, from (12} it should not be too difficult to
show that under some conditions similar to (i)-(iii)
S ~R, is also asymptotically Poisson. In fact Poisson
with parameter a(1 =), where A€ (0,1) is a measure
of the density, or clutering tendencey, of rare events.
For an interpretation of this fact see Ref. 4.
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Approximate solutions to the Chandrasekhar H-equation are obtained by considering a truncated
moment problem. Convergence to the physical solution is proved and a numerical example is

outlined.

PACS numbers: 02.60.Cb, 95.30.Jx

1. INTRODUCTION
The H-equation given by

H(z)=1+2zH(2) x+z

and its operator-valued analogs play an important role
in transport theory."3 Tterative methods for its solu~
tion have been re-examined in the recent literature.®**
A typical result is that if do/dx is a positive element of
Ly(0, 1) with norm less than } then the iterative scheme
given by

1 H,{x) dofx) @)

Hou(z2)=1 +2H,.4(z) P

converges monotonically and uniformly on (0, 1) to the
“physical” solution H{z). H(z) is positive, bounded,
continuous, and monotonic on (0, ) and subject to the
constraint 1/H(~ vg) =0,vy > 0. This constraint is
equivalent to the requirement A(vg) =0, where Alz) is
the dispersive function given by

-X

AR)=1-22"

since one has the identity
H()H(- )Y =A(2) . 4)

Here we examine approximants to the physical solu-
tion of (1) which are associated with the power-moment
problem. It is not necessary to know ¢. Only its mo-
ments are required. The approximants are introduced
in Sec, 2. In Sec. 3 we examine their convergence.
An explicit numerical example is given in Sec. 4.

2. THE APPROXIMANTS
A. Nonconservative case c, < 1/2
Let o be a measure with known moments

1
c,,:f 2dolx), n=0,1,2-"" {5)
0

and with ¢g<1/2.

Let gy be the measure, associated with the truncated
problem of order 2N — 1, given by®

(;(;N (X) i aNié(x - Xy ‘) y (6)

a)3upported in part by the National Sciences and Engineering
Research Council of Canada.

462 J. Math. Phys,, Vol. 22, No. 3, March 1981

002-2488/81/030462-03%1.00

with

1 1
f x“da,,,(x):f *"dolx), n=0,1,...,2N=-1, (7)
0 0

where the xy,; are the poles and the ay, are the residues
of the [N - 1/N] Padé approximant® to the function
[tdotx)/(z - %).

Let Hy(z) be the physical solution to the H-equation
with the approximate measure ¢o,. That is,

Y H L (%) doy (%) ‘ ()

Hy(2) =1+ zH,(2) P

This may be explicitly solved® to obtain

Hy(2)= (1 =2 c)) 2 II(Z 2oy ) )

Z+vyy

where the vy, are the positive zeros (intertwining the
positive poles xy,;) of the approximate dispersive func~
tion

dO’N (x)
e

-X

Ay(z) =1 - 22 (10)

Equation (9) follows easily from (8) and the identity
Hy(2)Hy(- 2))" = Ay(z) which, in particular, implies
that

ll:l'lm Hy ) =
P
This correct asymptotic behavior (together with higher

order identities in z™) is an attractive feature of the
approximants associated with the moment problem.

Lim ()™ =(1-2c9)"". (12)

B. Conservative case c, = 1/2

In the conservative case ¢;=1/2 one has lim, .. H{z)
= and one needs a modification. This is easily ob-
tained by passing to the limit ¢y=1/2 from case A.
From Hy(0)=1 one has that

A X
g (ﬁ):u ~2¢)'”. (12)

The second moment in (10) yields {the term in z%)

N
D -k, =20,/(1-2¢), N>2. (13)
$=1

It follows that as ¢, ~1/2~ the largest zero vyy be-
comes infinite with the behavior

van (267 /(1 = 2¢ )12, (14)
Taking the ¢y ~1/2~ limit of (9) thus yields for N> 2
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Hylz) = @cy)™ (e + x ~>II( 24y ) (15)

2 +VN‘

3. CONVERGENCE

We are able to prove that the sequence of approxi-
mants Hy{z) converges uniformly on [0, =) to the physi-
cal solution H(z) if ¢, is sufficiently small. The suffi-
ciently small condition of our proof turns out to be ¢,
<#. A cleverer proof could presumably improve this
to ¢y %

A basic estimate is

1<H(z)<d (16a)
and

1<Hy(z)<d, (16b)
where d=(1 —2¢y)"? and z€(0,~). For small z the

upper bound may be improved by using

H(z)<1+2d f d"(") (17a)
and
HN(z)<1+zdf dﬂ—("—) (170)

From (16a), (16b) and (17a), (17b) one has
1 1
—zdj; i—a_'%)<HN(z)—H(z)<zd'£ doy (x) (18)

X+z
for 2€(0,»). Using the estimate®

b doy(x) _ [ dolx)
0 X+z 0 x+z’

z€(0,=), (19)

one has

|Hy(z) - H(2) | < 2d j;l}ifi‘%) , ze(0,) . (20)

If o is continuous at x =0 it follows that
[Hy(z) =H(z)| <€, 0<2z<b(e), (21)

with & independent of N. It remains to obtain estimates

for z> 6.
From (1) and (8) one obtains

Hy(2) - H(z) = 2H (2)H(2) < " Hy(x) doy(x)

x+z
g Hlx) do(x) dc(x)
Thus
|Hy(2) - H(z)| < H,,(z)d( f1 2 [ Hy(x) ;il(zx)l doy (x)
zH({x) [doy (x) = da(x)]
o| [t} g
Now zH(x)/(x +z) is continuous in x if 2> 6>0. It fol-

lows from Theorem 64.1 in Ref. 7 [provided that o is
continuous at x =0, 1 and a dense set of points in (0, 1)]

that
1 1
H
lim j zH(x) dgy (x) _ J‘ zH(x) do(x) . (24)
N-ow 70 X+z 0 x+z
463 J. Math, Phys., Vol. 22, No. 3, March 1981

Thus
P f1 H{x) [doy (x) ~ do{x)]
0

<€, N>Mlz &). (25)

x+2z
Let Ny =8up,e 4,0, (2,€,). Then
1
-H
‘HN(Z)—H(Z) , SHN(Z)d f EJH_"’(M do”(x) + Eldz’
0 x+2
N>N1(€1), z=46. (26)

Similarly one may start from an equivalent form of (22)

Y y{H, (x) doy (x) - H{x) do(x)]

H,(z) -H(z):-—HN(z)H(z)j;

X+z
@7
to obtain
1
(HN(Z) —H(Z)[ <dHN(Z) f; x‘HN(x);I:(Zx)I dUN(x) + €2d2 )
ZE[O,QO), N>N2, (28)

where

fi xH () doy (x) = do(x)]
0

x+z

< € for N>M,(z, €)

and Ny = SUP,¢ o, «,M, (2, €,). Adding together inequali-
ties (21), (26), and (28) one obtains

1
2 |H,(2) - H(z) | < dH,(2) j; |Hy(x) ~ H(x) | doy(x) + €

+d%(e; +e) (29)
for zE€[0, ©) and N sufficiently large.

Multiplying (29) by doy(z), integrating, and solving
algebraically for [} |Hy(x) - H(x)| doyx) yields the esti-
mate

1
[ 1ot - 569 a0y 0

1
<cle+de +e,))/{2- df Hylx) da,,,(x)) (30}
0

provided that
1
Z—df HN(x)dO'N(x)>0, (31)
0

where [Hy(x)doy(x)=1=1/d and d=(1 - 2¢;) "%,

Thus (31) is the condltlon that 3~ (1-2¢))?*%>0or ¢,
<%. Thus if ¢, <# and olx) is continuous at x = 0,1 and
a dense set of points in (0, 1) then fo |Hy(x) -

H(x)| doy (x) is arbitrarily small for N sufficiently
large. Estimates (29) and (16) then yield limy . . Hy(z2)
=H(z) uniformly for zE&€[0, =),

4. NUMERICAL EXAMPLE

The 31mple case o{x) = cx has been extensively tabu-
lated.'” Here we compare the exact results for ¢ =3
and ¢ =3 with the lowest-order approximants N=1, 2,
and 3, which are easily obtained by hand calculation.

Solving Eq. (7) for the ay, and xy; in {(6) yields
x11:1/2,
ai=c/2, xu=1/2-1/2/3 =0.211325,

a1 =cC,

D. Masson 463



TABLE 1. (c=1/4) approximate solutions Hy(z) and exact so-

lution H(z) to the Chandrasekhar H-equation for o(x)=x /4.

TABLE II. (c =1/2) approximate solutions Hy(2) and exact
solution H(z) to the Chandrasekhar H-equation for o(x) =x /2.

z Hy(2) Hy(2) H{z)
0.2 1.0914 1.1096 1.1135
0.4 1.1496 1.1666 1.1680
0.6 1.1901 1.2039 1.2044
0.8 1.2199 1.2308 1.2309
1.0 1.2426 1.2513 1.2513

@ =c/2, x93=1/2+1/2V3 =0.788675
and

ay = 5¢/18, x5 =(1—V37/5)/2=0.112702,

ap=4c¢/9, xp=1/2,

as3=5¢c/18, x33={(1+V3/5)/2=0.887298 .

The approximate dispersive function Ay given by Eq.
(10) can then be calculated.

M) =G = 2¢) - 1/4)/(z* - 1/4),

221 =2¢) =221 -¢)/3+1/36

Aal2) = 2 -22°/3+1/36 ’

A3(z)

_ 2%(1-2¢) - 2*(63 - 43¢)/60 + 2 2(21 -~ 12¢)/100 - 1/400

z H{2) Hy(2)} Hy(2) H{z)
0.2 1.4000 1.4414 1.4490 1.4503
0.4 1.8000 1.8276 1.8294 1.8293
0.6 2.2000 2.1959 2.1946 2.1941
0.8 2.6000 2.5562 2.5532 2.5527
1.0 3.0000 2.8121 2.9082 2.9078

28 —-2122/20+212%/100-1/400

From this the positive zeros vy, ¥N=1,2, can then
be obtained.

vile) =31 = 20",

vy (€)=[(1-cqll = e)* = (1-2¢)/4P/?/3(1 - 20) '/
2)
Equation (9) then yields Hy, N=1,2,
Hy(2)=(z +3)/(z(1 - 2c)'? +1).

2+2+1/6

B = A O T Onle) + vl T 16 -2 1)

For ¢ =7 one thus has

V11(1/4) = 1/\/‘2- =0.707107 )
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vor(1/4) =(1/2 ~ V77/6)" %= 0.242984
vea(1/4) =(1/2 + V7T/6)'* = 0.970030,

and the values in Table I. For the limiting case ¢=1
one obtains [vyy(1/2) =]

v31(1/2) =1/2V3 =0.288675,

v31(1/2) = 3[(9 ~ v&9)/10]*/2 = 0.131660,

vea(1/2) = 5((9 + VB9) /101 = 0.657773,
Hi(z)=1+2z,

2+z+1/8
H2(Z):z/\/_§+1/ﬁ’

Hy(z) = V3(2® +32°/2 +32/5 + 1/20)
= T T(9—- V692 + (9 + v69)]2/2V10 + v3/20

and the values in Table II.
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1960).
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An exact invariant for a class of time-dependent anharmonic oscillators with

cubic anharmonicity
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An exact invariant is constructed for a class of time-dependent anharmonic oscillators using the
method of the Lie theory of extended groups. The presence of the anharmonic term imposes a
constraint on the nature of the time dependence. For a sub-class it is possible to obtain an energy-
like integral and a condition under which the motion is bounded.

PACS numbers: 03.20. + i

1. INTRODUCTION

In the investigation of the behavior of plasma one of the
models which was early adopted was that of the motion of a
charged particle in an axially symmetric field. An advantage
of such a model was that, under suitable approximations, the
radial equation reduced to that of the simple harmonic oscil-
lator. One could not ask for a better model as far as the
resulting mathematics was concerned. However, the Zeta
machine and its like did not work and a more refined model
was needed. This lead to the equation of the time-dependent
harmonic oscillator to take into account time-varying fields.
This oscillator system had attracted earlier attention, pri-
marily as an approximation to the lengthening pendulum.
Unfortunately, unlike the time-independent oscillator, there
was no known exact invariant for the time-dependent
oscillator.

That deficiency was overcome by Lewis' using a meth-
od based on Kruskal’s scheme.? The Lewis invariant has
attracted a considerable amount of attention from a variety
of viewpoints.>> We were able to offer a simple derivation
and interpretation of the invariant® and to provide invariants
for similar linear systems.” Indeed each member of the whole
class of quadratic Hamiltonians was shown to be equivalent
to any other member to within a (time-dependent) linear
canonical transformation. The application of these results to
quantum mechanics was begun by Lewis and Riesenfeld®
and extended by us.® Naturally for quantum mechanics the
class of permissible linear transformations is restricted, but,
for a time-dependent quadratic Hamiltonian of constant sig-
nature, there would appear to be no difficulty. In fact the
quantum mechanical results for time-dependent linear
transformations closely parallel those for the time-indepen-
dent case as reported by Wolf and others.'®

We have not heard of the Zeta machine for many years,
but it appears as if its successors require an even better model
than that of the time-dependent harmonic oscillator. It was
suggested’! that a time-dependent anharmonic oscillator
with cubic anharmonicity in the Hamiltonian would be suit-
able as a starting point and that an invariant for such a sys-
tem could be informative. Assuming that a nonlinear system
required nonlinear transformations, we proposed a scheme
for constructing an invariant related to the Hamiltonian by
means of such a transformation.'? In general it was antici-
pated that the transformation would be an infinite series and
probably divergent as well. However, in celestial mechanics
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truncation of similar series has been used with some success,
for instance in the work of Gustavson'? on the notorious
Hénon—Heiles problem.

To provide the solution to a problem in the form of an
infinite series is sometimes acceptable (as in the case of the
ordinary oscillator), but generally speaking it may be regard-
ed as less than satisfactory. The whole advantage of the Lew-
isinvariant is that it is concise, easy to work and has a precise
“physical” interpretation. We became convinced that useful
transformations must nearly always be linear although the
opposite viewpoint has recently been advanced by Mahar-
atna, Dutt, and Chattarji.'* It is our opinion that the results
obtained here support our viewpoint.

It is evident that in general a time-dependent problem
will not possess an invariant. This is not surprising. The
point is to be developed elsewhere. It will be seen in the case
of the problem discussed here that the determination and
interpretation of such invariants rely on point transforma-
tions of the type t-—»T, g—Q. In the Hamiltonian context this
means a linear canonical transformation coupled with a
change of time scale. That such should be the case is fortu-
nate for the results may readily be extended to quantum me-
chanics. Indeed the linear transformation belongs to the
class of transformations for which the Schridinger wave-
functions are related by means of a geometric transform
rather than the more general integral transform.'®®.

Apart from the context of Hamilton—Jacobi theory,
time-dependent transformations have not much been used
until recently. Nevertheless we do express some surprise that
the methods employed here have not been adopted general-
ly. Specifically, the theories of Lie and Noether have been
around for a considerable time and yet, to our knowledge,
have only been applied, in a context similar to the present
one, in recent years. Many of the ideas employed in this
paper have been developed in earlier papers to which refer-
ence is made when appropriate.

2. THE PROBLEM

As reported above, it has been suggested that a better
model for the motion of a charged particle in an axial field
should include allowance for anharmonicity. Let us be more
generous and allow velocity dependent damping and a co-
ordinate free forcing term. Whether the addition of such
terms is helpful to the model is unknown to us and we leave
that matter to the physicists. All we wish to do here is to
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provide the maximum possible flexibility for the model.
The Newtonian equation of motion for such a particle
may be written as

G+at)q+b(t)g+c(t)g +d()=0. 2.1)
The time-dependent parameters a, b, ¢, and d are not speci-
fied as to properties, but are assumed to be as good as the

occasion requires. Following Caldriola and Kanai,'® we use
an integrating factor to construct a Lagrangian which is

L =14°4 — (3b4* + Yeq’ + dg)A, (2.2)

where
t

A=A@1)= expf a(tydt'. 2.3)
The conjugate momentum is

p=q4 2.4
and the Hamiltonian is

H=1p4" 4+ (1bg" + leg® + dg)4. (2.5)
Under the change of time scale given by

T= f AN ydr, (2.6)

the problem may be discussed in terms of the equivalent
system with Hamiltonian

H=1p*>+1bg’ + lcq’ + dg. 2.7
Note that under the succession of transformations used here,
it is the form of the expression for the Hamiltonian rather
than the precise relationship of one symbol to the corre-
sponding proceeding one which is of interest. The alternative
normal procedure would require a new set of symbols for

each equation and naturally would be followed in a practical
application. Under the translation

g—q +rt), p—p+s@t) 2.8)
we obtain a new Hamiltonian of form

H=}p*+1bq" + lcg’ +g(t), 2.9)
provided, in terms of the coefficients of Eq. (2.7),

Ftbr—crr—d=0, s=F (2.10)

As far as Eq. (2.9) is concerned, we may ignore the garbage
term g(¢) as it plays no role in the equations of motion. It
should be noted that in quantum mechanics g(¢ ) would ap-
pear in the phase.

Apart from the cubic term, Eq. (2.9) is now in time-
dependent oscillator form and so the appropriate transfor-
mation is (cf. Ref. 6)

Q=p'q, P=pp—pq, (2.11)
where p(1) satisfies the auxiliary equation ;

p+bp=p (2.12)
The Hamiltonian now takes the form

H=p?{}p* +1¢" + icq’}, (2.13)
which, under the change of time scale

T= Jq p2(t)dt’, (2.14)

:

o
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becomes
H=\p>+ ¢’ +1Bg’. (2.15)
Thus we see that all Newtonian equations of motion of the

form of Eq. (2.1) may be discussed in terms of the Newtonian
equation

G+q+B(t)g@ =0, (2.16)

provided the original linear coefficient is sufficient to war-
rant the final positive sign. In terms of the physical model
this restriction is reasonable. We are looking at a physical
situation which does involve attraction to the first order.
Otherwise kinking is inevitable.

3. CHOICE OF APPROACH

The initial problem has been reduced to a discussion of
the three (equivalent) alternative forms, respectively, the
Hamiltonian, the Langrangian, and the Newtonian

H=1"+1¢° +Bq’, G.1)
L =44’ —1¢" —\Bg’, (3.2)
N=§¢+q+Bg*=0. 3.3)

Considering that we have possible quantum mechanical ap-
plications in mind, we must pose the question: Upon which
of Egs. (3.1), (3.2), or (3.3) do we base our analysis? The
Hamiltonian is most closely related to quantum mechanics.
However, our experience of applying transformations to
nonlinear Hamiltonians has not been happy.'*'® The La-
grangian is not far removed from the Hamiltonian and is
susceptible to treatment by the generalized Noether’s theo-
rem. Furthermore any invariant found in this way has a cor-
responding Hamiltonian invariant.'” Also the invariants are
easily found using Noether’s theorem as there is an explicit
formula. On the other hand, the Newtonian equation of mo-
tion is the most generous when it comes to providing invar-
iants derived by the method of the Lie theory of extended
groups.'®

The approach chosen here is that of the Lie theory of
extended groups. Those who are familiar with the method
will know that the price of generality is a more awkward
determination of invariants vis @ vis the Noether method.
This drawback may be allieviated by the use of point trans-
formations which we have discussed elsewhere.'® This pro-
cedure is particularly effective when there is only one possi-
ble invariant. Essentially a new time and coordinate system
is found in which the invariant is a function of coordinate
and velocity only. The transformation is one of time scale
and linear in the coordinate. This relates very well to the use
of change of time scale and linear canonical transformation
in the Hamiltonian formalism. It will be particularly attrac-
tive if the invariant (in the new coordinates) is energy-like
since this will have useful quantum mechanical applications.
If it is not, then at least we will have an invariant.

4. THE METHOD OF THE LIE THEORY OF EXTENDED

GROUPS

Although the Lie theory of extended groups has en-
joyed a rightful resurgence of attention recently,*® it may not
be familiar to all readers. Accordingly we provide a brief
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resumé relevant to Newtonian equations of motion. Suppose
there exists a transformation with generator

@1

(We restrict ourselves to the one-dimensional problem.) If
under the transformation generated by this operator a New-
tonian equation of motion is to remain invariant, then, writ-
ing the equation as

J aJ
G= 1) — £y —.
5(g )at+77(q ) %

NG, ¢.9.1)=0, 4.2)
we require
G 'N(G, ¢,gt)=0, (4.3)

whenever Eq. (4.2) is satisfied. The second extention of G,
denoted by G ‘*’ is given by

7} d
G? =G+ + 922
n 3 i 3

(4.4

7" = —&G 7P =1 — &G —284. 4.5)
Presuming that Eq. (4.3) has non-trivial solutions for £ and
77, a constant of the motion may be found by imposing the
double requirement that

G'"P(4.9.1)=0,
DP (4,4,) =0,

where D =d /dt.

In the analysis of certain linear systems?' it became ob-
vious that the task of finding the G’s, let alone solving Egs.
(4.6) and (4.7), was complicated. It had been observed that
linear systems of the same dimension had the same symme-
try group, SI( n +2,R ).?? There was also the Hamiltonian
result about the equivalence of linear systems under linear
canonical transformations. This suggested that a point
transformation of the type t—T, ¢—Q would simplify mat-
ters. In quantum mechanics a time-independent energy-type
invariant is desirable” and in classical mechanics it is most
useful. The generator for such a constant is

-9

e
provided of course that the appropriate space-time frame of
reference is used. Supposed that in solving Eq. (4.3) a gener-
ator of the form

d 3
G=rf) + {g(t)q+h(t)}—a;

is obtained. All one needs to do is to change to new space and
time variables, Q and 7, by means of transformation linear in
@ such that now

G =3/3T (4.10)

and an invariant independent of the new time may be ob-
tained. As a function of Q and Q it may be an energy type
integral, in which case it has suitable quantum mechanical
features. If the invariant is not of that form, the quantum
mechanical applications are not so obvious, but at least an
invariant does exist. We note that it has been found that, in
the case for which there are several generators, a common
transformation reduces them to a commonly simpler form.

(4.6)
4.7

(4.8)

(4.9)
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This is the case with linear systems.** For nonlinear systems
the existence of several generators does not usually occur.
Indeed it should be mentioned in passing that even in the
instance of integrable nonlinear systems there may only be
one generator.”” This seems strange as an integrable system
has two constants of integration for a one-dimensional sys-
tem. It is hoped to discuss this point at another time.

To conclude this section we make a brief summary of
the generalized Noether’s theorem. Suppose a transforma-
tion with generator G leaves the action integral invariant,
with G as defined as in Eq. (4.1). Then there exists an invar-
iant given by

P (§:9t) = — 6L + (1 — &) OL /9¢) + f(g.1)}, (4.11)

where f(g,t) is determined along with £ and 7.

5. A USEFUL RESULT
As aresult, which is useful in this work and which does
not appear to have been stated before, concerns the form of

the generator G for the class of Newtonian equations of
motion

N(Gq,t)=4 + g(g,t) =0. (5.1
Under the requirement that

G N(Gg1t)=0, (5.2)
we have

§3—f+nj—§+(ﬁ—s’“‘q’—2§'zj)=o. (5.3)

Remembering that both £ and 7 are functions of g and ¢ only,
we separate coefficients of powers of ¢ to obtain

a9
g5y, 5.4
5 (5.4)
8217 a 2§
-2 =22 =0, 5.5
dq* dqot (5-3)
Py _ de
) — 22 43 —= =0, 5.6
deor %o .6
Iy an o9& dg dg
o’ gaq+gaz+§at+”aq (57)
From (5.4)
§=at)+b(t)g (5.8)
From (5.5)
n=b()g +c(t)g +d () (5.9)

Thus £ is at most linear in ¢ and 7 at most quadratic in g. We
shall use these forms in the development below.

A similar result may be obtained for Noether’s theo-
rem. The Lagrangian corresponding to the Newtonian equa-
tion (5.1) is

q
L=1~FGn, Fan= [ s@ndr. (510
The Noether invariant (4.11) has the form

Dgt)=E{4¢° + Fg)) —nd—flgr). (51D
Taking the total time derivative of (5.11) and equating pow-
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ers of ¢ to zero we obtain

% (5.12)
dq '
198 _ 9 _, (5.13)
2 ot aq
Fo% _ o _ & _, (5.14)
dq ot dq
9 IF af
Fos or - 9 oo 5.15
8t+§ TG (5.15)
From Eq. (5.12) we have
£(gt)=a(), (5.16)
and using this in Eq. (5.13),
n(gt) =1a(t) g+ b (). 5.17)
From Eq. (5.14) we find that f(g,t ) has the form
flgr) = —4di@) g —b@) g (5.18)

The arbitrary function of time from the integration of Eq.

(5.14) is neglected. The possible expressions fora(z )and b (¢)
are then found from Eq. (5.15). At this point we simply note
that the Noether’s theorem generators are simpler in general
form to those obtained using the Lie theory. A comparison of
the expressions for £ and 7 might tempt some to identify ¢(¢)
in (5.9) with 14(z ). As will be seen below, this is not the case.

6. APPLICATION OF THE LIE THEORY TO THE
ANHARMONIC OSCILLATOR

The reduced problem is the existence of the invariants
for the Newtonian equation of motion

§+q+B() =0 6.1
From Sec. 5 we know that the generator is of the form

G(g,t) = (a+ bq)3/3t + (bg* + cq +d)d/3q, (6.2)
only %*’ is required and it is

n' =i — &4 — 264

— bg® + 3bgg — 3bgi
+éq +2¢4 + c§ +d — gd —24a. (6.3)

Substituting into

GG+ q+ Bg") =0, (6.4)
and equating powers of ¢ to zero, we find that

b=0, (6.5)

d+d=0, (6.6)

¢+2d+2Bd=0, (6.7)

aB + Bc +24B =0, (6.8)

26 —a=0. 6.9
From Eqgs. (6.6-9) it follows that

d = D sint + E cost, (6.10)

2e=a+a, 6.11)

B = Ka"* exp{ —la Jﬂ dt'/a(t ')], (6.12)

wherea, K, D, and E are constants and a(z ) satisfies the third
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order equation
4 +4d +2Bd +0. (6.13)

Thus the generator of a one parameter symmetry group
for Eq. (6.1) is

G(q.t) = ad/dt + {id + a)g + d }3/3q, (6.14)

provided B (¢ ) takes the form specified in Eq. (6.12). In view
of the result for Noether’s theorem, a generator for a trans-
formation which preserves the action is

G (g,t)=ad/ot + (aq + d )d/dq,
i.e., @ must be taken as zero.

From Eq. (6.13) we see that for d=£0, there is a consid-
erable increase in the complexity of the differential equation
defining a. From Eq. (6.12) the range of functions B (¢ ) is
increased for a==0. However, this is at the price of removing
the resulting invariant from the Noether class. As far as ease
of manipulation is concerned, clearly the case d =0, a=0is
the simplest. As to whether the non-Neotherian case
d =0,a==0 is simpler than d=£0, @ = 0, it is not so easy to
judge except when it comes to obtaining explicit expressions.
The general case d==0, a=~0 is clearly the most complex.
Because the case @==0 is non-Noetherian we would expect
some qualitative differences in the invariant which will prob-
ably have direct bearing on possible quantum mechanical
applications. For the moment we shall examine the general
case and then discuss the particular cases in turn.

(6.15)

7. DEFINING EQUATION FOR THE INVARIANT

In Sec. 4 we suggested that the process of finding the
invariant would be simplified by a transformation to a new
space—time coordinate system. We define the transforma-
tion as

T=f@t), Q=gt)g+h() (7.0

By imposing the requirement that G (g,t ) as given in Eq.
(6.15) take the form

G(Q,T)=9/9T, (7.2)
we see that

so that the parameters of the transformation are given by
o= awar,
g(t) = a'*(t)exp( — Jaf (1)),
h(t)= — f d(tya (@t Yexp( — laf(tH) dt'. (7.6)

(7.4)

(1.5)

Applying the transformation to the Newtonian equation of
motion (6.1), it now takes the time-independent form

Q" +aQ +KQ*+MQ+ N=0, .7
where the constants M and N are given by
M =1{ad — }(d + a)* + a(da + a) +2a*> —4Kh |, (7.8)
N=h(M+Kh)+g{id —a)d —ad }, (7.9)

and the prime represents differentiation with respect to 7.
The constancy of the expressions on the right-hand sides of
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Egs. (7.9) and (7.10) may be confirmed by direct differenti-
ation and the use of the differential equations for the various
parameters.

In the normal way of finding the invariant correspond-
ing to an operator G, we would solve the Egs. (4.6) and (4.7).
However, as Eq. (7.8) isindependent of Tand the invariant is
a function of Q and @', we rewrite it as

Q’%+aQ’ +KQ? +MQ + N=0.
The invariant is then obtained by quadrature.

For the case o = 0, we immediately obtain the energy-
like integral

@(Q.0)=10" +1KQ*+ IMQ* + NQ. (7.11)
This is a Noetherian invariant and so has a corresponding

Hamiltonian form. We now examine the problem from the
Hamiltonian viewpoint.

(7.10)

8. HAMILTONIAN VIEWPOINT

The Hamiltonian corresponding to the original Newto-
nian is

H=ip' +1q° +18q". 3.1
The transformation which reduces the Newtonian equation
to a time-independent form involved both a change of time
scale and a linear transformation of the coordinate. In the
Hamiltonian context such a transformation is accomplished
in two stages. The first involves a linear canonical transfor-
mation which removes the time dependence to a multiplica-
tive factor. The second is a change of time scale so that the
Hamiltonian is now the invariant. Thus under the transfor-
mations we expect the Hamiltonian to become

H(QPT) =P +1KQ* + IMQ* + NQ, (8.2)
which is the Hamiltonian version of Eq. (7.12). We now ver-
ify this result.

The form of the linear transformation may be inferred
from Egs. (7.1) and (7.3) (with @ = 0) and the fact, implicit
in Eq. (8.2), that Q' = P. Thus

g=qg+h, P=agq-+agp—dg, (8.3)
where

g=a'? h= f dg/a. (8.4)
The type two generating function is

Fi\(q,Pt)=gPq+ aq’/4a + dq/a + hP. 8.5
Then

H'(Q.Pt)=H(qp.t)+ dFq,Pt)/or
=a'{\P? +1KQ3 + IMQ* + NQ . (8.6)

The change of time scale, 7= fa"'(t ') dt’, yields the Hamil-
tonian (8.2).

We emphasize that an invariant of the form given in Eq.
(8.2) exists only in the case @ = 0, i.e., for functions B (¢) in
Eq. (8.1) given by

B(t)=Ka’?, 8.7

where a is a solution of the nonlinear equation

469 J. Math. Phys., Vol. 22, No. 3, March 1981

G + 44 +2Ka>*(D sint + E cost) = 0. (8.8)

In view of the form of Eq. (8.8) it is rather fortunate that the
foregoing analysis may be performed without an explicit
knowledg of a(t ). In terms of the original coordinates the
invariant is

1(g.9,¢)
= lag* — lagq + 1Bg’/a + (Ya + d/a)q’ — dg
+ {gh(ad — 1% +2a° —2Kh) + (ad — ad )/alq

+d*/2a+4Kh*/3 +3Mh>/2 + gh(ad /2 — ad).
(8.9)

For the simpler case when d is zero, this reduces to
1(4,t) = a{ig’ + i¢° + 1B’}
which is not overly complicated.

— ldqq + dq°/a, (8.10)

9. DISCUSSION

We have seen that an invariant may be obtained for
certain time-dependent anharmonic systems. From the in-
variant we may obtain information regarding the bounded-
ness of the motion of the particle. To illustrate this, we con-
sider the simplest case a=0, d =0. Then

a(t )y = A + Bsin2t + Ceos2y, “.n
B(t)=K(A + Bsin2t + Ccos2t )72, 9.2)
M=A4°—-B*-C2 9.3)

By requiring that B (¢ ) be finite and real we have
A>B2+CH'2 M>0.

In this particular instance, the transformation from (g,p) to

@P)is

Q=gq, P=agq+ agp, (0.4)
so that, when p = 0, the invariant is
I=1KQ*+ (M + 1aQ°. 9.5

The values of I for which this cubic has three real distinct
roots may be obtained from the discriminant of Cardan’s
formula.?® We find that

I <(M + 16®%/6K * (9.6)

and, since Lda( = B cos2r — Csin2t ) may be zero, the motion
will be bounded for

T<M3/6K?2. .7

A similar analysis may be performed for the case d==0,
a=0, but the result is more complicated due to the extra
terms. When a=£0, the stability of the motion is more diffi-
cult to determine because of the nature of the differential
equation (7.11) determining the invariant. However, for par-
ticular cases it would be amenable to numerical treatment.

The value of the results obtained here depends upon the
type of time variation of the field found in the experimental
situation. If this time variation is one of the types allowed by
the theory for an exact invariant, it would be most gratifying.
If it is not, it may be possible to use the results obtained here
as an approximation to find bounds within which the motion
will remain.
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Scattering of a scalar wave from a slightly random surface
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Scalar wave scattering from a slightly random surface is analyzed by a probabilistic method. We
make use of the homogeneity of an infinite random surface, that is, the shift invariance property of
the strictly homogeneous random field. By the group-theoretic consideration of such a shift
invariance property, the wave solution proves to be a homogeneous random field multiplied by an
exponential function. Then such a homogeneous random field is approximately soived for a
slightly random surface to yield a wave solution involving multiple scattering. Several statistical
properties of the scattering are calculated and shown in the figures. The accuracy of the
approximate solution is examined in terms of the error of the boundary-value equation.

PACS numbers: 03.40.Kf

1. INTRODUCTION

This paper describes a new formulation of the random
surface scattering that is a mathematical boundary-value
problem of the wave equation (see Fig. 1). Our formulation is
different from the small perturbation method,"* the Kirch-
hoff approximation,’ and the diagrammatic approach*” in
the multiple scattering theory but is analogous in the funda-
mental idea to the diffraction theory of periodic gratings.®®
For a plane wave incident on a periodic surface, the wave
solution has the well-known Floquet form, which is a z de-
pendent periodic function of r, having the same period as the
surface does, multiplied by an exponential phase factor. On
the basis of the periodicity, such a z dependent function is
commonly represented by a Fourier series with Fourier coef-
ficients, so that the problem is reduced to finding such Four-
ier coefficients by solving the boundary condition on the sur-
face. Starting with the periodicity, one can easily obtain the
optical theorem (the conservation law of power flux) also.

The formulation proposed here is a stochastic version of
such formulation for a periodic case, where we make use of
the stochastic homogeneity and the ergodic property instead
of the periodicity. In the next section, we assume that the
infinite surface is described by a strictly homogeneous ran-
dom field of r, By use of the group-theoretic consideration of
the shift invariance property concerning such a random
field,”'® we then show that, for a plane wave incidence, the
stochastic wave solution can be written by a z dependent
homogeneous random field of r multiplied by a exponential
phase factor. Such a form of solution is a stochastic analogue
to the Floquet form for a periodic surface scattering and is
generally applicable to the scattering from a homogeneous
random surface.

Since the exponential phase factor is uniquely given by
the phase factor of the incident plane wave, the problem is
reduced to finding such a homogeneous random field as a
functional of the random surface. Unlike the periodic sur-
face case, the Fourier series does not work well for represent-
ing such a homogeneous random field. Therefore we employ
Wiener’s nonlinear theory'''* of the Brownian motion pro-
cess in the probability theory in Sec. 3; formulas concerning
the nonlinear theory are briefly described in the Appendix.
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Unlike the cluster expansion® for characteristic functions
that are deterministic, the nonlinear theory makes it possible
to represent a stochastic functional in terms of orthogonal
functionals that are random. Assuming that the surfaceis a
Gaussian random field generated by the complex Gaussian
random measure, which is defined in the Appendix, we ex-
pand the z dependent homogeneous random field in terms of
the orthogonal functionals associated with the complex
Gaussian random measure. Then the boundary value prob-
lem is transformed into a set of equations for deterministic
functions that are coefficients of such functional expansion.
The equations are solved with a good approximation for a
slightly random surface to yield a stochastic wave solution
involving the effect of multiple scatterings. The accuracy of
the approximate solution is then examined in terms of the
mean-square error with respect to the boundary condition.

Since the wave solution is represented as a stochastic
functional, any statistical quantities can be obtained by tak-
ing averages of desired quantities. Moreover, we can apply
the ergodic theorem to several quantities of the wave field,
because the solution is written in terms of a homogeneous
random field. Applying the ergodic theorem to the power
flux of the wave field, we systematically obtain the optical
theorem in Sec. 4, which gives the power relation between
the coherent scattering and the incoherent scattering. We
calculate several gnantities of the scattering such as the com-
plex amplitude of the coherent wave, the angular distribu-
tion of the incoherent scattering, the powerflow of the sur-
face wave, and the optical theorem, which are shown in the
figures.

2. FORMULATION OF THE PROBLEM

Consider scalar wave scattering from an infinite ran-
dom surface as shown in Fig. 1. Let us denote by r = (x,y) a
vector in the two-dimensional plane R> = { — o0 <X,y < o)
and by w a probability parameter describing a sample point
in the sample space £2,. We assume that the random surface
is described by a real, strictly homogeneous and isotropic

random field in the form®1?
z=f(T"w), (1)

where 7" is a measure-preserving transformation in £2, tak-

© 1981 American Institute of Physics 471



ing w into T " which enjoys the one-parameter group prop-
erty;

T° =1 (identity), T°T®=T2*" {2)

a and b being vectors in R 2. We further assume 7" to be
metrically transitive!'~'* and that

(f(T'0) =0, (f(T'0)")=07? (3)
where { ) denotes the averaging over the sample space, and
o’ the intensity of fluctuation.

The wave field ¥(z,r,0) satisfies the three-dimensional
wave equation

[V2 + k 2]‘0(291.’0)) = 0’ (4)

in the free space z> f]T "w) and fulfills the Dirichlet bound-
ary condition

Yz,rw) =0 (5)
on the surface (1). Moreover, we assume that the wave field

satisfies the radiation condition. For sufficiently small %, (5}
is well approximated by the effective boundary condition®*

$Or,0) +f(T'w)§2¢(o,r,w) ~o0. (6)

We will use (6) as an appropriate model of the random
boundary condition in what follows; however, our formula-
tion can be applied to a more general boundary condition
without any difficulty.

To look for a form of the wave solution, we introduce a
translation operator D under with f(T ‘o) is invariant.®'°
We define the operator D, which acts on a functional #(z,r,©)
of f{T"w), by the relations

D*zrw) =dlzr + a,T ~w); (7
D°=1, D*D*=D*+" (8)

(D* translates the variables r and w but does not affect the
variable z.)

If ¢/ is a solution satisfying {4) and (6), and the radiation
condition, D * is also a solution satisfying the same condi-
tions, because D * commutes with V2, f(T"w) and the

INCIDENT WAVE

SCATTERED
WAVE

SPECULARLY
REFLECTED
WAVE

FIG. 1. Scattering of a scalar plane-wave from a random rough surface

described by z = f(T 'w). 8,: the angle of incidence, (0,4 ):a scattering angle.
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radiation condition. Since the wave solution is
to be uniquely determined except for a constant factor, ¢ and
D?i are in a linear relation

D*Y(zrw) = Cla,0)zr,0). (9)
Hence, we regard ¢(z,r,w) as the eigenfunction of D * and

C (a,w) as the eigenvalue®'® If we assume that ¢/ has the same
translation property under D * as the incident plane wave

bizn) = — ™ N K, =(k*-K3)'?>0,  (10)

does, then we can easily verify that the wave solution should
have the form

zrw)=e* [ —e K L5 L UET0)].  (11)

Here, the first factor in the right-hand side is the eigenvalue
of D', physically representing the phase factor, and the sec-
ond factor is a z-dependent homogeneous random field of r,
which is invariant under D *. The first term in the brackets
indicates the incident plane wave having the unit amplitude,
the second term the specularly reflected wave for completely
smooth surface, and the third the scattered wave due to sur-
face roughness. Note that (11) is analogous to the Floquet
solution for the periodic surface scattering,®® where the cor-
responding U is a z-dependent periodic function of r having
the same period as the surface has.

We have seen that the problem is reduced to finding the
z-dependent homogeneous random field U. In the next sec-
tion, we will solve for such a random field by use of Wiener’s
nonlinear theory of the Brownian-motion process when the
random surface is 2 Gaussian random field.

3. APPROXIMATE METHOD FOR A GAUSSIAN
SURFACE

A. Representation of the wave field

For concrete analysis we assume that /(7 ") is a Gaus-
sian random field generated by the complex Gaussian ran-
dom measure (A1) and is represented as the Wiener integral
(see AS)

ST 'w)= J- e™F(A) dB (ho). {12
R 2

(Hereafter, we often drop w for simplification.) In order to

make f (7T "w) real and isotropic, we impose the conditions

F*A)=F(—A),
|[FMP=|FA)E A=Al=R2 + A2 (13)

-0.2
ko = 10

- Re(Ao)
T Im(A)

°
<

~01

30

. . 6‘0
8.(deg)
FIG. 2. A, vs. 6,. [The amplitude of the coherent wave is (1 4+ 4,) by (16).]
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Then the correlation function (A6) of f(T ") is reduced to

R/|a|) = 27r£

where J, is the Bessel function of the first kind.

A solution Uto (6) is a functional of /{7 *w); however, it
is regarded as a functional of dB (A} by (12), and hence it can
be developed for any fixed z into the orthogonal functionals
associated with dB (A} as (A13). In order to make the scat-
tered wave e®" U (z,T"w) satisfy the wave equation (4), we
rewrite (A13) as

o0

JoA [a])| FA)A dA,

Uz, T'0) = A,e™ + f A,(Aje*e™ ™ dB (1)
&

+ j J‘A2(;‘l }"z)ei[K, + Ay el'kd)t: + Ajjz
’
R*XR*

XhP[dB (K}, dB(R;)] + -, (14)

where #'"’s are the Wiener—Hermite differentials defined in
the Appendix, and 4,and 4, (n>1) are a constant and deter-
ministic functions symmetric with respect to their argu-
ments, respectively, and k,(A) is a positive real or positive
imaginary function given by

ko(A)=(k*— (Ko + AP)/2>0; k> (Ko + A)
=Ko+ AP — k)% K2<(K,+ AP (19)

Substituting (14) into (11) completes the stochastic re-
presentation of the wave field. By (A9) the coherent wave
field becomes

(Wzr.0)) = [ —e ™ 4 (1 + 4,)*7]. (16)

Clearly, — (1 + A,)is the reflection coefficient for the coher-
ent scattering in terms of which we will define the equivalent
surface impedance Z; below [see Eq. (22)).

B. An approximate solution

Once the 4, ’s are obtained, we find U by (14) and in
turn ¥(z,r,w) by (11), so that the problem is to determine a set
of functions 4, ’s now.

In view of approximate analysis, we define the bound-
ary-value error by the relation

Kor d
e (rw)=e" Ko [1//(0,r,a)) +f(T w) e 1/'(0,1',&))]. (17)
Taking in mind that e, (r,®) is a homogeneous random field,
we look for that equations for 4, ’s which should yield
(Je,|?) = 0. Using (11), (14), (A8), and (A9), we find
leslra)) = 4o+i[ K (MMEHR AP
R 2
+ [ A+ K. 12+ A F W)
R 2
420 KA+ AR d A d
R

4 L y ZJ|A2(A,,A2) (/2 (A4, (A JF (Ay)

+ (i/2)k, (M)A (A)F ()

3 f k(R + Ay + ARy Aphs)

SF* ) d AP dA, dhy+ (18)
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Here, each term in the right-hand side is non-negative. Thus
putting {|e, |*) = 0 yields the hierarchy of equations for
A,’s:

Ay + if k,(A)J4,(MF*A)d A =0, (19)

A(A) + ik, [2 + A F (A) + 21'] KA+ AMAA)dA, =0,
) 20)
Ashha) + (/2K (AL ADF () 4+ /2, (Aol (Aol F (A

+ 3i (kz(ll + Ay + AJ(A LALANF*(Ay)d Ay =0
etc.

Since F (A} is a function of the order of ¢’ by (3), these
equations mean that 4, and 4,,(n> 1) are at most of the order
of 0% and ¢, respectively. Therefore we can solve these equa-
tions by neglecting higher order functions for sufficiently
small &°. Let us obtain the first order solution involving only
Ayand 4,. If we put 4, = 0 for n>2, Eq. (20) gives the solu-
tion 4,

AN)= —iK,[2+ A,]F(A) (21)
Inserting this into (19) yields
Ay= —2Z/[1+ 2] (22)

where Z, denotes the equivalent surface impedance given by
z,=k.[ kMFFan (23)
R 2

Here, the solution (22) for the coherent wave (16) is similar to
the results by other methods.>*

Re(Z, ) represents energy dissipation of the coherent
scattering due to the incoherent scattering, and Im(Z, ) sug-
gest the existence of the surface wave. Since the real and
imaginary parts of Z, are non-negative and proportional to
K, = kcosf,, 6, being the angle of incidence (see Fig. 1),
Re(4,) and Im(4,) are negative and tend to zero as 8,—/2.
Figure 2 shows 4, as a function of §,,, where we have as-
sumed the Gaussian roughness spectrum

[F(A))? = (0% /m)e =¥ (24)

with « the correlation distance of the random surface. Clear-
ly, a negative Re(4,) reduces the amplitude of the coherent

0

"

0 /8 ko n

FIG. 3. Mean square value of the boundary-value error. Horizontal: the
roughness parameter ko.
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scattering in (16) and also gives a feedback effect on 4, in (21).
This is due to multiple scattering.

In order to check the accuracy of the first order solu-
tion, let us calculate the mean square value of the boundary-
value error; we will discuss the accuracy by another method
in Sec. 4.A. Inserting (21) and (22) with 4, = O(r>2) into
(18), we obtain

(ool = K2[2+ o (7 K, 0F )7 a2)

1 kmiFmeaar, es)

which depends on K, 07, and the roughness spectrum. Fig-
ure 3 plots (e, |?) versus ko for normal incidence with

8, = 0. The error is relatively small for ko < 7/8 but rapidly
increases for ko > /8 as ko increasing. Thus the first order
solution gives a good approximation for a slightly rough
case. For ko > 7/8, higher order functions, such as 4, and
A,, will yield a resonable solution for the effective boundary
condition (6).

4. PROPERTIES OF THE RANDOM SURFACE
SCATTERING
A. The optical theorem

From (4) we easily find the identity

Integrating this over the columnar volume as shown in Fig.
4, then applying the divergence theorem, we obtain
1

a 1 a
) m{y —azz,&\z —z,)dF + X J-S(Im(z/' o ¥} dS, =0.

Here S, shows the side of the column, n an outward normal

to §,, and z, and / are the height and the radius of the col-

umn, respectively. The first integral and the second one are

proportional to /* and /!, respectively. Therefore, we obtain
lim

J
I *— =
>0 77l 2k J;l? m(¢ azlp‘z:zo) dr 0 (27)

This means a vanishing power flux in the z direction per unit
surface area, because the incident power is completely re-
flected by the surface. By (11) the integrand is a homogen-
eous random field and furthermore it is ergodic because 7" is
ametric transitive transformation.®>'! Hence, the space aver-
age can be replaced by the probabilistic average by virtue of
the ergodic theorem. Consequently, we obtain for almost all
w

1 9 _
7<Im(¢ aZ‘/]‘z: zu)> - 0’ (28)

which is the conservation law of power flux, generally appli-
cable to the random surface scattering.
Substituting {11} and (14) into (28), we obtain the optical

div{Im(y*grady/k )] = 0 (26) theorem in terms of 4,,’s
J
K. = K. |1+ 4,2
Kk k 0
+~ 3 n!f f Jk (A 4+ Ay + o+ A ) A, (ApAyo A, )P d Ay d Ayed A, (29)
it I+ A+ Ay o+ AP <k

The left number is the incident power falling on a unit area, whereas the first term in the right-hand side is the coherently
reflected power, and the series expansion is the incoherently scattered power from a unit area. This optical theorem gives
another measure for estimating the accuracy of an approximate solution, because it is an exact relation. Note that the optical
theorem explicitly relates to propagating waves, where surface waves affect it implicitly. On the other hand, the boundary-

value error in Sec. 3.B directly relates to both of the waves.

Figure 5 shows the optical theorem for the first order solution. When ko increases, the coherent scattering (curve b)
decreases and the incoherent scattering (curve c) increases; total power scattered (line a) remains constant equal to the incident
power, because the first order solution satisfies the optical theorem.

[

X

FIG. 4. Columnar volume for applying the divergence theorem. S, the side
of the column, n an outward normal to.S, , z, and / the height and the radius
of the column, respectively.
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]
a
| —— q
SR kK =2
5 e, T 7
z e T 1
o ~.
a N
2 6=0° N P
= o< -
s VS 7
05 k :>::\ /T/'\/‘
T N
-/,/ '\_\
e
. '/'/‘
c LT
2 "“’"; " 1 1
0 /8 ko /4

FIG. 5. Relative power flux vs ko. a: incident flux and total scattered flux
b -+ c; b: coherent scattering; c: incoherent scattering.
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B. Angle distribution of the incoherent scattering

The incident plane wave is scattered into various directions. By S (2|Q,) we denote the angle distribution of the incoher-
ent scattering, that is, the average power scattered incoherently from unit surface area into unit solid angle of direction
Q = (6,4 ) when the angle of incidence is @, = (6y,8,) (see Fig. 1.) Since (29) describes power flow in the z direction per unit
area, the series expansion in {29) equals the integral of S (2| €,) times cos@ over 27 steradians

j S (Q[Q)cos6d @ =~ $ n!” ...fk,(x, Ay e M)A, (A Ay A )P d Ayd Ayd Ay
20 k (Ko + A, + - + A2 <k

n=1

Putting K =K, + A, + A, + - + A, = (ksinfcosg,ksin-
Bsing ), K, = (ksinfycosdy,ksinf singd,) and hence

k(A 4+ A, + « + A,) = kcos6 by (15). (The azimuth angle
of incidence is measured from the —x axis, hence Fig. 1 shows
¢, = 0.) We obtain

S(Q1Q) = kcos8 {14,(K — K,)|*

+21] 4K Ko~ Apd )P ddy + <,
R 2
(30)
where K — K, is a Bragg vector of the scattering. Inserting
(21) into this yields
S (| Qo)=k *cosBc0s?6,|2 + Ay|*|F(A)|%
A = K=K,
= k [sin?@ + sin’0, — 2sinfsind,cos{d — do)1'% (31)
which depends on the difference (¢ — ¢,) as expected from
the isotropy of the random surface. Figure 6 shows the angle

distribution of the incoherent scattering for the Gaussian
roughness spectrum (24).

C. Power flow of the surface wave

There is some power flow of the surface wave which is
written by the integrals in (14) over regions of A’s such that

(Ko + Ay + = + A, P> k2

In terms of the first order solution we write the surface wave
¥, (z,r,0) as

0.2
K-k=12
. ok=T/10
C}
s
® 01
S
@
a
0

-90 90

0
8 (deg)
FIG. 6. Angle distribution of the incoherent scattering. (6,4 ): a scattering
angle.
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r
A, (Mo 27 K1 g )
o+ AP >k?
(32)

In view of the isotropy of the random suface there is no
averaged power in the direction perpendicular to K, and the
average power flux P in the K, direction becomes

P(z) = (1/k | K| ){Im [¥ *(z,r,0)K grad ¥, (z,r,0) ]

(Ko + MKO |A1(}\.)|2€-2[(K°+MZ — k22 2 dAi.
k Ko

v (z,r,w)ze'x"'f
(K

- (K, + AP > k?
(33)
Since this depends on z, it is convenient to define the power
flow of the surface wave P, by integrating P(z) over a plane
which has unit width and an infinite height as shown in Fig.
7. Then we obtain
[4,(4)*

(K, + AP — k2]

(34)
Figure 8 shows P, versus the angle of incidence. P, vanishes
at normal incidence because of symmetry and tends to zero
as 6,—/2 because the incident power falling on unit area
vanishes.

(Ko + MK,
2k | K|

P~

(Ko + 4)° > k?

D. Correlation function of the incoherently scattered
field

By R;, we denote the correlation function of the inco-
herently scattered field in a plane of z = const. Using the first
order solution, we obtain

R, (a)zem"'J |4,(A)|2eree ~ 2k g ) (35)
R?
4
\T;\W\ 6,

1]

/\v
X

FIG. 7. Definition of power flow of the surface wave.
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0.08
ko=T1/10
E I xk=i
% 2
004} 2
0 . e o )
0 30 8,(deg) 60 90

FIG. 8. Averaged power flow of the surface wave vs §,. Vertical: relative
value normalized by the incident flux.

which for a large value of z becomes

Rofa) =™K 212 + 4o 2 Fe*=dA. (36

(Ko + A <k?

This is a band limited function. Thus the high frequency part
of |F(A)|? cannot be obtained from R, .

5. CONCLUSIONS

We have proposed a new formulation of the random
surface scattering, where we have made use of several con-
cepts closely related with the stochastic homogeneity, such
as the measure-preserving transformation in the sample
space, the translation operator D, the nonlinear theory of the
Brownian motion process, and the ergodic theorem. We find
that the stochastic wave solution can be written in terms of a
z dependent homogeneous random field and hence the prob-
lem is reduced to finding such a homogeneous random field
as a functional of the random surface. This fact is to be un-
derstood as the starting point of the random surface
scattering.

Assuming the effective boundary condition for a slight-
ly rough case, we concretely obtained such a homogeneous
random field and then calculated several statistical proper-
ties of the scattering.

Our formulation is essentially based on the homogene-
ity of an infinite random surface and hence it is applicable
only to the scattering from such a homogeneous random
surface. Provided the surface is described by a homogeneous
random field, however, it can be extended to a more general
boundary condition for electromagenetic waves without any
difficulty.
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APPENDIX

This Appendix summarizes formulas concerning Wie-
ner’s nonlinear theory of the Brownian-motion process.
Concerning notations and definitions we follow the Appen-

dix in Ref. 9. For detailed mathematical description, see
Ogura,® Itd,">'* and Wiener.'"'?

A. Complex Gaussian random measure

Let us denote by d\ a rectangle at A= (A, A, ) having
an infinitestimal area dA, dA, in the two-dimensional plane
R?=(— o <4,, 4, < w)and by w a probability parameter
describing a sample point in the sample space £2,. We intro-
duce the complex Gaussian random measure B (d A,

w) = dB (A, ) on R ? which satisfies the conditions:

(1) the real and imaginary parts of dB (A, ) have an

identical independent Gaussian distributions with

(dB(A, @)) =0, (dB(A,, w)dB (A,
@) =6(A, + M) dA, d A, (A1)

where ( ) denotes the averaging over the sample space and
the symbol 8 (A, + A,) dA, dA, stands for the area d A, if
A= —A,orzeroif A, # — A;

(2) for almost all w, dB (4, w) satisfies

dB*A, w)=dB(— A, w), (A2)

where the asterisk denotes the complex conjugate.

We define a shift of a sample field dB (A, o) by the
relation

dB (A, w)—exp(ira) dB (A, w), (A3)

where a is a vector in R . As easily verified, the right-hand
side is a complex Gaussian random measure satisfying the
above conditions, so that the shift (A3) generates a measure-
preserving transformation 7* in £2, such that

exp(iha) dB (A, w) = dB (A, T w). (Ad)
Here 7'° takes w into T " with one-parameter group proper-
ty: T° = 1(identity); T°T*=T""".

If F(A) is a square-integrable function on R ?, then we
can define a homogeneous Gaussian random field by the
Wiener integral

ST w) :f eMF(A) dB (A, o). (AS5)
R:
By (A1) this has zero average and the correlation function
R/{a) = (f(T* "ol (T ")) = f ¢ | F(A)|%d A.(AS)
R*

For simplification we often drop the parameter @ in the
following.

B. Wiener-Hermite differentials

We define Wiener—Hermite differentials
h"(dB(A,),dB(A,), -, dB(A,)],n=0,1,2,.., associated
with dB (A) by the relations
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h9=1, hRY[dBA)]=dB(A), hP[dB(A,), dB(A)] =dB(A,)dB(A)—6(A+AjdA dA,, (A7)
etc. The nth degree Wiener—Hermite differential can be obtained by the recurrence formula
dB(A)h"~ "[dB(Ly), dB (M), -, dB(A,)]

= h"[dB(A,),dB(A,), -, dB(A,)] + i h"=2[dB(A,), -+, dB(A; _,),db (A, ), =, dB(A,)]6(A, + X)) d A, d A,
= (A8)

By these definitions the Wiener—Hermite differential satisfies the orthogonality relation
(h"'[dB(A,),dB(M,), -, dB(A,)]h ™" [dB(A;), dB(A,), -, dB (A )])

=8,,8dh,d\, ~d\, dA, dM\ dA,, {A9)
where § ;| equals the sum of all distinct products of  delta functions of the form 6 (A, — Aj“ Wi={i, i hi=Vujejmh
alli, and j, appearing just once in each product, for example

8% =8(A, — M)A, — A )+ 68(A, — A )8(A, —A).
By (A4) the Wiener-Hermite differential is translated as
h'"[dB (A, T*w), dB (A, T w), -, dB (A, T w)]

= exp[i(A, + A + = + A,Ja]h "[dB (A, ©), dB(X, ©), -, dB (A, ©)]. (A10)

C. Orthogonal development of a functional

Ifafunctional @ (w) of dB (A) has a finite variance, then it has the orthogonal development in terms of the multiple Wiener
integrals (sometimes called the Wiener—Hermite expansion]

P (w) =4, + i N f---jAn(A,,xz, cees Ay )" [dB (X ), dB (Ay), -, dB (A,)],
X RIX X R?

n=1
where A,and 4, are a constant and a deterministic function symmetric with respect to its arguments, respectively. By (4 9) the
symmetric function A4, is uniquely given as

(@ (@)h """ [dB (M), dB(Ay), =, dB(A,)]) = nl A, {h, Ay, -, A, ) d A d Ay d D,

(A11)

(A12)

By (A10) a random field @(T "w) derived by the measure-preserving transformation is represented as

P (Tw)=dy+ 3

n=1

By (A9) we easily obtain the average and the correlation function of ®(7*w)

J fAn(M Ay ooy A Jexpli(Ay + Ay + A, )r 1™ [dB (), dB(Xy), .., dB(A,)].  (Al13)
R*x .. XR?

(P(T"w)) = 4,

(D(T* 0} (T 0)) = 4" + 5 nt

n=1 R¥x.-XR?
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Covariant electrodynamics of a dyon in a medium

J. Cohnand N. Hong?
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A covariant formulation of electrodynamics of a dyon in a uniform, isotropic, and transparent
medium is discussed. Using generalized Maxwell’s equations admitting magnetic charge, the 4-
potentials of a dyon of electric charge e and magnetic charge m and the corresponding field tensor
are calculated. This field tensor is then used to calculate the various stress tensors of Minkowski,
Abraham, and Marx. And it is found that the dyon behaves like an electrically charged particle of
“effective” charge e*, where e* = e[1 + (e/u)(m/e)*]'/?, where ¢ and y are the electric and

magnetic permeabilities of the medium.

PACS numbers: 03.50.De

1. INTRODUCTION

The electrodynamics of a particle with both electric and
magnetic charge (dyons) has been discussed on various oc-
cassions. Beginning with Dirac’s proposal of the possible ex-
istence of a magnetic monopole, however, most consider-
ations have involved quantum mechanical treatments.’

On the classical side, Rund recently developed a sys-
tematic construction of generalized 4-potentials, to describe
the electrodynamics of dyons in a vacuum.?

The purpose of the present work is to develop a covar-
iant formulation of the electrodynamics of a dyon in a medi-
um. Towards this purpose, we will first express the field ten-
sor in terms of the relevant generalized 4-potentials. Then
the field tensor is used to calculate the electromagnetic stress
tensor. Here, we consider three types of macroscopic electro-
magnetic stress tensors, that of Minkowski, Abraham, and
Marx.? It is shown that these electromagnetic stress tensors
for the dyon case take the same form as those of the electron
case except that charge e is replaced by “effective’”” charge e*,
where e* = e[l + (e/u)(m/e)*]"?, where m is the magnetic
charge and € and u are the electric and magnetic permeabili-
ties of the medium.

We comment that the motivation for this work was the
hope of finding some characteristic difference between the
radiation fields (or stress tensors) of magnetically and electri-
cally charged particles, which might then facilitate the de-
tection of the former. However, in the vacuum case no such
difference seems to exist, and so we turned our attention to
the medium case where we do, as mentioned above, find such
a difference. This will be elaborated upon in the last section
of the paper.

2. FIELD OF ADYON

In this section we intend, first, to express the field ten-
sors covariantly in terms of generalized 4-potentials. And
then we will calculate the field generated by a dyon moving
arbitrarily (with speed less than that of light in the medium)
in a uniform transparent medium.

“Submitted in partial fulfillment of the PhD. degree at the University of
Oklahoma, Norman, Oklahoma.
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A. Maxwell’s equations and 4-potentials

We begin by assuming the validity of the following gen-
eralized Maxwell’s equation in the medium rest frame:

vxB= 2T 5 g (2.1)
c C

UxE= - 1p_ g 2.2)
C [

V-B = 470, 2.3)

V-E = (47/€) p, 24

where B and E are the magnetic field and electric field, re-
spectively; € and p are constant permeabilities of a transpar-
ent, uniform, and boundaryless medium; ¢ and p are the
magnetic charge density and electric charge density, respec-
tively; S and J are the magnetic current density and the elec-
tric current density, respectively; and c is the speed of light in
vacuum.

One of the authors recently showed that in the electron
case, i.e., when ¢ = S = 0, the ordinary Maxwell’s equations
can be expressed as*

Fro= 27 g (2.5)
(4
where
Frv=F # _ (1/qu)*V,,(V'F #* — VHF ™), (2.6)

where u is the speed of light in the medium;

a = [1 — (u/c)?]~ "% V*is the 4-velocity of the medium; F*¥
is the antisymmetric field tensor which is in the medium rest
frame (signified by the naught subscript),

0, B,, —B,, —E,
— B,, -
Flyr = B % ! E, . {2.7)
Bzy - BI’ 0’ - E3
E,, E,, E,, 0 /o
and
Faev =0, 2.8)

where F**" is defined as F***=Le""*°F ;; F ¥,
=g, 85 F **%andg* = (1,1, —1).

Then F*¥ and F **" are, in the medium rest frame, given
by
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0, B,, — B, —e€uk,
) B3’ 0, BI’ - G,U'EZ
o= 2.9
Fo B,, - B, 0, — euk, 2:9)
euk,, euE, eukE,, 0 ©
and
0, E, —E, B
—E;, 0, E, B,
0= 2.10
F(O) Ez, . E], 0’ B3 ( )
-8B, —-B, -—B, 0/0

Using the same definitions and notations, Egs. (2.1)-
(2.4) become

Fro = AT g @.11)

¢
and
_ AT gu
c
where J{,, = (J,¢p)(, and S, = (S,¢0) -

(2.12)

*HY
Y =

We now wish to express F*¥ in terms of generalized 4-
potentials ¢ “ = (¢,/) and ¥* = (}, V), which are supposed
to satisfy the following equations in the medium rest frame:

O¢=— £y, (2.13)
[

ov=- 4, (2.14)
€

ow=~ s, (2.15)
(4

Ov= - 37, (2.16)
€n

where O'==V? — (eu/*)|3 ¥/t ?).

Towards this end we will, firstly, express B and E in
terms of the potentials.

By taking the curl of Eq. (2.1), we obtain

YXVXB=V(VB) ~VB= 2 yxy i H yxE
[ [
2.17)

Substitution of Eq. (2.2) for VX E and Eq. (2.3) for VB yields
4mreu

C2

S. (2.18)

OB = 470 — 3™ sy 4
C

This becomes, after using Eqs. (2.13)—(2.16)
, e .
OB -1 —euVV+VxXéd— | =0 (219
c

The argument of (1" is a certain vector, say A, which satisfies

A =0. (2.20)
Then
e
B= —euVV+4+VXd—- 1+ A .21
c

Similarly, by taking the curl of Eq. (2.2) and using the
above method, we obtain the expression for E in terms of the
potentials:
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= —VU—Vxﬂ)——l—ciH—C, (2.22)
[4

where O'C =0.
Since, from Eqgs. (2.21) and (2.22), B and E are left un-

changed by the transformations
é—¢ + V4,

1’:—-»11) + VI,
(2.23)

U—~U — iA,
c

VsV — ir’,
¢

where A and I are arbitrary, we have the freedom of choos-
ing the potentials such that’

vo+ HFUu=0 (2.24)
[

and

v+ Ey=o (2.25)
(4

The gauge Eqgs. (2.24) and (2.25) can be written in co-
variant form as

3.6% =0 and 3,48 =0,
where
dloy = (deul)g = (6" — (1/auPV,$“V*),, (2.27)

B = (euV ) = 0" — (VauPV, y* V¥, (2.28)

(2.26)

Thus, in any inertial frame, the gauge for the potentials are
such that

3,6°=0, and 4,4 =0. (2.29)

We now proceed to show that A and C can be absorbed
into the gauge transformations, Eq. (2.23).
From Eq. (2.21), we have

VXA =VXB —~ V(V-$) + V2 + if-v><{p. (2.30)

Using Eq. (2.1), and substituting O’ + (eu/c*)(3*/t?)
for V2, we obtain

eu 3*d eu d
VXA=-+——-—-V(V. ~— —(VX¥{+E)
e (V- é) + ; az( Y+ E)
(2.3
This equation finally becomes, utilizing Eq. (2.22),
VXA = _v(v-¢+ f—"—U) 4 8L
¢ at
~ & C 2.32)
c ot

And similarly, from Eqgs. (2.21), (2.3), and (2.16), we obtain
the relation

V-A=VB+euVr+ E v
c

= f_ﬂﬁ_(v.w ﬁé‘.fx):o_
[

2.33
¢ ot ( )
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Thus, we can write

A=Vxd (2.34)
for some vector function ¢'.

Similarly, the curl and div of C are found ta be

1 8A

VXC= ~ - (2.35)

v.C=0. (2.36)
Thus, C can be written as

C= -V (2.37)

for some vector function V',
Substituting Eq. (2.34) into Eq. (2.35), and Eq. (2.37)
into Eq. {2.32), we find that

UXA= — ic’i Uxd’ (2.38)
and

VXC= — -i"v><4'>'. (2.39)
Therefare, A and C are, in general, of the form

A= — —%—L-{b’-—eyVV’ (2.40)
and

C= — %—¢'—VU (2.41)

for some functions ¥’ and U’
Now we observe that A and C are left unchanged by the
transformations:
¢f_q}¢r + VA 1’
Y+ VI,
(2.42)
v~ L
4
' ' 1 - '
ViV’ '— —TI".
¢
Again we have the freedom of choosing these “‘potentials” to
satisfy

Vxé + LU =0 (2.43)
c

and
vxy + E = (2.44)
[

By taking the curl of Egs. (2.34) and (2.40), and using
Egs. (2.37) and (2.41), we find that

Oé = v(v-¢' + ‘7“ U') =0. (2.45)

Similarly, by taking the curl of Eqs. (2.37) and (2.41), and
using Eqgs. (2.34) and (2.40), we obtain

oV =V (v-w' + &= V') =0. (2.46)

I
And by taking the div instead of the curl, we obtain
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ov =o, (2.47)
Qu’'=o0. (2.48)
Now we substitute A and C into Egs. (2.21) and (2.22),
respectively, to obtain
B= —quV(V+3V) +Vx(6+16) — - 6+ 149,
¢
(2.49)
, , 1 . .
E= —V(U+iU") ~ VX + ) - — (b +1d'),
¢
(2.50)
since, from Eqgs. (2.34), (2.40), (2.37) and (2.41),

A=Ixb = — Ly euvv’
C
:%{Vx¢'~ %‘ixb’“eva}
and

C= -V = — id;'-v.f/'
4

1 .

Furthermore, we observe that the “new” potentials

(= “old” potentials + } of “primed” potential) obey all the
equations governing the “old™ potentials, that is, Eqs.
(2.13)~(2.16) and(2.24)~(2.29). Thus, by choosing the “old”
potentials to denote the “new” potentials, we restore these
equations and have®

B= — euVV+ VX —‘izii&, @51)

E= ~VU~V><¢~id>. (2.52)
¢
We now wish to express the field tensor in covariant
form in terms of the above generalized potentials. From Eqgs.
(2.51) and (2.52), we obtain

au | (3 awz) 1 9¢,
14 — = = Y¥s _ Y¥2 UL S R
o Ey Ix + (8y dz ¢
=gt — "+ flmﬁl/’/ﬁ,« (2.53)
c?V (a¢2 a(b\) €u a¢%
12 —_ = Tr 7Ny T tYe
Frebh=ray "%/~ ¢ a
= ¢ N+ e e Yy, (2.54)
which may be generalized to give
Fi=g¢} — ¢V 4 eu €™y, (2.55)
(ij=123)
Fie=gbi_ gt 4 by, (2.56)

Combining these two equations together, we finally have

F* = (¢ — ¢*) + {eu e

+ (au) V, (Ve — Vier By o, . (2.57)

Inversely, it can be easily shown that the expression for
F#¥in Eq. (2.57) with the gauges given by Eq. (2.29) satisfies
Maxwell’s equations, Egs. (2.11) and (2.12).
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For brevity of notation let us introduce new quantities:
Frimg — gn 2.59)
and
b vt — P,
Then F#Y can, in general, be written as

F o =fm —eub™ — (1/auyV,(V"b" — Vb,
(2.60)

(2.59)

where

b = 4 Bh, s and b, = 8,8, .

B. Field of a Dyon

The potentials ¢ # and ¥* for a dyon of magnetic charge
m and electric charge e are the solutions to Egs. (2.13)-
(2.16). The solutions to these equations for the electron case
(¢ = S = 0) are found in Cohn’s paper.” Certain portions of
that paper which are related to our problem shall be re-
viewed, and we shall use the same notation as in that work.

As in the vacuum case, we define R §,
= (x — z, c4t),, where x and z denote the field and parti-
cle locations, and 47 is the time required for the wave in the
medium to go from z to x. Then we may write R {;,
= (U* + (1/u) V*#),, where U’ = (7,0), is a unit posi-
tion vector in the medium rest frame, and p is just |x — z,.

From the 4-velocity, v#, of the particle, new quantities
are introduced:

F=v" + Ayc*VH,

P — Ly (2.61)
a

where

y={1—@/)*)"?and A = (u — ¢)/c,
and

a=(dv*/dr), &'=(dt*/dr).

And various quantities are defined for simplicitly of formal-
ism, as

Eﬂ=p(U“+ L V"); R%, = —pu;
¢
Ar= L gy Ly).
1P c?
Using these quantities, the solutions for the electron
case (which corresponds to just ¢ ) (¢ = S = Q) are found to
be

64 = fl‘_ﬁ] , 2.62)
C P dret
and thus
e (G N
“y b — Aul
f cu Wg/ \a? 2 ’
+ £ (@ A~ Aadvamy )}, (2.63)
p

where e is the electric charge, 4-B=4“B_, 4 * B"
=}{4 "B~ — A *B*"),and all quantities on the right-hand side
are retarded.
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Similarly, the solutions to Egs. (2.13)~(2.16) can be
found as
pr="1 _ﬁi] ,
c p~ ret.
where m is the magnetic charge of the dyon.

We also find, from Egs. (2.58), (2.59), (2.62), and
(2.64), that

b¥ = — (m/ue) f*.
Then, the field tensor for a dyon becomes
F® = fr 4 (me/e) f* — (1/ac)(me/e) y**, (2.66)
where
yrEsV, (— VY 4 fRTYE) (2.67)

and where f “” is determined by the dyon’s retarded kine-
matics according to Eq. (2.63).

(2.64)

(2.65)

3. ELECTROMAGNETIC STRESS TENSOR

In this section we will calculate the various electromag-
netic stress tensors—Minkowski, Abraham, and Marx—for
the field produced by a dyon moving arbitrarily in the medi-
um. We take the tensors as®

Ty = —— (FrF,* + 1 g"FF,,), G.1)
4mp
v vy b {1V
TA# — TMH 4+ ——
4mu \au

1

X (F“"F,,BVB VY~ S FURVY, V"VV), (3.2)

u\? 1 1\2
T = (——) [TM’” - — (——) [V”F““FaﬂVB + iy
c 4mu \au
X V”( 21 s FPF, "V, V, + W“BFGB)H , 3.3)
a’u
where subscripts M, A, and S designate Minkowski, Abra-

ham, and Marx, respectively. Using the definition, Eq. (2.6),
these can be written as

Ty = —— [F*F," + (L/aufE"=F "V, V,
4u

— FHF, 2V, V™)
+ g (FBF 5 — Q/@WDF*F, 7V, V)], (3.4)
Tt = T = Ty + (1/4ap)(1/aw) (F*F, PV, V™

— (1/SOFSF, "V, V, V™), (3.5)
g
Tov = Tgm = L Ty — L (Vaup{V+F*=F, %V,
c dnu

+ WYV (FCF, TV V, (1/@*u?) + 4F “F5)}] .
(3.6)

Now these tensors will be evaluated by substituting Eq.
(2.66) into Egs. (3.4)~(3.6).

A. Minkowski
Substituting Eq. (2.66) into Eq. (3.4), we obtain

ree = o [ (2 oy
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(a ) (Y +uf*y + (ac ) (yy)“”}
(2 - (LY +arrl].

3.7
where
(ab y*=a""b,” + (—L)z(a”"‘b Y Vg — bV, V)
au
+ g,gW(aaﬂb ab, "V, VY), G.8)
@+ by =a* + b*, (3.9)
{(@ + b)(c + d)}**=(ac + ad + bc + bd ¥*. (3.10)

The first term in Eq. (3.7) is the contribution of electric
charge to the tensor, the second term of magnetic charge,
and the third term of the interference between electric and
magnetic charges. We now proceed to express the second
term in terms of f #¥.

From the definition, Eq. (3.8), (f¥*/*)*"is

(Forey
= e+ () peow, v, — iy, v

V| a, 2 a
+ g (f* Fiy+ SRRV, ) (3.11)
Using Eqgs. (2.67) and (3.8), we find
4 2
Y™ = SF 3 YO Yy SVEV LRV,

+ig* ( )f*“ﬁf*VV v, (3.12)

We also obtain, from Eqgs. (2.67) and (3.8)~(3.10),
2
R A AR A L7

Vf*“af *BV

_ c
u?
+(
<’ %]
S g Iy,
u?
By combining Eqs. (3.11)~(3.13), we obtain

o= () e+ () onr

) VRV fREfRY, Y,

(3.13)

=f*uaf:v _ (“(_xl_c_)z (f*,,af*vBVa VB . V,uf*vaf:;/Vy)

(3.14)

vige(rers, - Lo, ).

To express Eq. (3.14) in terms of f #*, we will use the
identities:
I R A PR
f*uaf*Vﬁ Va Vr:‘
A AR e e AR e A
F VAV By = PV Vi + 182 s
=21V, V). (3.15)

f*aB :B = _fanaB;
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Then, finally, Eq. (3.14) becomes
(227 = (acy(f*y +f *y + (Vacy (pyy”
= (/A (3.16)
Next, we will consider the last term in Eq. (3.7) which
represents the interference between electric and magnetic

charges. Straightforward calculation with the help of the
identity

Frofe = — gf e, G.17
shows that
F* + S ~ (1 /acy(fy + yf ¥~ =0. (3.18)

Therefore, by substituting Egs. (3.16) and (3.18) into
Eq. (3.7), we obtain the Minkowski tensor for a dyon:

e e
= [1 +(e/1) (——) ] T »

where we substituted (u/c)* = 1/€u, and the subscript (e)
designates the tensor for electric charge without any mag-
netic charge present.

(3.19)

B. Abraham and Marx

After a somewhat lengthy but straightforward calcula-
tion of the same fashion as for the Minkowski case, we arrive
at the same result as Eq. (3.19) for both the Abraham and
Marx tensors.

Thus, all three tensors for a dyon differ from those of
the electrically charged particle without magnetic charge by
a factor of 1 + (e/u)(m/e)*. For all three tensors, explicitly,
we have

v 6 m 2 v
i = i () (2)) e

In the next subsection, we will briefly consider the 4-
divergences of the three tensors.

(3.20)

C. Calculation of 4-divergence
We first note that from the definition of F*, Eq. (2.6),

F F* = F*F,, (3.21)
and
Fre B = — 1" PTF §, 7€ ey F*7
5;:235 F"‘ ~E T &
= — 2g*wwffp;,l,, — @n/O)F*eS,, (3.22)
Fre F.v= — g FF, . — (Ar/c)F**S,
= 1gF*BF ¥, — (4/c)F*S,,. (3.23)
Using these equations, we find that
Ty, = (1/NF*J, — (1/p)F*S,) (3.24)

and
Tsi‘v", = (UZ/C3){(F!‘GJG . (l/ﬂ)F*'uaSa)

— (W au) (FBT, — (1L/)F*FS,)V, VY.
(3.25)
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In the sourceless case, therefore, both become identically
zero, i.e.,

Tw"*, =T4,=0, whenJ"=5"=0. (3.26)

But 7, #”, is not identically zero, when there is no
charge present; this can be shown from the following
equation
T, = Ty, + (1/4mu)(1auy (= F, PV V™

~ Q/AFP F TV V VEV). 3.27)

4. DISCUSSION

In a previous paper, the authors have discussed the en-
ergy-momentum and angular momentum emission rates for
an electrically charged particle moving arbitrarily in a uni-
form transparent medium with speed less than that of light
in the medium.® Comparing that with this paper, we find
very similar features. The electromagnetic stress tensors un-
der consideration have the same form for both the electric
and magnetic cases, except that e in the electric charge case is
replaced by an “effective” charge e* in the dyon case, where

e* = e[l + (e/p)(m/e)* 1> “@.n

Furthermore, the 4-divergences of the three tensors, in the
charge free case, behave similarly, i.e., the Minkowski and
Marx tensors are divergenceless in both cases, and the 4-
divergence of the Abraham tensor is not identically zero in
both cases.

Therefore, the energy-momentum and angular momen-
tum emission rates for a dyon moving arbitrarily (whose
speed is less than that of light in the medium) in a uniform
transparent medium are the same as those for a pure electric
charge, except that e is replaced by e*. All the arguments
discussed in the previous paper concerning energy—momen-
tum and angular momentum emitted by a chaged particle
are applicable to the dyon.® We will not repeat them here.

Despite their similarities, the difference between the
electric charge and dyon is conspicuous. Since the difference
arises due to the existence of magnetic charge, let us consider
the pure magnetic monopole case. By setting e = 0, we find

that the “effective” charge of a monopole, m*, is
m* = (e/u)""°m. 4.2

In a vacuum we cannot distinguish the magnetic mono-
pole from the electron gualitatively, in the sense that the
electromagnetic tensors for them are indistinguishable, ex-
cept for their charges. But in a medium the magnetic mono-
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pole behaves like a particle of medium-dependent charge.
Thus, the phenomena related to it and its motion would be
significantly different from those of the electron. If we could
arrange layers of media and observe certain phenomena such
as radiation or the motion of a particle moving through the
layers, it would then be possible to tell the difference between
the electron and the magnetic monopole.

The theory developed in this paper does not provide us
with the tools to analyze the radiation of a charged particle
moving through an inhomogeneous medium, but we still ex-
pect that the effective charge of the magnetic monopole is
medium dependent.’®

It should be remarked here that, even though the theory
presented in this paper reveals certain properties of magnetic
charge, we cannot claim that the tensors considered repre-
sent the real situation correctly. Nevertheless, it is suggestive
that all three tensors, Minkowski, Abraham, and Marx,
agree on at least two points: A dyon behaves like a charged
particle of effective charge e* and there is no interference
effect due to the simultaneous existence of the two types of
charge.

It should be remarked that, if the existence of the dyon
is assumed, it is possible that ordinary matter may contain a
certain amount of magnetic charge, and Maxwell’s equa-
tions, Egs. (2.1)~(2.4), may have to be changed
accordingty.’

'See, for example, P. A. M. Dirac, Proc. R. Soc. London, Ser. A 133, 60-72
(1931); J. Schwinger, Phys. Rev. D 12, 3105-11 (1975).

’Hanno Rund, J. Math. Phys. 18, 84-95 (1977).

*For a fuller discussion of the various stress tensors and their merits see 1.
Brevik, Dan. Viden. Selsk. 27, No. 11 (1970); 37, No. 13(1970), and also his
preprint Experiments in Phenomenological Electrodynamics and the Elec-
tromagnetic Energy—-Momentum Tensor (University of Trondheim, 1978).

“Jack Cohn, Ann. Phys. (N.Y.] 114, 467-78 (1978).

These gauges are a generalized form of the gauge introduced in, for exam-
ple, J. D. Jackson, Classical Electrodynamics {Wiley, New York, 1967), pp.
180-181.

“This result is obtained differently by Rund, see Ref. 2.

’J. Cohn, see Ref. 4.

*1. Brevik, see Ref. 3.

°I. Cohn and N. Hong, to be published in Ann. Phys. (N.Y.).

'°P. B. Price et al., Phys. Rev. Lett. 35 (1975}, in analyzing the image on a
Cherenkov detector, used the formula, Intensity « m*[n* — (u/v)?].

VL. L. Vant-Hull, Phys. Rev. 173, 1412-3 (1968), measured the magnetic
charge on the neutron and the difference of the magnetic charge of the
proton and the electron, and found them to be less than 2% 10~*' Wb. He
also found that the magnetic charge of the electron is less than 8 % 10 °
Whb.
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It is shown that it is possible to make a meaningful multipole expansion for the electromagnetic
fields produced by localized charge and current distributions embedded in material media—
provided the media possess certain reasonable properties. The result is similar to the well-known
multipole expansions for localized sources in vacuum but differs from it primarily because of
induced charge and current density contributions to the various multipole coefficients.

PACS numbers: 03.50.De

I. INTRODUCTION

The usefulness of multipole expansions for electromag-
netic fields is well known. They are especially helpful in the
treatment of radiation from localized charge and current dis-
tributions. In addition they are convenient for characteriz-
ing known fields as well as fields obtained from numerical
calculations and from empirical results.

The classic textbook presentation of multipole fields ap-
pears in Appendix B of Theoretical Nuclear Physics by Blatt
and Weisskopf.' These authors give numerous references to
the original literature. A more recent and thorough treat-
ment is given in Classical Electrodynamics by Jackson.” Both
these texts discuss multipole expansions for charge and cur-
rent distributions in vacuum.

Intuitively, it would seem that multipole expansions
also ought to exist for source distributions in material me-
dia—especially if the medium becomes linear and of uniform
character at sufficiently large distances from the source dis-
tributions. For in that case it would appear that the medium
at large distances would behave like a modified vacuum, dif-
fering from the true vacuum only in the numerical values
assigned to the constitutive parameters. There would, of
course, be complications due to induced charges and cur-
rents which would have to be properly taken into account.

It will be shown in this paper that such a multipole
expansion does in fact exist for material media. Unfortunate-
ly, it has the unpleasant property of being an expansion of an
integral equation so that the terms in the expansion involve
the fields themselves. The utility of the expansion is thus
somewhat restricted. However, it will be shown that the ex-
pansion terms depend on the fields only in localized regions
so that its usefulness may be greater than first impressions
might indicate. In particular the expansion may at least be
helpful in characterizing the fields produced by sources em-
bedded within material media.

To establish notation and to prepare the way for the
derivation of the multipole expansion for material media,
Sec. I reviews various aspects of the field equations. Section
I1I introduces the concept of an asymptotic background or
“modified vacuum” and then gives the form of the field
equations as well as the wave equations appropriate for a
system with an asymptotic background. The derivation itself
is outlined in Sec. IV. It parallels closely the derivation for
sources in vacuum as presented in Jackson. Consequently
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only substantive differences are indicated. In making the
derivation it will be convenient to consider the medium to
have continuous properties. An extension to discontinuous
media is then made in Séc. V in conjunction with an interpre-
tation of the effective source densities which contribute to
the various multipole terms. SI units will be used
throughout.

. FIELD EQUATIONS

It will be sufficient to consider harmonic fields having a
time-dependence of the form

E~eia)l, ( 1)

where w is the angular frequency. Maxwell’s equations in
vacuum then become

V-B =0, (2)
VXE + iwB =0, (3)
VxB — iwE/c* = pd,, 4)
V-E = p, /€, (5)

where c is the speed of light in vacuum, and x4, and €, are the
permeability and permittivity of free space, respectively. The
subscript £ on the charge density p, and current density J, is
there to emphasize that these are the total source densities.

Equations (2)-{5) are of general validity and can be in-
terpreted either as microscopic expressions or appropriately
averaged macroscopic relations. The averaging process has
been discussed at length by numerous authors.>™ It will suf-
fice here to simply point out that the continuity and differen-
tiability properties of the macroscopic fields are determined
by the weight function used to perform the averaging. It will
be assumed during most of this paper that the weight func-
tion is sufficiently smooth to assure the existence everywhere
of all necessary derivatives. The usual procedure of allowing
media discontinuities can be obtained as a limiting case in
the end.

In material media it is convenient to isolate from the
total source densities those parts which depend upon the
total polarization P and total magnetization M of the medi-
um. These parts are given by

p,= —VP, {6)
J, = ioP, {7
J, =VxXM, (8)
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and are called the polarization charge density, the polariza-
tion current density, and the magentization current density,
respectively. The total source densities then exhibit the
decompositions

p.=p+pP, ()

J.=J+J,+3,, (10)
where p and J are referred to as the macroscopic charge and
current densities, respectively.

It will be assumed that the medium is linear and iso-
tropic, but not necessarily homogeneous. Thus the polariza-
tion, magnetization, and current density can be expressed in
terms of the electric and magnetic fields by

P = (e —¢y)E, (11)
M =(1/p, — 1/u)B, (12)
J=J, +oE, (13)

where J, is the “specified,” or field independent, part of the
current density. The properties of the medium are now com-
pletely contained in the three constitutive parameters €, 4,
and o. These, of course, are the permittivity, permeability,
and conductivity, respectively, of the medium. In the case of
inhomogeneous media they are functions of position.

Maxwell’s two equations containing the sources then
become

V-(€E) =p, (14)

VX(B/u)—nE=1J, (15)
where the parameter 7 has been introduced for convenience
and is defined by

7 =0 + iweE. (16)

lll. ASYMPTOTIC BACKGROUND

In order to establish a multipole expansion for material
media it is necessary that the specified source density J, be
localized and that the medium become homogeneous at
large distances. Thus it will be assumed that there exists a
spherical surface S, (radius R) such that outside of S, the
medium is homogeneous and J is zero. The system will then
be said to possess an asymptotic background or modified
vacuum having constitutive parameters equal to those of the
medium outside S,

Taking the necessary derivatives in Egs. (14) and (15)
and using a subscript 2 to denote parameters associated with
the asymptotic background, Maxwell’s two source depen-
dent equations can now be written in the form

VE=p, /6, (17)
VXB — i(k2/0)E = p,J,. (18)

The quantities p, and J, are the effective charge and current
densities defined by

p. = — (&/M(VI, + V-E), (19)

J. = (/I — V(1/u)XB + ik */wu)E].  (20)
Furthermore,

k?= —ioulo + iwe) (21)
and

485 J. Math. Phys., Vol.22, No. 3, March 1981

Sk2=k*—k2. (22)

Clearly the effective sources contain contributions not only
from the specified current density but from medium inho-
mogeneities. It will be seen in a later section that the latter
contributions are just the familiar induced charge and cur-
rent contributions.

It is now straightforward to derive the wave equations
in the usual way, thereby obtaining

(V*+ k3)E=F, (23)

(V2+k2)B=G, (24)
where

F=Vp. /€, + iou,J, (25)
and

G= —pu,VxJ.. (26)

IV. MULTIPOLE EXPANSION

It is evident from Egs. (25) and (26) along with (19) and
(20) that outside the surface S, both F and G are zero so that
E and B satisfy the Helmholtz equation for the asymptotic
background. Furthermore E and B are divergenceless out-
side S, It thus follows that outside S, the fields can be repre-
sented in the form of a multipole expansion

E = S{(— io/kaglm)V X [ fi(k;X,,, ]

+ ay(lmig (kon)X 0 s (27a)
B= Iz{aE(l’m)ﬁ(k2r)xl,m
— (Viw)ay (l,m)V X [g,(k.r)X,, 1] (27b)

Except for the use of the asymptotic value &, in place of the
vacuum value and some changes necessitated by the use of SI
units instead of Gaussian units, these expressions and their
derivations are identical to those given in Jackson (pp. 744—
7). In particular f; and g, are solutions of Bessel’s equation
while X, is a vector spherical harmonic defined in terms of
the spherical harmonics Y, by

X,, = —irx VY, /(I({+ 1)) (28)
The quantities a(/,m) and a,, (/,m) are referred to as the elec-

tric and magnetic multipole coefficients, respectively. They
can be expressed in terms of the fields by

k2
el =—" _|r*r
ag(l,m) f;(k,r) ITESTIE fY,mrEd.(), (29a)
Lmglky) = ——2 __ [v*r ,
Gy (l,m)g, (k,r) TESTE merBdﬂ (29b)

where it is understood that r exceeds the radius of S, and the
integral is over all solid angles.

Equation (29) can be used to express the multipole coef-
ficients in terms of the effective sources. To accomplish this
the vector identity

r-V’A = V{r.A) — 2V.A (30)
may be used to cast the inhomogeneous wave equations (23)
and (24) into the form

Charles P. Frahm 485



(V> + k3)(r-E)=r-F + 2p,/¢€,, (31a)
(V2 + k2)(r-B) = r-G. (31b)

For (damped) outgoing waves at large distances these differ-
ential equations are equivalent to the following integral
equations:

1 e—ik2|r7r'|
rEr= — — ~———— [r-F(r')
477' a.s. |l‘ — l"|
+ 2p.(t')/e,]1dV’, (32a)
1 e—ﬂc2 Ir—r]|
rBrj= — — | £ r.Gr)dv,,  (32b)
4 a.s. fl‘ — rll

where the integrals are over all space. The equivalence is
easily verified using the well-known identity

e ikylr —r|
[r —r'| ]_

where & is the Dirac delta-function. Substituting equations
(32) into Egs. (29) and using the identity®
e~ thkir—rl
JY » £ dn
r—r|
= —A4mkyh jkor) jikor') Y 5,606 ) (34)

yields after some simplification

(V2 +k3) [ — 47d(r — '), (33)

ik3 )
aglbm) = = +21))”2 f’ ((kn) Y 5, (e F

+2p,/€,)dV, (35a)
— vk,
ayllm)= —————f knY rrGdv. 35b
mllm) e ))1/2 Jilkar}Y ] (35b)

In these expressions the j, and 4, are the spherical Bessel
and Hankel functions, respectively. The quantities /; and g,
in Egs. (29) have been identified with 4,2 in obtaining Egs.
(35).

It is now straightforward to substitute for F and G from
Egs. (25) and (26), simplify, and obtain the desired expres-
sions for the multipole coefficients in terms of the effective
sources,

- _:u2k2 k) 77 a k
aE(l’m) - (l(l+ 1))1/2 J;SY {“1) a [Ul( Zr)]
+ k3rd, jl(kzr)} av, (36a)
_—lopk, 36
aultm) = B | Y8 Xtk d¥. G

Taking into account the changes required by the use of SI
units these results are identical in form to those exhibited in
Jackson except that no allowance has been made for intrinsic
magnetization. The presence of the effective source densi-
ties, however, does produce a substantive difference from the
traditional multipole expansion. It should be noted that al-
though the integrals in Egs. (36) are over all space, the van-
ishing of the source densities outside S, effectively limits the
integrations to the region interior to .S,
In the long wavelength limit

[k;Ro| <1, (37)
Egs. (36) become
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— Mok 3! (1+ 1 )vz
l, - m o
b = = o ) @ %a)
ik 3+ (l—f— l)
a lym = M , 38
ml(lm) TS ; Im (38b)

where Q,,, and M, are the electric and magnetic multipole
moments, respectively. They are defined by

f PYtp, dV, (39a)
- f PYE VrxJ.)dV. (39b)
V. EFFECTIVE SOURCES

The discussion to this point has assumed that all quanti-
ties, including the constitutive parameters, are sufficiently
smooth that all necessary derivatives exist. However, for the
purpose of interpreting the significance of the effective
sources it is convenient to consider homogeneous media sep-
arated by sharp boundaries. Such systems, of course, have
discontinuous constitutive parameters. Nevertheless they
can be treated as limiting cases of smooth systems by the
introduction of generalized functions. This must be done
with care, so that the resulting expressions are all well
defined.

For purposes of illustration it will be assumed that the
system consists of two homogeneous regions separated by a
simply-connected closed surface .S with the specified current
density confined well within S. Quantities like 1/7 appearing
in the first term of the effective charge density, Egs. (19), can
then be written in the form

/7= Un, + (U/n, — 1/7,6,(r), (40)

where the subscript 1 refers to the region interior to S and
8, (r) is the surface unit step function defined by

0.(r) = [1 for r outside S
‘D=1 for r inside § °

The second term in the effective charge density requires
special attention. If the discontinuous limits of the various
factors are taken separately the resulting product of general-
ized functions is meaningless.” On the other hand, for
smooth systems the following two forms of the terms are
obviously equivalent:

— (I/9)Vn-E = V(1/7)-(nE). (42)

The form on the right, however, is well defined in the discon-
tinuous limit. To see this it is convenient to note from Eq. (40)
that

(41)

V(l/7) = A (1/n)8,(r)h, (43)
where 7 is the unit outward normal to the surface S, 4 (1/7)is
the change in 1/7 across the surface

A(1/n)=1/n, — U/, (44)

and &, (r) is the surface delta function. The surface delta func-
tion has the property of converting a volume integral into a
surface integral so that for an arbitrary function f

f f(r)5s(r)dV=Lf(r) ds. (45)
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Using Eq. (43) the right-hand side of Eq. (42) becomes

V(1/7)nE) = 4 (1/7)5,(r)i-(yE). (46)
On and near the boundary Eq. (15) implies that
V(nE) =0, (47)

which in turn implies that 7i-(5E) is continuous across the
boundary. The right-hand side of Eq. (46) is thus well
defined.

By utilizing the continuity of A-(nE) and the fact that
only its value on the boundary is required, Eq. (46) can be
written in a form which makes evident the significance of the
second term in the effective charge density. Thus, using E,
and E, to denote the fields just inside and outside the bound-
ary, respectively,

V(1/n)nE) = 8,(r)A-[(1/n, — 1/7,)(0.E, + 7,E,)/2]
= 16,(r)A-[E, — E, + (1/9, — 1/7,)(nE)]
= 18,(r}i-4 E + {V(1/7)-(nE).

Hence
V(1/7)(nE) = é,(r)i-A E. (48)
From Eq. (5) it is evident that
ARAE =2 /€, (49)

where 2, is the total surface charge density. Thus the effec-
tive charge density can be written in the form

p. = live, /(o + iwe )] p, + (€2/€0)2,6,(r), (50)
where p; is the specified charge density defined by
VJd, = —iwp,. (51)

The effective current density can be treated in a similar
fashion. In the first term of Eq. (20) the permeability can be
written

p=p + Aub(r). (52)

Then the second term may be rewritten and treated as
follows:

— uV(1/p)XB = Vu X (B/p),
Vi X (B/p) = Aud,(r)i X (B/w). (53)

Because J, has been assumed nonzero only inside S, Eq. (15)
implies that 7 X (B/x) is continuous across the boundary.
The right-hand side of Eq. (53) is thus well defined.

By following a procedure similar to that used to obtain
Eq. (48), Eq. (53) can be shown to yield

VuX(B/u) = 5,(r)ix4B. (54)
Equation (14) now implies that
AXAB=pK,, (55)

where K, is the total surface current density. According to
Eqgs. (10) and (13), K, can be thought of as composed of four
separate terms: a specified term K, an ohmic term K,,, a

polarization term K, and a magnetization term K,,,. How-
ever, the specified current density has been assumed zero on
and near S so that K, vanishes. For finite conductivities and
permittivities the ohmic and polarization terms, being pro-
portional to the finite electric field, also vanish. Hence the
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only remaining term is the magnetization term. This can be
verified directly by using Egs.-(8) and (12) to show that

K, =AXAM=74axX4B/u, {56)
and then comparing with Eq. (55). Thus

AXAB=uK, (57)
and

Vu X (B/p) = poK,, 6,(r). (58)

The third term in Eq. (20) for the effective current densi-
ty presents no special problem. It is convenient, however, to
write 8k 2 in the form

Ski=(k?—k3)[1—6,r)] (59)

Combining all the various results and simplifying gives the
following expression for the effective current density:

J. = (/s + o/ K, 6,(r)

+ [(11/pa)o) + iv€)) — (02 + iwer}] [1 — 6,(r) E.
(60)

VI. SUMMARY

It is evident form Egs. {27) and (36) that it is possible to
make a meaningful multipole expansion for charge and cur-
rent distributions embedded in a material medium provided
that the medium can be thought of as being homogeneous at
large distances and that the “specified” sources are well lo-
calized; i.e. that the system can be thought of as having an
asymptotic background. The form of the expansion and the
expressions for the coefficients are the same as those for the
usual multipole expansion in vacuum except for the use of
the constitutive parameters of the asymptotic background
{instead of those of the vacuum) and the use of effective
source densities in place of the usual macroscopic source
densities.

For homogeneous media separated by sharp bound-
aries the effective charge density has two contributions—one
from the specified charge density and one from the total
surface charge density—each appropriately modified by the
constitutive parameters. The effective current density, on
the other hand, contains three contributions—one from the
specified current density, another the surface current densi-
ty arising from magnetization, and one that results from the
difference between the actual ohmic and displacement cur-
rents and those that would be present if the asymptotic back-
ground pervaded all space. It should be noted that all contri-
butions to the effective source densities vanish outside .S,

Clearly the multipole expansion presented in this paper
reduces to the conventional expansion when the exterior re-
gion is the vacuum. However, when the exterior region dif-
fers from the vacuum, e.g., sources in an ocean environment,
the two formalisms are distinct. In fact, in the latter case the
conventional formalism fails altogether whereas the present
formalism is still applicable.

'J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics (Wiley, New
York, 1952).
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For a self-interaction energy density U(|¢|?) that is positive-definite, monotone-increasing with
increasing |¢|% and concave-saturating, it is shown that the total field energy E and particle

number N satisfy the general inequality E> (function of £} |NV | — ¢}
parameter § =min (d InU ( p)/d Inp] is less than unity.

PACS numbers: 03.50.Kk

1. INTRODUCTION

In recent years there has been renewed interest in singu-
larity-free finite-energy solutions to nonlinear complex-sca-
lar field theories with Lagrangian densities of the generic
form

L= —FYP*3,¢ ~ U(lyP). (1)
Particular attention has been given to self-interaction energy

densities U (|y|?) that are positive-definite, monotone-in-
creasing with increasing |¢|%, and concave-saturating

Ui0)=0, Ulp)>pU’'lp)>0 foralip>0, {2)

and pU ~'U’ nondecreasing with increasing p. As originally
intimated by the present author’ and demonstrated by Roff-
man? and Morris,* the concavity conditions in (2) are suffi-
cient to guarantee existence of singularity-free localized par-
ticlelike solutions to the field equation

b — Vi + U191 =0, ()
which follows from (1). Both the (constant) energy

E= [1197 + |99 + Ullui) d @)
and (constant) particle number

N=if s — g ax (5

are finite quantities for these particlelike (soliton) solutions.
It is noteworthy that the conditions in (2) imply that

1>&=minl[dIn U(p)/dinp] >0, (6)

where (1 — &) is a measure of the concavity manifest in U.
Thedifferentialinequalityd In U ( p)/d Inp>£ canbeintegrat-
ed to yield a lower bound on the self-interaction energy den-
sity, namely

Ulp)>m*—*p* forall p>0, (7)

where m (units cm ™' with # = ¢ = 1) is an additional posi-
tive constant parameter associated with U. Assuming that
the self-interaction energy density obeys the conditions in (2)
and hence admits a lower bound of the form (7), then the
constants of the motion (4] and (5) are related by the energy-
particle-number inequality derived in the following and ex-
hibited in (15).

*Work supported by NASA grant NSG 7491,
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/22~ ¢ in which the positive

Il. DERIVATION OF THE ENERGY-PARTICLE-NUMBER
INEQUALITY

Consider smooth and localized ¥ such that the integrals
Isz|¢|kd3x (®)

exist for 2& <k <6. Then the Schwarz inequality applied to (5)
yields

. 1/2
i<z, figr )" o
Hence, by evoking the Sobolev inequality**
Jwer s Z) (10)

and making use of (7), it follows that the energy (4) has the
lower bound
ESINL)™" + 3(m/2f (L)' * + m* ~ %L, (11)
In combination with (11), the Holder inequality for & < 1
(LY~ §<(IZ§)2(I6)I -4 (12)
implies that
ESINYD)™" + 3(m/2) P42
+m T E (L))~ (13)
=F(I,, I)>min F(I,, I,).
Thus, by solving the minimization equations
9F o, 9 _yg (14)
al, al
algebraically for I,, I, and substituting the latter values into
F(1,, 1), the final member in (13) yields the general inequality
E>(P[(1 —¢) == -e)
X2 = )3 — )7
xﬂ.(l—5)/(2~§i[|N’(3~§l/2(2—§J]m_ (15)

lil. DISCUSSION

In view of the sharpness®* of the Sobolev inequality
{10), the right side of {15) can be expected to be close to the
minimum admissible energy for any prescribed value of |V |.
The exponent (3 — £)/2(2 — £} in (15) gives a power-law de-
pendence on |N | somewhat weaker than linear; this is the
hallmark of field-theoretic “binding” in a minimum-energy
solution to (3) which involves two or more solitons, presum-
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ably in a bound-state configuration. More pronounced bind-
ing is generally allowable between a soliton (N> 0) and an
antisoliton (V < 0), with ¥ closer to zero in the composite
solution.

To illuminate the numerical content of (15), consider
the special cases of possible physical interest:

§—>0‘. E>23/2X 3_3/8><1Tl/2 |N|3/4m

=3.32047 |N |>/*m
£=1E>20x3x5 27! ? |N |¥om

=2.52216 [N |*°m (16)

g— — %: E>2A3/10X 3—9/10X 5X77.1/5 |N P/lom

= 1.899 69 |N |°/"m

E—~1:E>|N |m.

As in (15), the numerical coefficients that appear in (16) de-
crease with increasing values of £; the £—1 limiting case
(fourth entry show in (16)] is patently consistent with linear
theory i.e., U{ p) = m*p, box normalization for the plane-
wave solutions, and strict superposition.

Although the inequality (15) is derived here in the con-
text of classical field theory, this result also applies to certain
nonlinear complex-scalar quantum field theories. For appli-
cability of (15), the Hamiltonian operator H must be normal-
ordered to give (H },,. = 0 and contain suitable counter
terms which serve to cancel self-interaction fluctuations and
thus engender a lower bound on the (vacuum-based) energy
expectation values of the form obtained by combining (4) and
(9)

E=wy> 2N [rax)

+j[t\7¢12 + U9 d3x. (17)

In (17), ¥ denotes a disposable parameter- or variational-
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function in the representative state functional,” and the ki-
netic energy of the field is bounded from below as a conse-
quence of the uncertainty principle, as in particle mechan-
ics.>® The values of N in (17) are restricted to the eigenvalue
spectrum N = 0, + 1, + 2, - of the self-adjoint operator
corresponding to (5). For stationary states that feature N
quanta in a single dynamical mode of the field, (17) is likely to
hold with the equality sign. Thus, for example, the precise
energy for linear-theoretic monochromatic “beam” states
(with all quanta having the same particle-character and the
same wave vector k) is derivable by minimizing the effective
energy with box normalization

—1
EamtN( [P a) 4 [(9u ¢ miwpax,
4 v v
(18)
SE =0 = Eq =(k*+ mz)”le\'
The minimization procedure employed in (13) to get (15} is

clearly analogous to the minimization of the effective energy
in (18).
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Measurement in stochastic mechanics ?
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Stochastic mechanics is an explanation of nonrelativistic quantum phenomena in terms of
stochastic differential equations. In this note a simple example of a measurement is constructed
and the behavior of the sample paths of the corresponding stochastic differential equation is
examined. The sample demonstrates that stochastic mechanics provides a natural explanation of

the “reduction of the wave packet.”

PACS numbers: 03.65.Bz

I. BASIC THEORY
Let us begin by considering the Schriédinger equation

i) ) ‘W+V(t)¢

— %V2¢+ 102 (1)

Herey = ¢(x,,x,,....X,,;t ) = ¥¥(x;t )isthewavefunction; ¥ (¢)
is the operation of multiplication by the real valued function
V(xx,,...x,;t); and V is the vector operator

(2.2
ax, 'dx,” " ox, )

We have set # and all masses equal to 1 for simplicity.
Let us write ¥ = exp(R + iS ) and define the vector val-

ued function
b*=VR + VS. 2)
We assume ¢ is sufficiently smooth for this to be done.
Note that b * is the sum of the real part and the imaginary part
(without the v/ —1) of the logarithmic gradient Vy/9.
Then it is easy to verify that p(x;t ) = |¢(x;¢)|* which is
interpreted as a probability density in quantum mechanics,
satisfies

P v+, 3
ot
and is thus the probability density of a solution to the sto-
chastic differential equation

dx(t) = b*(x;t) dt + duw(t). 4
Here w(z ) is the Wiener process, normalized so that the vari-
ance of w(s,) — w(s,) is nls, — s,, i.e., the probability densi-
ty of w(s,) — w(s,) is

x? )
[s2 =51

Qrls, — s, exp( _

We refer to 4 * as the mean forward velocity of this process.

In stochastic mechanics we consider a quantum me-
chanical system to have a definite, though unknown, posi-
tion at each time. The time evolution of this position is gov-
erned by the probabilistic law (4).

*This work was partially supported by an NSF graduate fellowship and by
NSF grant MCS-7906633.
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Il. AN EXAMPLE OF A MEASUREMENT

Consider a free particle of mass 1 with the following
(un-normalized) wavefunction at time O:
#(x;0) = exp[10%x — (x + 10°)?]
+ exp[ — 10%ix — (x — 10%)?]. )
The wavefunction is a superposition of two Gaussian wave

packets centered at = 10 and moving with velocities + 10
(the widths of the wave packets are not drawn to scale):

+10° —10°
— -—
| ] |

—10° 0 +10°

At t = 20, the two wave packets have widened somewhat
and exchanged positions:

—10° /\C— 10°
« —
[ I [~

—10° 0 +10°

It is interesting that while it appears that the two wave
packets passed through each other, in the corresponding sto-
chastic process the particle reverses direction with probabil-
ity greater than J.

This is seen by an easy symmetry argument. Note that
(x;0) = Y( — x;0) and hence ¢(x;t ) = ¥( — x;t ) forallrand
all x. It follows that & *(x;#) = — b°( — x;t) where b " is the
mean forward velocity of the corresponding stochastic pro-
cess. Therefore, if the particle is at the origin at time ¢, it is
equally likely to be at x or — x at time £>¢".

Almost all sample paths of the process are continuous.
After throwing out the discontinuous paths, we divide the
paths into two sets:

(1) Those paths that pass through the origin for some ¢,
0<¢<20. Let i denote the measure of this set, 0 <u < 1.

(2) Those paths that don’t pass through the origin for
0<r<20. The measure of this setis 1 — .

The probability that the particle reverses direction (i.e.,
that the positions of the particle at times Q and 20 have the
same sign) is § u +1 — u > | because half the paths in the
first set and all the paths in the second set have this property.

This result seems to contradict classical physics and our
experience, for a free particle has never been observed to
exhibit such strange behavior. But in stochastic mechanics,
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if the particle is observed (i.e., its position measured) then
this strange behavior disappears. Specifically, we consider a
measurement by interaction with a second particle, also of
mass 1, with the (un-normalized) wavefunction at time 0:

¥(»;0) = exp(— 7). )
The two-particle system has wavefunction:

Wx,p;0) = exp( — y*){exp[10°ix — (x + 10°)]
+ exp[ — 10%x — (x — 10°)?]}. M

If there were no interaction between the two particles
(1.e., zero potential}, then no measurement would be made
and each particle would move as if the other didn’t exist. In
fact, the wavefunction would factor at all times ¢ as

ENADERACHIIAGHI (®)
where 1, and 1, are solutions of the free one-dimensional
Schradinger equation, and the mean forward velocity, now a
2-vector, would be

b(eyit) = ([Re + Im] % logi(x.yit ),
[Re + Im] < logy(x.yi))
dy
— ([Re + Im] <2~ logi,(xit),
ox

[Re + Im] 9 logi,(51))- ®
ay

Here [Re + Im] is the sum of the real and imaginary parts:

[Re + Im}(e + /b ) = a + b. Thusthe mean forward velocity

in the x direction is independent of the y coordinate and is the

same as the mean forward velocity of the 1-particle system

given by (5), and the mean forward velocity in the y direction

is similarly the same as in the 1-particle system given by (6).
Now let the particles interact with the potential

Vixyt)= ’20— Ix —¥1*x 0,0 () (10

in the limit @—0,. The function Y, is the characteristic
function of the interval (0,a). The effect of this potential is
approximately to give the particles a velocity increment of
10° towards each other, since the particles are separated by a
distance of approximately 10°. This is only a one percent
change in the momentum of the first particle.

To solve explicitly, we solve separately for

exp( — ) exp[10%ix — (x 4 10%)?], (1)

exp( — y?) exp[ — 10%x — (x — 10%)7], (12)

and then add the two solutions. The solutions are effected by
the change of variables R = (x + 3)/2, r = x — y. The wave-
functions are then Gaussian wave functions in quadratlc
central potentials.

The wavefunction (11) is, omitting a constant factor,

exp[ —2R* + (10°% —2 X 109R ]
—r 10% — 2 10° )
Xex ( + rl.
P\ 2
At time ¢t = 0, (after the impulse) the wavefunction is
expl —2R 7+ (10°% —2 X 109R ]

(13)
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_ 3

10% —2x 10° r)

Xex (
P 2

(14)
At r> 0, the wavefunction is

exp’ (=1 —it)"'R2 4 (10% — 2 10°)(1 + 2it)™ 'R

R

+(‘°§ 2><1(’6)[1+2n(1+10 )1“-‘]

—on(j- i [ - (i) ]

X(x*+ %) + {5(—5—it)“~2

A=) ] e

10% — 2% 10° {

,1‘7
—41't] re

(14 20ty

+ [142it(1+107%%)] '}x
S; 6

107/ — 210 U1+ 2i1)-

2
—[1+2it(1 +1073%)] '}y). (15)

-+

To this must be added the solution for the other half of
the wavefunction (12). Omitting the same constant factor,

this is
CXP([%(—%—it)"'Jr [— (532();1)' —41':]‘ '](x3+

+ [%{—;—itr'—z[—(‘—%o—”)‘—‘w]l)xy

1 22><10 {(1 —Jl-)] 1}x

_ 10210 “22X W0t 42t — 14 2irft 10701 )
(16)

4+ 2P+ 11+ 21+ 10

The wavefunction is the sum of (15), which is a wave
packet centered at { —10° +10°7 + 10°4, — 107t and mov-
ing with velocity (10° +10°, —10%), and (16), which is a
wave packet centered at (10° —10% — 107,107 ) and mov-
ing with velocity ( — 10° — 10°, + 10%).

Let us analyze the first wave packet with the change of
coordinates

R=1i(x +y+10°+10°),
F=x—y+10°—10"t —2 X 10%.

In this coordinate system the first wave packet is centered at
(0,0). The mean forward velocity in this coordinate system 18

b Rt )
_ {41—2 ~
144> 1—4x10"

(17a)
(17b)

S2(1+1073)+4(1+107%1)
441 4+10 -

(18)

if we ignore interference from the second wave packet.
From the original wavefunction (7) and the change of
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variables (17), we see easily with the use of a table of the error
function that, if thex coordinate of the system is negative at
time O, then the R coordinate at time 0 has absolute value less
than 1.5 with probability >0.9999. Also, using a table of the
error function and the following inequality for the Wiener
process w:

Prob. {w:31,s such that 0<z,s<5 and
w(t) — w(s)| > 2}

<2 Prob. [(w(a‘) — w(0)| >§) , (19)

we find that the Wiener process contribution to R is, with
probability at least (0.9998)°, less than:

3 for O<r<d,
9 for i<t <35,
16 for 5<<20.

[The inequality (19) is esssentially Lemma 3 in Appendix A
of *). .

Let us now assume that the R coordinate is <1.5 in
absolute value at time 0 and that the Wiener process contri-
bution to R is less than 3 for 0<z<}, less than 9 for }<#<5,
and less than 16 for 5<¢<20. Let us further assume that the
total contribution to R from the perturbation of mean for-
ward velocity caused by interference with the second wave
packet is less than } for 0<#<20. This assumption will be
checked later.

Now for 0<i<h, the mean forward velocity
[(4r — 2)/(1 + 41 *)]R tends to decrease |R |, while for > § it
tends toincrease |R | atarate proportional to |R |. The worst
possible (i.e., largest) values for |R | under the above assump-
tions are

1.5405+3=5 for 1<},
5
4t -2
5+ 9)ex (J ————dt)<82 for 1<5,
( exp 12 14412

R V)
82 + 16) ex (J —————dt) <400 for<20.
(82 + 16} exp s 1447

Thus, assuming that the x coordinate of position is nggative
at time 0, and assuming that the total contribution to R from
the perturbing effect of the second wave packet is less than I,
the probability is greater than (0.9999)(0.9998) that
|R | <400 for t<20. Similarly, if we assume that the perturb-
ing effect of the second wave packet contributes less than 1 to
7, then the probability is greater than (0.9999)(0.9998)* that
|| < 800 for 1<20. Thus the probability is greater than
(0.9999)*(0.9998)° > 0.996 that |R | < 400 and |#| < 800 for
0<¢<20. To confirm this result, we need only check the as-
sumption that the perturbation in mean forward velocity
caused by the second wave packet contributes less than } in
the R coordinate and less than 1 in the # coordinate.

Both wave packets are defined as exponentials, so we
must find the perturbation

[Re + Im]{V log[exp(a,) + expla,)] — V log[exp(a,)]}
= [Re + Im]{V log[1 + exple, —a )]}

= [Re 4+ Im] {V[exp(a, — a,) — } exp(2a, — 2a,)

493 J. Math. Phys., Vol.22, No. 3, March 1981

+  exp(3a, — 3a,)-| 1}
when Re(a,) > Re{a,)
= [Re 4- Im][(exp(a, — a,) — exp(2a, — 2a,)
+ exp(3a, — 3a,))(V(e, — a,))]
[Re + 1m] [0 gg, _g)| o)
1 + expla, — a,)

In the case at hand, a, is the exponent in (15) and a, is
the exponent in (16). We are working in the region |R | < 400
and |#| < 800, which means that in the x—y plane, the dis-
tance from the center ( —10° +10°¢ + 10%,10% ) of the
wave packet (15) is at most 80012 < 1200. Now the closest
approach of the centers of the wave packets (15) and (16) is
approximately a distance of 19,800. Trivial estimates show
that Re(a, — a,)< —100, and also that |V(a, — a,)| < 10’.
Thus the perturbation (20) is indeed negligible.

What we have shown is, that if the x coordinate of the
system is negative at time 0, then the probability is greater
than 0.996 that the position of the system lies within a dis-
tance of 1200 in the x-y plane from
(—10° +-10°1 + 10%, — 10°¢) for 0<z<20. In particular,
the probability is greater than 0.996 that the first particle
does not reverse direction. The measure on paths looks very
much like that attributable to the “reduced” wave packet
(15) because the perturbing effect of (16) is, with probability
greater than 0.996, less than exp( —100).

Ill. ANALYSIS OF THE EXAMPLE

In stochastic mechanics, the dynamics of a system is
given by a stochastic differential equation and is thus a Mar-
kov process. The system has no “memory” of the past. It is
this property which is responsible for the strange behavior of
the sample paths of the stochastic differential equation cor-
responding to the single particle system considered in the
previous section. The particle, upon reaching the origin, has
no memory of which direction it came from, and is just as
likely to reverse direction as to continue in the same
direction.

In a two particle system, it is the position of the two
particles taken together that constitute a Markov process. It
does not follow, and indeed is generally not true, that the
position of one particle constitutes a Markov process. (A
sufficient condition for a position of each particle to consti-
tute separately a Markov process is that the corresponding
wave function factor as in Eq. (8) at all times.) The position
of one particle is not a Markov process because the “mem-
ory” of its past is contained in the present position of the
second particle. :

In the two particle system presented earlier, for exam-
ple, the first particle is, with high probability, near either

— 10%0r + 10%attime 0. At time 10°/(10° + 10°), the parti-
cle is with high probability near the origin. However, if this
particle was near — 10° at time 0O, then the second particle
(the “‘measuring device”) is near — 10* [or more precisely,
— 107 10°/{10° + 10%)] at time 10, and if the first particle
was near + 10° at time O, then our “measuring device” is
near + 10 at time 10. The mean forward velocity of the
particle depends not only on its own present position, but
also on the present position of the “measuring device,”
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which in turn depends on the past position of the measured
particle.

Furthermore, in the stochastic process corresponding
to the wavefunction given by (15) and (16), we saw that, if the
measured particle were to the left of the origin at time zero,
then, to a very good approximation, its future would evolve
in accordance with the stochastic process corresponding to
the wavefunction (15). Thus, to compute the probability den-
sity in the future, conditioned upon the knowledge that the
particle was to the left of the origin at time zero (which may
be ascertained by our measurement), we need only to consid-
er the “reduced” wave packet (15) instead of the full wave-
function (15) plus (16). The perturbing influence of the wave
packet (16) still exists; equation (20) and the discussion fol-
lowing show however that this influence is negligible. It is
negligible because we have made a “macroscopic’ measure-
ment. At time ¢ = 0, the measuring device (the second parti-
cle)islocated near + 10*or — 10%; it is precisely this macro-
scopic difference between + 10* and — 10* that accounts
for the negligible perturbing influence of the wave packets
upon each other.
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The reduction of the wave packet when a macroscopic
measurement is made has been the subject of much discus-
sion and controversy among physicists. Schrodinger himself
was unhappy with the situation, and criticized the theory he

helped found.® It is intriguing that something so difficult to
explain in quantum mechanics admits so straightforward
and natural an explanation in stochastic mechanics.
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Here the results of other work on quantum mechanical Hamiltonian models of Turing machines
are extended to include any discrete process T on a countably infinite set 4. The models are
constructed here by use of scattering phase shifts from successive scatterers to turn on successive
step interactions. Also a locality requirement is imposed. The construction is done by first
associating with each process T a model quantum system M with associated Hilbert space 7%,
and step operator Us;. Since Uy is not unitary in general, M, 77, and U are extended into a
{continuous time) Hamiltonian model on a larger space which satisfies the locality requirement.
The construction is compared with the minimal unitary dilation of U;.. It is seen that the model
constructed here is larger than the minimal one. However, the minimal one does not satisfy the

locality requirement.

PACS numbers: 03.65.Bz, 03.65.Nk

|. INTRODUCTION

In recent work,' hereafter referred to as I, quantum
mechanical Hamiltonian models of Turing machines were
constructed. The constructions were such that the mode!
systems depended both on which machine was being consid-
ered and on the number of computation steps for which the
model was valid. Also, the Coleman approximation® which
makes the kinetic energy linear in the momentum was used.
The construction also depended on the fact that each Turing
machine corresponds to a step transfer function on a counta-
bly infinite set 4 of instantaneous descriptions or overall ma-
chine states.®> Although T could be many-one and into, the
fact that it was restricted to (standard) Turing machines al-
lowed for some simplifications in the model construction.

Now most maps T from 4 to 4 do not correspond to
Turing machines, thus it is natural to ask if the work of I can
be generalized both by removal of the Coleman approxima-
tion and to apply to any abstract discrete process with step
transfer function T:4—A4. From now on A denotes an arbi-
trary countably infinite set of process-system states or
descriptions.

The purpose of this paper is to show that such a general-
ization is possible. In particular, it will be seen that for any
abstract discrete process 7 on A where 7' can be many-one
and into, one can construct a quantum-mechanical Hamil-
tonian model of the process. The construction is carried out
in much the same spirit as is that applied to various models of
the measurement process.>*3

In essence, what is done here is to first associate to each
process T, amodel process described by a discrete semigroup
of operators on a Hilbert space 7#°,,. The model is then ex-
tended and expanded into a larger system whose continuous
time evolution is described by a Hamiltonian. In the ex-
tended model, the discrete stepwise nature of the process
modeled is reflected in the fact that the part of the model
state which corresponds to the process system is essentially

* Present address.
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stationary for a finite time interval when it describes a com-
pleted model-process step. The importance of this stationar-
ity in models of the measurement process has been empha-
sized by Emch.*

Section II discusses two general features of the modzl
construction, the use of scattering phase shifts to turn on and
off successive step interactions in the model, and the require-
ment of locality. In essence, this requirement says that if the
model system is in a state corresponding to a process state @,
at stage j, then as the system evolves towards a state @, | ,
corresponding to the process state at stage j + 1, the system
state must have nonzero components only in the subspace
spanned by @, and @, , ,. In particular, it must not include
states which the model process will not reach until several
steps in the future or which the model process has already
passed through several steps previously.

Section I1I discusses in detail the use of scatterings from
fixed centers to turn on successive model-process interac-
tions. The scattering phase shifts which turn on the succes-
sive model-process interactions are calculated in the eikonal
approximation.® One-dimensional scattering is assumed. In-
equalities which the various model parameters must satisfy
are discussed.

Section IV describes a model extension which is suffi-
cient for the inclusion of processes whose step functions 7’
can be many-one and into, and which satisfies the locality
requirement. Each step of the original process is expanded
into three successive steps, record, T process, then shift in
the expanded model. In essence, as the extended-expanded
model evolves, it generates a history of its evolution. Explicit
expressions in terms of simple operators are given for the
interaction operators for each of the types of steps and are
used to generate an overall model Hamiltonian H I for de-
scribing 37 model steps. The Schrédinger evolution of the
model is discussed. It is seen that the model does in fact do
what is claimed, namely, describe the expanded process and
satisfy the locality requirement.

The dilation theorem of Sz. Nagy’ as applied to the
model processes is discussed in Sec. V. The minimal unitary
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dilation of a model process operator U, is constructed. The
resultant model describes successive steps of the model T
process, however the locality requirement is not satisfied.
Finally, Sec. VI discusses some further aspects of the con-
structions of this paper.

Il. GENERAL CONSIDERATIONS
A. Phase shifts as interaction parameters

The models will be constructed here using the following
idea. Consider a discrete reversible process on a countable
set A which is represented by a bijection 7:4—4. That is,
given some a in 4 as the overall state or description of the
process at stage/, T (a) gives the state at stagej -+ 1 and T/ (a),
the state at stage j + /. Since T is a bijection / can take any
value in Z, the set of integers. The extension to processes for
which Tis not a bijection will be done later in Sec. IV.

Let #°,, be a separable Hilbert space of a system M and
let @ " be a one-one correspondence of 4 onto an orthon-
ormal basis set {¢/}f|ac4 } which spans 5°,,. Then one can
define an operator U, in B{ 5,,), the set of all bounded
linear operators over 57°,, by

(]szbjaw = 1p);!(a) (1)

for all @ in A. Since T'is a bijection, U is unitary. Let H ' be
some self-adjoint operator which satisfies

U, =ée*#', {2)
where X is a real number.

It is desired now to construct a Hamiltonian system
which starts with M in state ¥ and ends up and remains
with M in state ¢, . This is done here by adding another
system w and a fixed center ¢ and using the scattering of w off
the fixed scattering center ¢ to turn on the interaction H'.
The incident momentum of w and the w-c interaction poten-
tial strength and range are adjusted so that the total scatter-
ing phase shift given by the eikonal approximation® equals
K.

Here and in what follows the term “M system state”
refers to those parts of the overall M + w system state which
liein #°,,. It will always be clear to which component in any
expression the discussion is referring, Of course, the real M
system state can only be obtained as a trace of the M + w
system state over the system w Hilbert space.

Successive steps are included by replacing ¢ by a se-
quence C of widely spaced fixed scattering centers. The spac-
ing between the centers and the range of the interaction be-
tween w and each system ¢ of C are such that the scattering
from the jth system ¢; of C is essentially complete before w
moves into the range of the j 4 1st scatterer in C. Since w is
described by a moving wave packet, one has the following
picture: if the M system is started in state ¢, it will evolve to
z//}’(a) while the w wave packet is within the interaction range
of ¢,. The M system state will remain (essentially) stationary
in state 35, during those times for which the w wave packet
is (essentially) outside the interaction range of ¢, and c,. The
M system state evolves away from 1//’}’(“, and towards ¥/, as
the w wave packet begins interacting with ¢,, and so on. Fig.
1 shows M, C, and w at a stage when the w system wave
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Xy Xz X3 Xn

FIG. 1. A schematic representation of the model. The small circles repre-
sent the scattering centers of C at fixed positions x,,x,...x,,. r denotes the w-¢
interaction range. The w wave packet of width 4x is shown between two
centers of C and moving to the right with velocity v,. The form of M is
arbitrarily denoted by a rectangle.

packet is essentially between scatterers.

To keep the model as simple as possible without losing
essential details, the w-C scattering will be described in one
dimension only. Extension to three dimensions is
straightforward.

B. Localization and extension

The construction just described can be represented as
follows. Let f'(x,v,, ) represent the w-wave packet amplitude
with group velocity v, at position x at time 7. Assume that
[fx,v,,0) is peaked at x, which is distant from the centers of C,
and that the spread Ax does not change during the time
interval of interest. The centers in C are sufficiently widely
spaced so that at any time w interacts with at most one center
of C. For each position x let § {x) denote the accumulated w-C
scattering phase shift. {The dependence of § (x) on the mo-
mentum of w is ignored in this discussion as it is small in the
eikonal approximation.) Then if M is initially in state ¢/’ at
time 0, the overall system state at time ¢ for w at position x is
given approximately by

Uit ) = f (et ) (%) (3)
where ¥(x) = exp[i8(x)H ']¢¥. If H' is such that Eq. (2) is
satisfied, one has

vl Y di O, (4)

where the coeflicients 4 % (8(x)) are in general different from
0if 6 (x)#jK for all integers j, If § (x} = jK then
d.(jK)=1ifa’ = T/(a) and O otherwise.

Now the model parameters can be adjusted so that there
exists a sequence of nonoverlapping time intervals of width
A centered about the times £4,2,,....¢, such that for all #in the
interval (¢, — 4 /2, t; + 4 /2], (x) = jK for all x for which
f{x,u5,t ) is appreciable. Thus for these times, one has

M+ “lx,t ):f(x’v(»t )M'(a) .

However, the description given is not “local” in the fol-
lowing sense: Let ¢ lie in an interval
[t, +4/2, 1,,, — A /2] forsomej < n. Thenf{x,v0, )isap-
preciable for values of x at which w interacts with center
¢;,, of C. For such x, jK < 8(x) < (j + 1)K and ¢;/(x) is sup-
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posed to describe M in transition from ¢, to ¢/7,. . For
any such x, e.g., x = vyt + xo, Eq. (4) shows that #(x)
evolves from a state which is localized at ¢, When

[t, — 4 /2<t <t + 4 /2] to an “unlocalized state” [that is
d %, (5 (x))#0 for many &' for values of x for which f(x,v,,¢ ) is
appreciable]. As ¢ increases and w completes interaction
with¢; , , 8 (x)=(j + 1)K for all x for which f{x,v,,? } is ap-
preciable, and the unlocalized state ¢(x) relocalizes at
oy 1) 88 all other components in the sum of Eq. (4]
disappear.

This is unsatisfactory because it means that if one were
to interfere with the model process at such times by measure-
ment to determine what state the M system was in, one might
find that it was in some state ¥ which the undisturbed mod-
el process will not reach until many steps in the future, or if
J> 1, one might find on measurement that M is in a state in
which it has already been several steps earlier.

One would like the model to be such that interference
by measurement does not destroy the model representation
to this extent. It would be more satisfactory if measurements
made during times in which w was interacting with ¢; , ,
gave the result that M was either in state ¢7,, or in state
¥7)+ 1, and no other.

More generally, for all times ¢ for which w is interacting
with ¢;, | with 0< j < n, one requires that for all x for which
f{x,v,t ) is appreciable,?

l/’fzu(x) =6 (x))'l’%‘(a) +A(6 (x))'/’;'{ﬁ Ya) (5)

for each a in 4 for which T7{a)# T’ * '(a). Here ¥{8{x)) and
A (8{x)) are a-independent coefficients such that
YUK)=A((j+ DK) =1, 1{(j + 1)K) =4 (jK) =0, and
NO(x))#07# 4 (8(x)) if JK < 6(x) <(j + 1)K. Also

I8 + 14 (8(x))]> = 1 is required as a normalization
condition.

The problem with a model which satisfies a locality
condition such as that given by Eq. (5)is that any operator V,
with jK <€ <{j + 1)K for0<j<n — 1, which foreachain 4
satisfies

Vi = vei, + A Y,

is not in general unitary. [To see this note that
(30, V IV Y #0 in general). Thus it would appear that
one cannot both keep the locality requirement and construct
a Hamiltonian model of the w 4 C + M interaction as out-
lined above.
It turns out, though, on closer inspection that if T is
such that T2 = 1 then V., is unitary provided that
A *(€)yle) + A (€)y*(€) = 0. This result can be obtained from
Eq. (4) by noting that, in general, only those coefficients
d ;. (8(x)) are different from O for which a’ lies in the T-invar-
iant irreducible subset of 4 which contains a. (This is dis-
cussed in more detail in Sec. V and the Appendix.) 7% = 1 if
and only if all such subsets contain at most two elements.
This result suggests that one might satisfy the locality
requirement by adding auxiliary systems to M and thereby
extending 4 to 4 X X, where X is the set of states of the auxil-
iary systems. Then if necessary, one expands 7'by construct-
ing one or more types of processes T, on 4 X X such that for
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each i, T2 =1, T, is a bijection, and the action of

T, AT, _ (~(T,( — )-)) on selected elements of 4 X X corre-
sponds to the action of T on 4. It will be seen in Sec. IV, that
this is indeed possible for m = 3 and furthermore that in
such an extension, T can be many-one and into.

lil. USE OF SCATTERINGS TO TURN ON MODEL
INTERACTIONS

A. One scattering

To investigate scattering from one fixed center C is re-
placed by one scattering center ¢ fixed at position x,.. The
w + ¢ + M system Hamiltonian is given by

H=Hy+ Vix —x,H', (6)

where H,, is the free Hamiltonian. V (x — x_) is the interac-
tion potential between w and ¢ with w at position x and is
suchthat f= _ V{(y)dy~f"_,¥V{y)dyis finite. r is the range
of V.

A restriction on the model systems M considered in this
paper is now imposed. This is that they be such that all inter-
actions between the component particles of M are included
in H'. Such models include noninteracting lattice systems of
particles with or without spin. As a result, the free Hamilton-
ian H, includes a term for the kinetic energy of w only or

Hyx)= — #3/2mix?, (7)

where m is the mass of w.

The initial state ¢{0) of the w + M system at time ¢t =0
is taken to be a wave packet for w which is far removed from
¢, and an initial state ¢ for M. That is

1//()(,0) = ¢w(x’0)'/’2’ ’ (8)
where
$(x.0) = f d ¢ (k — koje =~ o)

and ¢ (k — k,}isanormalized momentum space wave packet
centered about k. ¥*{x,0} is a coordinate space wave packet
centered at x = x, at time 0.

Let 4x(0) be the x space spread of ¢*(x,0) at time O.
Then one requires that at time 0 essentially no scattering has
occurred or that the wave packet be essentially outside the
range of interaction with ¢ at x,. This gives the requirement
on x, that

Xpx, —r — A4x(0)/2. (10)
At any time ¢, the overall state ¥(x,t ) is given by’

Y ) = j dke™ "k — ko, (e <. (1)

Here E, = #°k 2/2m is the total energy of the system and
¥ _ . (x) is the scattering solution of the Schrodinger Hamil-
tonian of Eq. (6) with incoming plane waves exp{ikx) for w
and M in state ¥’. From now on we set x, = 0.

¥, . (x)is given by the Lippman-Schwinger equation as

¢+ k(‘x)

= ™Y | Om/#P) fj G xXVWXNHY,  (x)dx,
(12)
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where the one-dimensional outgoing Green’s function
G, (x,x') is given by

G, i (xx') = (i/2k e* I * =1 (13)

To obtain the eikonal approximation solution, one de-
fines 6 . (x) by

6, x)=e" ™Y, (x). (14)
This gives, from Eqs. (12} and (13)
Y 4 (mi/#k)

X f e,-k;x~x’| ~—ik(x-—x’)V(xl)H18+k(x;) dx’ , (15)

9+kx)

which can also be written as
= M + (mi/#k) J

+ (mt/ﬁzk)f e =X (XNH'O  (x)dx .

VIH'O, () dx' (16)

The eikonal approximation is obtained by neglecting
the far right-hand term of Eq. (16). This gives

6, (X}t + (mi/#k ) J VX)H', (x)dx'. (17)

This approximation is valid if ¥ (x')H '€ __, (x") changes little
over a distance 1/k, which is the case if
[Vix' + 1/k) — V(x')|E ; '«1 for all x'.° We thus require
that &, be large and the wave packet function ¢ (k — k) be
fairly narrow (4k /ky<1) so that the eikonal approximation,
which is a high-energy approximation, hold for all values of
k which have appreciable components in Eq. (11).

The requirement is now imposed that H ' be bounded.
Under this requirement, Eq. (17) is immediately solved to
give

6+,((x)=exp[—;'nz—]i‘jloc V(x’)dx'H']z//f,”, (18)
which gives

¢+k(x)=exp[ikx+(mi/ﬁ2k)Jx V(x) dx'H']wf,". (19)

Since ¥ (x) is negligible for values of x outside the range
interval [ — r,7], one can use the fact that f* _ V{y)dy
~f> _V(y)dyfor all x > r to obtain

¢ . k(x) —_ eikxeiDH '’k wg/ , (20)
where

= (m/#) r Vix')dx' . (21)

From Egs. (11) and (19), one sees that for a given time
t,ix,t ) is appreciable for those values of x in the interval of
width 4x(z ) centered at x, + vyt. Ax(t ) is the coordinate
space spread of the w system wave packet at the time # and
v, = fiko/m is the group velocity of the packet. The small
effect of the scattering phase shift on the determination of
the value of x at which the phase of ¥(x, ) is stationary has
been neglected.

Thus for all time ¢ such that

Xo + vt — Ax(t)/2>r, (22)

498 J. Math. Phys., Vol.22, No. 3, March 1981

#ix,t ) is appreciable for only those values of x for which Eq.
(20) is valid. For such ¢, one can use Eq. (20) in Eq. (11)
instead of Eq. (19). Furthermore, it is easy to arrange the
model parameters so that Ax(# )=~Ax(0) for all ¢ during
which w is interacting with c. Thus, one can replace Ax|(¢ ) by
4x(0} in Eq. (22).

One now recalls that the desired goal of the above mod-
el construction is that the completed w-c scattering should
correspond to one step of the process. To this end, the range
and strength of the potential ¥ and value of £, must be such
that

D/k,=K, (23)

where K is the constant appearing in Eq. (2). Then using Egs.
(1), (2), and (20 one has

'/’ -+ k(, ¢'M(a) ’ (24)
which is the des1red result.

However, account must be taken of the fact that ¢{x, )
is a wave packet with momentum dispersion 4% and there
are appreciable contributions to ¥{x,t ) for values of & in
(ko — 4k, ky + Ak ), where Ak>1/Ax(0). (¢ is such that
Ax(t )~A4x{0).) In order to minimize these components 4%
must be quite small.

To get an estimate of the magnitude of these unwanted
components one notes that for k close to k, with§ =k, — &

e ~e (1 + iSKH'/k)  (25)

for sufficiently small &, that is for & such that K8||H '||/k<]1.
One can thus get an upper estimate of the magnitude of these
components by replacing ¢, , (x) in Eq. (11) by
U, i (x) =™ e®H (1 + idkKH '/ko )y

= ™1 + IAKKH '/koWY o - (26)
Suchareplacementis validif 4kK ||H '||/k,«1. Thisinequal-
ity is easily satisfied since the eikonal approximation re-
quires that Ak /k,<1and H ' canbe chosensothat K ||H || is
of order unity. From Eq. (26) one sees that the upper estimate

of the magnitude of the unwanted components satisfies
(KAk /k )| H 'Y, || €]|¥7, || whichis the desired condition.

iD/k)H" ezKH eléKH K

B. Successive scatterings

The results obtained so far describe a model for one step
of a process. The model can be extended easily to correspond
to n steps of a process. To this end, one first replaces the fixed
scattering center ¢ by a one-dimensional lattice C of n fixed
scattering centers with the jth center fixed at position x;.
Each center can be regarded as a spinless system fixed at x;.
Initially, the system w is localized well to the left of the left-
most center at x,. w moves along the C lattice interacting
with the scattering centers until it passes out of range of the
rightmost center at x,, . The spacing of the centersis arranged
so that w interacts with at most one center at a time.

The overall Hamiltonian for the w + C + M system is
given by

H=H,+ Y Vix—x;H’, (27)

i=1
where ¥ (x — x;) is the interaction potential between w and
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the jth system of C. As before, the overall system states at
times O and ¢ are given by Eqgs. (8) and (11).

¥, «Ix) is given by Eq. (12) with appropriate changes
made in the interaction potential:

b l) = PN+ Rm/R) f 6L )

n
X E VX' —x)H'Y  {x')dx', (28)
J=1
with G, . (x,x') given by Eq. (13},

To obtain a solution of Eq. (28) as a sequence of eikonal
scatterings from the successive centers of C, one must re-
quire that at no time is w interacting with more than one
center. This is conveniently satisfied by letting the adjacent
systems of C have a constant spacingd = x; ,, — x; and set-
ting x, = d and requiring that

d>Ax(0) + 27 {29)

and that there be essentially no wave packet spreading dur-
ing the time the w-C scatterings are occurring. This means
that there be no spreading for all times 7<¢,, where

t, = (—~xy+ nd + 4x(0)/2 4 r)/v, . (30)
Note that with x;, =d, x =jd for each j<n.

Under this requirement, one can solve Eq. {28) using the
eikonal approximation to give

A 1N exp[ikx + (im/#k) Jq Vix' —nix}d)dx'H'’

XexpliDH '/k )™= — 'y . {31)
n{x) is defined as follows: At position x, w is either interact-
ing with some system of C or it is not. If it is, n(xj = place
label, /, of the system with which it is interacting. If w is not
interacting, then n(x} = place label, /, of the system with
which w has just finished interacting. That is,
l'if x >ld—r and x<(I 4+ 1)d —r and l<n}
nix)= .
n if x>nd —r
(32)
Equation {31} can be obtained as the iterative solution of
Eq. (28) under the restriction of Eq. (29) and use of argu-
ments similar to those used in Eqgs. {(16)~(19). [The iteration
converges since /' is bounded.] On an intuitive basis, Eq.
(31) can be understood as follows: for any position x of w,
such that d + r<x < 2d — r, the scattering from the first cen-
ter can be regarded as complete. For any such x, ¢ ,(x} is
given by Eq. (20). Now the scattering from the second center
at x, = 2d can be described by Eq. {12) with V' (x' — x,) re-
placing ¥ '(x’) and the outgoing solution, Eq. (20) replacing
explikx)y? as the incoming state in Eq. (12). Following the
solution of Eq. (12}, one gets for all x > x, + r, a solution
similar to Eq. (19} or

¢+ k(x) — eikxe(t‘m/ﬁzk)J V(xl) dx:H leiDH'/k '//ZI . (33)

This solution is good for all x for which
X + <X <x; — r. In particular, for x such that
Xy +r<x <xy ~r, ¥ , ,(x), given by Eq. (33) with the upper
limit of the x integral replaced by r (or «), describes the
completed scattering off the second system. By iteration of
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this description, one can arrive at the solution given by Eq.
(31).

If x is such that x — n(x)d > r, then the upper limit x of
the integral in Eq. (31) can be replaced by r (or «) to give

¢+k(x)zeikx(eiDH’/k )n(x)%l. (34)
This describes the situation when w at x has completed scat-
tering from the first n(x) C systems and has not yet interacted
with the n{x} + 1st C system. If x is such that x — nd > r,
then n(x} in Eq. (34 is replaced by n. For all such x, the
scattering is finished. This happens for all times ¢ > ¢,,, Eq.
(30), for which the overall state evolves with no further
interaction.

Finally, one can extend this quantum mechanical mod-
¢l to take into account the possibility that the interaction
Hamiltonian A’ for M is stage-dependent, i.e.,, H' = H |.
Such a model corresponds to a discrete process on 4 for
which the bijection 7;:4—4, which gives the process trans-
formation from stage j to stagej + 1, is j-dependent. Such
models were also used in I, in which quantum mechanical
models of Turing machines were constructed.

In this case, one replaces £7_ | ¥ (x" — x;)H ' in Eqgs. (27)
by 27_, V(x' — x;}H . The solution is carried out in the
same manner as that which gives Eq. (31}, with the exception
that the ordering of the H | must be preserved since H [ and
H |} with | #j may not commute. Taking this into account,
one obtains the solution as

¥, (x)~explikx + (im/#Pk)

XJj 3 Vix' —nix)d) dx’H'n(x)]

X expliDH ', _ /) expliDH 'y _ /K )
expliDH ", /k WM, (35)

which replaces Eq. (31) as the eikonal approximation solu-

tion. Note that even though the process operator T, and the
corresponding operator # ; are stage-dependent, the Hamil-
tonian for the extended system M + C 4 w obtained by re-
placing H' in Eq. (27) by H /, is stage- and time-independent.

C. Limitations on input parameters

It is worthwhile to take a closer look at the limitations
on the input parameters which are necessary for Eqgs. (31},
(33}, and (34) to be good approximations. One requirement
was that the w-particle wave packet not spread appreciably
during the scatterings from the n centers of C. If one assumes
that w is free and is described by a minimum wave packet at
time O (the former is satisfied in that the eikonal approxima-
tion requires that the potential be small in comparison to the
initial energy and the latter means that the time derivative of
(x*) — (x)* = 0 at time 0), then the spread at time ¢ is relat-
ed to the spread at time 0 by'°

Ax(t) = [(Ax{0) + (Adkt /m)*]'/2 . (36)
The requirement Ax(f j=Ax(0} gives, on expanding the
square root and rearranging, ¢ <(v/ 2)mdx(0)/(RAk ).

This must hold for all times during which scattering
occurs up to ¢,. Thus by Eq. (30), one has with v, = #ik,/m
and Eq. (29), ~ x, + (2n + 1)(dx(0)/2 + r)<(v/2)k4x(0)/Ak

Paul Benioff 499



or
n<lJ2k,ax(0) + x,4k 1/(4x(0) + 2n1ak , (37)

where x, is the position of the center of the w wave packet at
time 0.

Thus, there is an upper limit on the number of model
steps which can be carried out before the w packet spreads
enough to give interference between the scattering from the
different centers. This requirement on 7 can be relaxed by
letting the spacing between the jth and j + [th centers of C
increase asj increases. That is one that simply requires
X, —X;»A4x(t) + 2rinstead of x; , ; — x, = d and re-
laxes the requirement that Ax(r )~ Ax(0) . This has the effect
that the time it takes the jth model step to be completed
increases as j increases.

Another limitation on n comes from the momentum
space spread in the w wave packet and resulting unwanted
components of the scattering solution ¢ ,  (x). To obtain this
limit, onereplaces§ /kinEq. 25)by 4k /k,asin Eq. (26), and
then uses the result in Eq. (34) to get for n(x} = n,

¥, X))~ ™ (1 + AKKH '/ko)e™ 1y . (38)

The leading unwanted term in the expansion of Eq. {38)
is iinAkKH '/k,)lexp[iKH '])"¢*. In order that this be small
in comparison to [exp(iKH )]"¢ it is sufficient to require
that

ndkK | H'| /ko<1, (39)

which gives another upper limit on 7.

It is of interest to replace the model parameters with
actual values which satisfy the various limitations. To this
end, let w be an incident 0.25 Mev proton which gives
ky~~10"2 cm ™. Let 4k = 10° cm ' which gives
Ax(0)>107° cm. Let K = 1 and r = 107> cm. Define the
average strength ¥, of the interaction potential by
2rV, = §*_,V(y) dy. One then has from Egs. (21} and (23),
that ¥,/E,~10""«1. Thus, the conditions for the validity
of the eikonal approximation can be satisfied. Set d = 10~*
cm, which satisfies Eq. (29), and » = 10°. Then Eq. (37)
(Ixo] < 1) is satisfied and Eq. (39) is satisfied if one can arrange
the model so ||H || ~ 1. The total length of the C lattice is
10°% 107 * cm = 10 m. A 0.25 MeV proton travels this dis-
tance in about 10~ ¢ sec which means that each model step is
carried out in about 10~ "2 sec. These calculations refer to the
parameters of the w + C scattering only and take essentially
no account of the possible limitations of the /' interaction in
the M system.

IV. MODEL EXTENSION

A. The extended system

As was noted before, in order to include models of pro-
cesses for which the transfer function T'is not one-one onto 4
and to satisfy the locality requirement, one must extend the
system. What is done here is to add auxiliary systems and
expand the interaction so that the added systems function
essentially as a recording system to record the successive
steps of the T process. In more detail, let R be a tape with an
infinite number of cells labelled by integers in Z, and which is
such that all cells are initially blank. Let 4, be a recording
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head which is initially at R lattice position O and let the
process system M be in some state g in 4. The original pro-
cess step corresponds to three steps in the expanded system
as follows: first, record into the R cell scanned by %5, the
process-system state; next read the R cell scanned, and carry
out on the process state, the 7' change operation correspond-
ing to what was read in the scanned R cell. Thus, if @ is read
in the R cell scanned by A, carry out the transformation ¥,
on the process-system state. },: 4-»4 is a map such that
V. (a) = T{a), V(T {a)} = a, and V,{a'} = a’ otherwise. ¥,
exchanges the process-system states ¢ and 7 {g) and leaves
others alone. If the R cell scanned by A, is blank, then V, is
the identity map on 4 and nothing happens. Finally, shift A,
one cell to the right,

If the process system is initially in state ¢ then repetition
of the above steps in the order given generates the record a,
T {a)-T "{a)-in successive cells of R as 1, movesdown the R
tape and as the process system simultaneously evolves step-
wise through successive states a—1 (@) - —T "[a@)}— - .

The added systems R and hy can be modelled as fol-
lows: R is represented by a Z lattice of systems 7; for eachjin
Z. To each 7, is associated a Hilbert space /#°, which is
spanned by an orthonormal basis set {¢|aed Ju{¢z}. &7 is
the state of 7, corresponding to the symbol a being recorded
in the jth cell of R and ¢y is the state corresponding to a
blank in the jth cell of R.

The Hilbert space 57, of the lattice is the space
spanned by all infinite product states ¢5 of the form

vy = Y, (40)
jeZ

where 7 is any function from Z to 4u{b | =4, such that
Y j)#b for at most a finite number of j values. Let (4 £),
denote the set of all such functions. #°; is the incomplete
tensor product subspace of the infinite tensor product space
® .z, and is separable."’

The recording head 4 is represented in the model by a
spinless system whose states lie in the Hilbert space
Ky, =1 %(Z ), the space of all square-summable functions on

Z. The extended model system Hilbert space " is separa-
ble, where

%'2%1‘4@%1{8%}1“' (41)

From now on M, R, and A, will denote either the extended
process systems or the corresponding systems in the quan-
tum mechanical model. It will be clear from context which is
being referred to. The overallw + C + M + R + hp system
Hilbert space is given by

H=3,0K",

where %, = L *(R,dx). Cis represented as a lattice of fixed
scattering centers, or systems whose state does not change,
so no Hilbert space is needed for C.

Figure 2 represents the overall system. The w-wave
packet and the positions of the C scattering centers are
shown. The lattice position of M is arbitrary.

In order to use this model with the results of Sec. III,
one requires that Eq. {7) represent the free Hamiltonian of
the w + C + M + R + hy extended system. This means
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FIG. 2. A schematic representation of the extended model. w and the cen-
ters of C are the same as in Fig. 1. M is denoted by the elongated rectangle,
the lattice systems 7, of R by smaller vertical rectangles and A, by a larger
circle. An explicit representation of M and each r; can be given by letting M
and r; be Nlattices of spin § systems where M extends to the rightand the r;’s
extend down. The w wave packet lies in between and out of range of ¢, and
[

that all systems in R must be noninteracting and that all
states ¥ of M must have the same energy. Also, since the
Hilbert spaces %), and 77, for eachjin Z are separable, one
cannot represent M and each r; by a spin system as this re-
quires that %#7,, and 7, be finite-dimensional.

One way to satisfy these requirements explicitly is to let
the model systems M and r; be infinite ¥ lattices of noninter-
acting spin 1/2 particles. Let the Hilbert spaces 77, and
J7, be spanned by all infinite product states &, of the form

where ' and ¢'”? are respective spin up and spin down
eigenstates for the (j 4+ 1)th lattice particle and A is any
+, — sequence such that A (j) = + for at most a finite
number of j values. Let the set of such sequences be denoted
by [{ +,— }N}b'

A bijection (or one-one coding) from 4 onto
{{ +,~}"), can be constructed as follows: Let a—/(a) be
any bijection from A4 onto . These exist since A is countably
infinite. For each n in N let @ (n) be the inverted binary repre-
sentation of n. That is, 0—0, 1—1, 201, 3—11, 4001,
5—101,and soon. Let 4+ correspondto 1,and — to0; then
each £ (n)becomesafinite 4+, — sequence. Extend & (n)toan
infinite sequence u(n) in ({ 4+, — }"), by adding an infinite
sequenceof — ’sonly totheright-hand end of & (n). Thus, for
example, 4 becomes — — + — — — ... The desired bi-
Jection is then a—pu{l {a)).

From this one sets

v =Py
for each a in 4. Since a—u(! (a)) is a bijection, the
{ D1y a€Ad | span F#7,.

¥y and 77, are constructed in a similar way where y
denotes an element of 4,. The only difference is that one
requires a bijection from 4, onto ({ +, — }*),. This is con-
veniently given by a—u(/ (a) + 1) and b—p(0). The other de-
tails are the same. Note that for this example R is a Z lattice
of noninteracting systems each of which is an & lattice of
spin § systems. Thus %, = (® .z, ), is an incomplete
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tensor product of the #°, and each H, =(® ey yj)p i8aN

incomplete tensor product of the two-dimensional space
H\ e

B. The elementary operators

One must now define the necessary elementary opera-
tors which are used to build the interactions. For eachain 4,
define the projection operator P, on 57, by
P M = ¢85, .. Also define the operator U, on 7 by

=Yy, ifd=a
UyY =y¢¥ ifd=Tlayg. (42)
=yM  otherwise

Also, define U, = 1, where b denotes the blank. U, ex-
changes ¥ and ¥/}, and leaves the other basis functions
alone. Note that U, is well defined even if T'is many-one and
into. Also U, is both unitary and self-adjoint.

For each real number & define U’ by

U =ea, 43)

where H,, is any self-adjoint operator which satisfies
expliKH,} = U,. One clearly has for each @ for which
a#T(a)

Usys = alOWl + B oWra » (44)

where (8 ) and B (5 ) are possibly a-dependent coefficients
such that 2(0) = B(K) =1, alK ) =B (0) =0, |a(5)|*-
+|B(6)]*=landa*(8)B(8) + a(b )8 *(6) = 0.Onealso has
Usyi. = aldWy,, + B )Y, For all a’ such that

U,y =y [including those @’ for which @’ = a = T{a})],
one has Uy = ¢(8 )¢, where |¥(6)] = 1 and
NO)=¢K)= 1

There are many possible choices for H, which satisfy

the above conditions. As regards the model aspects of con-
cern here, it does not matter which choice is made other than
the requirement that all the H, have an g-independent
bound. To make the presentation simpler, it will also be re-
quired that H, issuch thata(6 )and B (§ ) areindependent ofa
and {8 ) = 1 for all §. A choice which satisfies this require-
ment is

1
H,= Y (#/K)P., (45)
=0

= (V2 + (— 1o, if
a#T(a)and H, = 0,ifa = T (a). With this choice of H_, one
has {8 ) = {1 + explird/K }}/2 and

B(6) = (1 — explind/K ))/2.

Another possible advantage of this choice of H,, is, in
brief, as follows If one considers the density operator state
p.8) = USyYM YU, Eq. (45) gives the result that there
are no values of § such that 0 <8 < K for which
Pal8) = pr =07 )W, Thus as the model system
evolves under one w-c scattering in C, there is no cycling of
p.(0) between p, and p ., and back as § increases from 0 to
K. This lack of cycling is consistent with the locality require-
ment discussed in Sec. II because it means that o, {8 ) arrives
at pr, for the first time only at the completion of one w-c
scattering. Other choices of H,, e.g., H, = (2nw/K )P°

where P, = ¢/ )¢/, and ¢/,
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+ ((2m + )m/K )P with n#m, give such cycling.
Foreacha inA and k in Z define the projection operator
k on H'g by P, = 9*6 4, . where for each function y
in(d7),, yFis glven by Eq. (40). Also define the operator U,
by

Uty =¥y, (46)
where v’ issuch that ¢(j} = y'(j)forallj# kand y'(k ) = a[b ]
if y(k) = bla}, and y = y' if y(k )5 a,b. U, acting on ¢
changes at most the k th factor of #/f and that only ifyik)=a
or b. In this case, it interchanges ¢/* and ¥3*. U, is both
unitary and self-adjoint.

For each real number &, define U %, by

U, = e, (47)

where H,, is any self-adjoint operator which satisfies
exp{iKH,, | = U,,. Then one has for each ¥ for which
vik)=a or b,

ULty =8 W) + Bd Wy (48)

where (5 ) and B (8 ) are possibly y-dependent coefficients
which satisfy the conditions given for Eq. (44). Also let

U ¥ = M if yik ) #a,b,

As was the case for U,, there are many possible choices
for H,, . However, one does require that ||H . || < m for some
m for all a and k. A possible choise for H,,, which satisfies
the conditions already discussed for H, and is nonzero only

in the component space 7%#°, of %", is defined by

H, = S (nl/K) P, (@9)

=0

where Pl = ) (¥ and ¥l = (V2) 785" + (= D45) -
One also needs the projection operator P § defined on
#°, for each k in Z by

PR = Z’P R (50)
yeld 2,
where P¥ = %) (%, Eq. (40)), and the prime on the sum

means that it is restricted to those ¥ in (4 7), for which

vk )#b and y(j) = b for all j > k. P ¥ projects out all record
expression states for which the last {in the direction of in-
creasing Z ) nonblank record cell is at position .

In a similar fashion, one defines on 5%, , the projection
operator P, = ¥i*) (¥}, where ¢}~ is the state in / (Z ) which
corresponds to i, being localized at lattice position k. Also,
let H, and U*_, be such that

= =y, (51)
where /' =k + l[k] if/ = k [k + 1] and / =/’ otherwise.
Uk , exchanges = and ;" ., and leaves all other states in
the basis alone. U ‘; , isboth unitary and self-adjoint. Let H,
begivenby H, = 3!_, (7l /K)P., where P}, = ) (¢} and
Y = (V2T (= D).

As was done for U,, define U*?| by

Uk, =e (52)
for each real number 8. This gives

U*S U = aldWi* + BIOWL", 1 (53)
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where (6 ) andB {5) satisfy the conditions given for Eq. (44).
Clearly U*? 4} = ¢}*if] #k,k + 1. Alsoa(s)andf3 (& )are
mdependent of k.

C. The step interaction operators

The operators defined so far can be used to define over-
all record, process, and shift step operators as follows: De-
fine the recording step operator U, on #” by

Uy=YPoU,eP, (54)
acA
keZ

where U,, is defined by Eq. (46). U, corresponds in the mod-
el to recording the state of the process into that cell of R
which is scanned by A, provided that the cell scanned is
initially blank. U, acting on a state of the form
M @ YR @ ", where y{k ) = b converts it to ¥ ® & @ ¥;",
where y'(k ) = a and {j) = ¢'(j) for all j#£k. U, is clearly
unitary since U, isunitaryand £ P, =1 =2, P,. Also U,
is self-adjoint since U2, = 1.

Define the process-step operator U, by

U= YU
yeA
keZ
where U, is defined by Eq. (46). U, corresponds in the mod-
el to recording the state of the process into that cell of R
which is scanned by 4, provided that the cell scanned is
initially blank. U, acting on a state of the form
P¥ ® X ® ", where y(k ) = b converts it to ¥ ® Y& ® ¥,
where y'(k ) = a and ¥{j) = y'(j) for all j#k. U, is clearly
unitary since U, isunitaryand L, P, = 1 =X, P,. Also U,
is self-adjoint since U2, = 1.
The shift operator U, is defined on &~ from Egs. {50)
and (51) by
U= Y lePge U, . (56)

keZ

P,eP,, (55)

U, corresponds to shifting the head to a fresh record cell
provided it is scanning the last filled record cell. U, acting on
a state of the form ¢y @ Y ® ¥, where ¥(k )% b and for all
j>k,7(j) = beonvertsitinto ¥ & Y& ® ;" . Since U*, , is
unitary and self-adjoint and 2, P = 1, U, is both unitary
and self-adjoint.

Using the definitions of H,,, H,, and H, already giv-
en, one can define three interaction operators H,, H,, and H,
by

H1= ZPa®Hak®Pk’ (57)
acA
keZ
H2: ZHagPak®Pk’ (58)
aed
keZ
and
H,= Z 1ePReH, {59)
keZ
Using these operators, one can show that forj =1, 2, 3,
U, =e™ (60)
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holds with U, given by Eqs. {54)~(56). This can be seen by
substitution into the exponential, expanding in a power se-
ries (which is valid since there exist bounds on H,,,, H,,, and
H, which are independent of the indices} and noting that the
terms of Egs. (57)-(59) are pairwise orthogonal.

D. The final model

The results obtained here can be combined directly with
those of Sec. 111 as follows: From the viewpoint of Sec. ITA
and III, the process system must be regarded as
M + R + hy with an overall state space 4 X{4 }}, X Z. One
has three transition functions T, T,, and T}, for the record,
process, and shift steps, which are defined so they satisfy

U0 @ ¥5 @ U) = ek (61)
for eachj = 1, 2, 3 and each (a7k) in 4 X(4 %), X Z. In par-
ticular, T'(ayk ) = (@v'k ) and 7 oot = ¥¥ 0 Y% @ 9",
whereforallj#k,y(j) = ¥'(jlandy'(k ) = a[b ]ifylk ) = b [a],
and y'(k) = ylk ) otherwise. For T, if ¥(k ) = b, then-
T,layk ) = (ayk Jforalla. Ifylk ) = a,thenT,(a'yk ) = (a,yk ),
where a, = T (a)[a] if o' = a[T (a)], and &’ = a, otherwise.-
Tilayk) = (ayk ')wherek ' = k + 1[k — 1]ifk [k — 1] = po-
sition of last nonblank symbolinyand k' = k otherwise. Itis
clear from these definitions and the fact that U, is both uni-
tary and self-adjoint that 77 = 1 and T; is a bijection on
AX(AL), XZ forj=1,2,3.

The final model is supposed to evolve under a Hamil-
tonian in such a way that each step of the original process T
on M becomes three successive steps, record, process, then
shift, in the extended model. Each step in the extended mod-
el takes place by turning on the appropriate interaction oper-
ator by means of w interacting with a scattering center in the
control lattice C.

To this end, one defines for each process 7 on M an
extended model Hamiltonian by Eq. (27)

3n
Hi, =Hy+ Y Vix—x)H"(j), {62)
i=
where H,, is given by Eq. (7) and H () is defined from Egs.
(57)-(59) by

H, 1 mod 3
H'(j)=H,t ifj= 2 mod 3. (63)
H, 0 mod 3

In these expressions, the dependence of the Hamiltonian on
the process T is made explicit. Also for each j,H 7| ) is
bounded as is required for use in the results of Sec. IIL

The final result of this work is obtained by combining
the results of the previous sections. That is, to each discrete
process T on M with a countable set 4 of states and for each
n, one can associate an extended quantum mechanical model
w4+ C+ M+ R + hy such that the Schrodinger evolution
of the model describes the process in the following sense:

For any time T and w-position x, the overall model state
is given by Eq. (11) as

Yot ) = f dk e~ (k — ko) , [x)e— (1)
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and ¢ , 4 is given by Eq. (35) as . (x] = 4" "(x),
where

¢‘,:’Rh"(x)zexp[(iM/ﬁ2k ) Ji Vix' — n(x)d)dX’H T(n(x))]

X exp[ ’—k’l HT{n(x) — 1)]---exp[£DH T(1)/k 1@ M5,
(35)

where n(x) [Eq. (32)] is the place label of the scattering center
in C which is either interacting with w at x or, if none is
interacting, has just finished interacting with w. D is given by
Eq. (21) and H 7(j) by Eq. (63). This result also requires that
the separation d between successive scattering centers satis-
fies Eq. (29), or d»Ax + 2r, where Ax is the w-wave packet
spread at time O and r is the range of the interaction
potential.

Let @ "% = yM @ YR @ y/*, where y( ) = b for all j>1.
Thenif ¢ (k — k) is sufficiently narrow, ¢2’Rh"(x) is essential-
ly independent of k over the important values in Eq. (11). As
a result, one has (Eq. 3)

Xy, (552 ) 5 {64

Pt )~

where

M) = exp[(im/ﬁzko) f ) Vix' —nix)d)dx'H T(n(x))]
o (65)
X exp[iKH " (n(x) — 1)]--expliKH "(1)](¢} ® ¥% ® ¢;")

and

F . (xt)= f dk e~ E G (k — ket (66)

For each time ¢, the only values of x that contribute apprecia-
bly to Eq. (64) are those in the interval of width Ax centered
on x, + vgt. If t is such that the interval end points also satis-
fy pd + r<xq + vyt — 4x/2 and

Xo + Vot + Ax/2 <(p + 1)d — r for some p < 3n, then the w-
wave packet has finished interacting with the pth center and
is not yet interacting with the p + 1th center, (Fig. 2). This
shows that for all times ¢ in the interval

4 =[d —{4x + 2r)}/v, centered on [{ p + L)d — x,]/v,
1//2:“"(1:) is independent of x for the relevant values of x and
can be replaced by

t/IﬁRhR( P) - eiKHT(p) o'FH T(p— n,..gikH 7(1)(1/,21 ® '/};x ® ¢7R) ,
(67)
where n(x} = p.
This state describes the completion of p model steps and
can also be written as

Y p) = U, e YR @Y . . (68)

Here e, £, and s are the largest integers in (p + 1)/3,

(p + 2)/3, and { p/3) respectively and ¥/ is related to ¥ by
v/ (J) =) forj<landj>!+ fand y/(j) = T'~(a) for
1< j<I + f. This corresponds to the situation in which e steps
of the process T have been carried out on M initially in state
a, the history of f'steps is recorded on R which was initially in
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state ¥, and A, was shifted from/to/ + s. The length of time
4 for which the system remains in this state can be set by
adjusting the model parameters, in particular
A=d—(4x+2r)

For all times ¢ > (3nd — x, + 4x + 7 )/vo,z//kMRh"(x) can
be replaced in Eq. (11) by ¢MRh”(3n). This corresponds to the
completion of 37 model steps when w has moved out of range
of all the 37 scattering centers in C and shows that no further
changes occurin M + R + hy.

For the times described above when the w wave packet
is essentially entirely between ¢, and ¢, , , and not interact-
ing with either, one has for the overall state

Yot )™ (p)F, (2t ) (69)

For those times for which Eq. (69) is valid, the w system state
is uncorrelated with the M + R + Ay system state.

For those times 7 for which at least some of the w wave
packet is within interaction range of some center ¢, of C, the
overall state is obtained from Egs. (64)~(67) as

" p — VF, . (x,t) if x<pd —r

dxt) e eBRH Ty MR (VP (30 7o)
, if pd —r<x<pd+r '

T pIF, . (x,t) if x>pd + 1

where & (x) = (M /#ky)§*_  V(x' — pd)dx’. The first part
refers to those components of the w wave packet which have
completed interaction with ¢, _, and have not yet begun
interaction with ¢,. The second and third parts describes
those components which are interacting with and have com-
pleted interacting with ¢, respectively.

It is of interest to examine
expliS(x)H T p)¥i""* p — 1) further. From the definitions
of H,, H,, and H,, and Egs. (57)—(59) one can easily see that

\
=Y P oUl'eP, ifp=1mod3
aecA
keZ
edx’n = Y UeP, P, if p=2mod3} (71)
yed,,
keZ
= Y 1eP{oUY ifp=0mod3
keZ
where U™, U%, and U} are given by Egs. (43), (47), and
(52).
Let a, 7, and / be appropriate initial states. That is
y(j) = b forallj>/I. Leta’, ¥, I’ satisfy Eq. (68) with
a=T%),y =y and!'=1+s.
Then Eq. (71) in combination with Egs. (44), (48), and
(53) give

:511' (¢M®¢R ®¢?‘4th)

= u/f:.'@ (@8R + B(S)YR ) ey if p=1mod3

= (a(5)¢y+ﬁ(5)¢"ﬁa))®¢ﬂ @y if p=2mod3 ¢,
= zﬁf@dfﬁ@(a(ﬁ *+ BOx, ) if p=0mod 3 7
wherey"(j) = v'(j)ifj#] andy"(I') = a’and y'(!') = b. The

dependence of & on x has been suppressed to make the nota-
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tion easier. If @’ is such that @’ = T"(a’), then the right-hand
side of Eq. (72) for p = 2 mod 3 is replaced by ¢ ® ¢
@), a(8)and B (6 ) are independent of ', ', and /* and
satisfy the conditions given for Eq. (44). The independence
follows from the definitions of H,, H,,, and H, used in Egs.
{57)~(59).

As aresult, if g, ¢, and / are appropriate initial states,
one has the result

eiﬁ(xw"(p),/,tmhk( p—1)
.

= adx), (p = 1) +BS X)W " p) (73)
holds provided that either p3£2 mod 3, or p = 2 mod 3 and
@ #T(a'). Ifp=2mod 3anda’ = T (a’), the right-hand side
of Eq. (73) is replaced by wf:’_“"(p -1

This is the desired result because it shows that the part
of the overall state (x,? ) which represents the partially com-
pleted pth step is a linear combination of the states represent-
ing the p — 1th step and the pth step. As the time ¢ [and
relevant values of § (x]] increases a(b(x)) decreases and
B (8(x)) increases. Thus zp,\o

MRhyg

VRh p — 1),

Thus, one sees that if a, ¥, / correspond to a possible
initial state, the requirement of locality, discussed in Sec. 11
is satisfied. Furthermore, it is satisfied for all three types of
interactions, record, T-process, and shift. As noted, this is
the main reason for defining all operations in terms of ele-
mentary operators which exchange just two basis vectors
and leave the others alone. This is also the reason why the
shift operator, Eq. (56), is defined in terms of P and U*, ,
instead of the bilateral shift operator on [ 3(Z ).

It should be noted that the actual quantum mechanical
model state of the subsystem M + R + hy is given by the
density operator pMRh"(t ), where
PR ) = Tr (p™"*(t ), where p™*"*“(¢ ) is the density
operator for the overall system and is pure. From the fact
that

*( p) grows in at the expense of

(e, "5 ) = Yt ) W)
one sees that when ¢ is such that the w system is not interact-
ing with a center ¢, of C, then the w subsystem state is uncor-
related with the M + R + Ay subsystem state, Eq. (69), and
pMRh“(t } is pure. However, when ¢ is such that the states of w
and of M + R + hy are correlated as in Eq. (70), then

pMR""(t ) is impure. This happens when at least some of the w
wave packet is interacting with a center ¢, of C.

It will be recalled that the validity of Egs. (64)~(66) upon
which the usefulness of the description given by Eq. (67)—(73)
depends, is conditioned on ¢ (k — k) being sufficiently nar-
row. How narrow ¢ (k — k,} must be can be seen from Eq.
{39), which gives the condition

3InAkK |H||/ko<1 .

Here Ak is the w wave packet momentum spread and || H 7 ||
— maximum of |[A 7], |1# 7|l |1 1]

This condition, which is necessary for the success of the
process model description constructed here, gives a relation-
ship among the parameters which must be satisfied. Thus,
for given values of k,, 4k, K, and ||H "], this relation gives
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an upper limit on the number of process steps which can be
correctly described before the model breaks down. Also, the
smaller 4% is, the larger 4x is, and by Eq. (29), the larger the
separation, d, of the C scatterifig centers must be.

V. THE DILATION THEOREM OF SZ. NAGY

It is of interest to relate the model extension described
in the previous section to the results embodied in the dilation
theorem of Sz. Nagy. This theorem’ says that any contrac-
tion W on a Hilbert space # can be dilated to a unitary
operator ¥ on a larger space %~ with % C %" such that
Wn"P = PV"P forn = 1,2..., where P.¥" = 7. Further-
more, there exists a minimal unitary dilation of & which is
unique up to isomorphism.

This theorem can be applied to the model process dis-
cussed here as follows: Let the process function T be boun-
dedly many-one. That is let 7 be such that there exists an m
such that foralla{a’'| T (¢’) = a} has <m elements. As before
T can be into 4. Partition 4 into a family of nonempty sub-
sets 4;,j = 1,2,...such that for each j, 4, is T invariant and
irreducible. That is, 74, C 4; and there is no nontrivial sub-
set B of A; such that TBC B and T'(4; — B)CA; — B. De-
pending on 7, the partition may contain one, several or den-
umerably many subsets of 4. The proof that such a partition
exists and is unique is given in the Appendix.

Consider the operator U, on 5%, as defined by Eq. (1).
For each 4 in the partition, let 7, be the subspace of #°),
spanned by {¢)'|aed;]. Then %, = ;7 . Itisclear that
for each 4; in the partition, #° 4, reduces Ur. Thus, one has
Ur = @,Ur, where Uy, is the restriction of Ur to 7 4, and
Uy, CI 4, Furthermore, each 74, 18 Uy, irreducible
since 4, is T irreducible. Since T is boundedly many-one,

J
Vg, =.0, Dy, D,Wy,., D, W" 'y, Wy,
—n—1 —n, —n+1 .., —1, 0,
and
V-re,=..0, (Whyy, Dy (WY, .., D,.W'y,
.—1, 0, 1, - n—1,

where the Z place labels of the corresponding terms are indi-
cated directly underneath the terms. Let .%° be the Hilbert

space spanned by all the vectors V76, wherejisin Z and ¢ is
in 7, and let ¥V |.Z be restriction of ¥'to .. Von .£ isa
minimal unitary dilation of W on #°,,.” From now on ¥ is

considered to be restricted to .%".

Examination of V7.6, (the subscript 7 is reinstated)
with ¢ = ¢}/ shows that ¥/ 7.6}/ contains in its components a
history of the first » model steps of the process 7. For our
purposes, the details are not important. Note, though, that if
a is such that the corresponding Us,, which acts on YY,isan
isometry, then D, W'y = O for all /. In this case, and only
in this case, the history can be recovered from W ¢* as T'is
1-1 on 4;. Also Wi = || Uy || ~ "¢y, is the model state
corresponding to the completion of # steps of the process T'if
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each U, is bounded.
One now defines the operator Wy, on &, by

Wy =o,U/|lUgll), (74)

where the sum is over all j in the partition: W is a contrac-
tion operator which satisfies W, = (||Uy |}~ '¥7,, where
j defines the subset 4, in the partition to which a belongs. In
what follows, the subscript 77 on W will be suppressed.
Following Sz. Nagy and Foias,” define the operators
D, and D,,. on %), by Dy, = (1 — WW)"? and
D,,. = (1 — WW'")"2. D, and D,,,. areself-adjoint contrac-
tions which satisfy WD, = D,.W, and
Dy W' =W'D,,.. Also | Dy gl = |4|]> — | W] for
each ¢in 57, Thisimplies D, ¢ = Oif / liesinan 7%, such
that Uy, is an isometry on %7, (or T’ |4; is one-one). Both
Dyy=0and D, .¢=0, 1f1/zef/A and Uy, is unitary on
# 4 (or T |A; is one-one onto).
Define .#” to be the Hilbert space & ,.,%",, of all func-
tions 6 from Z to 5, such that |6 ||* = 2,2 |6 (/)||> < .
# » can be embedded into .#”’ by the map ¢y—6,,, where
0,(j) =0if j#0 and 6,,(0} = ¢, where ¥ is any vector in
# 4. Let Vbe thedilation of Wonto .7’ defined by V6 =6/,

where 8'(j) =60(j+ 1)ifj# — 1,0 and
6'(—1)=D,8(0) — W6(1)and

6'(0) = W8 (0) + D 1,(6(1)). Then ¥ ~ '8 = 6,, where
6,(j)=J — 1ifj#0, 1 and 6,(0) = D, 8 — 1) + W'9(0)
and 6,(1) = — W8 (— 1)+ D,,.6(0). Since ¥ is unitary,
V-l=yp",

Von .¥"’ is a unitary dilation of Won #°,,. However, it
is not minimal. To construct a minimal unitary dilation con-
sider for each ¢ in 57, and each n = 0,1,2..., the vectors in

#" given by,’
> (75)

DW*'/” 0;
n, n+1, .., (76)

it starts in state ¢}’ and j is such that aed,.

As a consequence the results of Sec. I1I can be taken
over directly. Let H /- be any bounded self-adjoint operator
which satisfies

iKH'
&=V,

(77)
and define by Eq. (27), the Hamiltonian H, = H, + X!

=1
V(x — x;)H 7. Then following the development of SecJIII
one constructs from H; a quantum-mechanical Hamilton-
ian model of the minimal unitary dilation of H . on 5%°,,. The
model states all lie in the Hilbert space 5%, ® .¥° where .,
defined above replaces #” defined by Eq. (41). The Schré-
dinger evolution in the eikonal approximation is given by
Eqgs. (11) and (31), where in Eq. (31), ¢/ is replaced by &, .
Here and from now on, to conserve on notation Oy is re-
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placed by 6, .
If, following Eq. (65), one defines

e (x)_~_exp[(im/ #k,) J.x Vix'—n(x)d)dx'H ’T]

X [expliKH' 7)™~ 0, , {78)

then as discussed in Sec. IV, for all times ¢ in the interval 4

centered on ((m -+ })d — x,)/v,, ¥ (x) is independent of the

relevant values of x and can be replaced in Eq. (64) by
,ff(m) = (exp(iKH '+)"8,. From Egs. (75) and {77),

¥l (m) = V76, where, as noted above, this state contains

the history of the first m model steps.

If one compares the three step operators, U,, U,, and U,
on %y @ # 'y ® H,, asdescribed in Sec. IV to the exten-
sion and expansion of U; on 5, as described above, it is
clear that the former is not minimal, In particular, the dis-
cussion above suggests that the recording system R and the
space # ' are probably sufficient for construction of a uni-
tary extension of U; on #°,, and that A, and M as distinct
systems with #°, and 5, could be discarded.

However, the extension constructed in Sec. IV has two
advantages over the minimal one. One is that for the minimal
extension Eq. (77) gives a condition which any interaction
operator H ;. must satisfy. It is however, not clear how to
express H 7. in terms of simple operators acting on .&, or if
such an expression is possible at all. In the model described
in Sec. IV, the three types of step operators H,, H,, and H,,
all have explicit expressions in terms of simple operators act-
ing on 7~ [Eqs. (57)—(59)].

Another disadvantage of the minimal extension is that
for any H /4 which satisfies Eq. (77), the locality requirement
is not satisfied. That is, as discussed in Sec. I1, for 0 <& <K
one would like

VTG, =alO)V 0, + BEOWETE, (79)

to hold for each m and for each a for which
(V78,,VT*'68,) = 0. The conditions that () and B (§ )
should satisfy are given for Eq. {44). Note that (V' 78,
V7+r6,)=0, if and only if 7 "(a)#a.

However, as noted in Sec. II, such an operator is not
unitary. This can be proved by noting that from Eq. (79),
(exp(i6H )V 76, expli6H 7 )V'7*'6,)#0 unless T2 = 1
which is not the case in general. Thus, the minimal extension
does not satisfy the locality requirement, in contrast to the
extension described in Sec. IV. Whether or not the expansion
of ' t0 'y ® F ' ® %, and Uy to the three operators
U,, U,, and U, of Eqgs. (54)—{56) is minimal if one also re-
quires the locality condition to be satisfied is an open
question.

Finally, one notes that the minimal extension is restrict-
ed to those maps 7 which are boundedly many-one. Without
this requirement, one can have U T, unbounded for some 4;
in the partition, which invalidates the definition of W in Eq.
(74). No such restriction is necessary for the extension dis-
cussed in Sec. IV.
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VI. DISCUSSION

There are several other aspects of the results obtained
here which should be noted. One is that Hamiltonian models
such as the ones developed here have the property that no
energy is dissipated as the overall system evolves—w begins
and ends the multiple scattering with energy #°k  /2m. This
holds independently of whether the process T is one-one or
many-one and is simply a result of energy conservation for
systems evolving under the Schrédinger equation with a self-
adjoint Hamiltonian.

For which processes T, if any, the quantum-mechanical
Hamiltonian models described here are good approximate
descriptions of actual physical systems plus external fields, is
difficult to say. The overall states #{x,t ) are very complex as
is the Hamiltonian H ,. Furthermore, because of the simpli-
fying assumptions embodied in the choice of H,, Eq. (7), any
system which is described by the models discussed here
would have to be operated close to 0°K to minimize spin flips
of any of the nointeracting spin systems by unwanted outside
stray radiation.

Another aspect of the models constructed here is that
the interaction operator H 7( j) given by Eq. (63) is j-depen-
dent. This j-dependence can be removed if desired by letting
each of the scattering centers of C be a fixed spin-1 system
and defining H 7( j) by

HT(j)=P+UH1+P0jH2+P_|jH3y

where H,, H,, and H, are given by Egs. (57)(59) and the P,
are projection operators for finding the system ¢; in C with
spin projection i. In this way, the choice of which of the three
types of interaction is to occur depends on a system spin
projection rather than a lattice position. Of course, C would
then have to be set up so that ¢; has spin projection P ()
where P(j) = + (0)[ — 1 ifj = 1(2)[0] mod 3.

The models described here have expanded each step of
the original process into three steps: record, process, and
shift. As far as the mathematics is concerned, one can also
collapse these three steps into one step by defining U, by
Uy = U,U,U, or by Eqs. (54}-(56):

Ur= 3 S UPePLPU,0UY P,
acd kk*
yed, Z

In such a model U becomes the single step unitary operator
which represents the transformation to be carried out by one
w-c scattering.

In order to obtain an interaction operator, for each real
number & define U,{5) by the above equation where U, U,,,
and U*/ | are replaced by U3, US,, and U*% of Egs. (43),
{47), and (52). Since the map 8—>U;(8) defines a one-param-
eter group of strongly continuous unitary transformations,
there is, by Stone’s theorem, a unique self-adjoint operator
H, such that U,(8) = exp(i6H ;).

The problem here is that even though the existence of
H . is guaranteed by Stone’s theorem, the existence is implic-
it. One has no idea how to express H, explicitly as a simple
function of simple operators as was done for H,, H,, and H,.
It would seem that H, should be kept simple if the model is
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to be a good description of some actual physical situation.

Finally, it is to be noted that one reason the model of the
extended system is so complex is that only one model of
M + R + hy has been given, which is used for all » and all
processes 7. All model dependence on 7 is contained in the
dependence of the Hamiltonian H,(j) on T and all depen-
dence on the number of steps 3n for which the model is appli-
cable is contained in the overall Hamiltonian, Eq. (62), and in
the length of C.

If the model M + R + A, is allowed to depend on n
then its construction can be simplified. For example, R can
be modeled by a finite-lattice (from — 7 to n) of systems 7,
rather than an infinite Z lattice, and all states of 4, can be
restricted to lie in / *( — n,n) with appropriate changes in the
definition of U*, ,. If one further wishes to let the model of
M + R + hy depend on T and also restrict the set of initial
states in 4 to a finite set and require that A4, be initially at
position 0, then both M and r; can be modeled by single spin
systems rather than infinite lattices. However, in the case of
r;, the spin of the jth system in the finite R lattice must then
depend on j.

Thus, by relaxing the construction as defined, one can
obtain an n- and 7-dependent model of M + R + A, which
is completely finite. This was the type of model constructed
in I, where extended models of Turing machine computation
processes were constructed. The price one pays for this mod-
el simplicity is the n- and T-dependence and restricted initial
conditions,
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APPENDIX

This goal is to prove that for each map T from 4 to 4
where T"can be many-one and into there exists a unique
partition of 4 into subsets 4, forj = 1,2,...which are T-invar-
iant and irreducible. That is, 74, C 4  and for no nontrivial
subset B of 4; does one have TBC B and
T4, -B)C4, — B.

To prove this, first define for each T the set function
T~'by T ~Y(B) = {a|T (a)eB } for each subset B of 4. Note
that T~ "(B) = {a|T "(a)eB } for each n = 0,1,2,... . Choose
ana, in 4. For each pair of numbers n,j = 0,1,2,... define 4 ),
by 4, =T ~"({T/a,)}). Itis clear that
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A, ={a'|T"a')=T/a,)}. Define 4, by
A= U 4,.
n, jeN

Choose an a, in 4 — 4, and repeat the above process to ob-
tain A4,. Continue in this manner selecting a; in 4 — (4,u4,)
etc. until there are no more elements left to choose.

Let a be in 4,. Then a€d |, for some pair n, j or T"(a)

= T ‘{g,). This implies that T”~ (T {a)) = T ’(a,) or
T(ajed, _,,ifn>1.1fn =0, a = T /a,) implies that
T(a)=T’*'(a,)or T(a)ed ;. . In either case, T (a)e4,
which gives the result that 74, C 4,. Furthermore, it is clear
that 4, is irreducible. To see this, assume there is some non-
empty subset B of 4, such that TBC B and

T(A, — B)CA, — B where 4, — B is also nonempty. Sup-
pose a,€B, let n, j be such that 4 [ ,n(4, — B) is not empty,
and let @’ be an element of the intersection. Then

T"(a’) = T ‘(a,). But a,eB implies T /(a,)eB and a’e4, — B
implies 7 "(a’)ed, — B, which gives a contradiction. If
a,€A, — B, asimilar argument also yields a contradiction. So
A, is T-irreducible.

The uniqueness of the sets 4, follows from the fact that
the definition of 4, shows that it is independent of which
element g, in 4, is chosen for the construction. Thus, an-
other choice function generates the same sets but possibly in
a different order.
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It is shown that the Bloch or angular momentum coherent states furnish a particularly efficacious
basis for a discussion of various aspects of the Lipkin model of the “nucleus.” The Hartree-Fock
description (as well as its projected version) is elegantly obtained in this framework. It is
demonstrated that the “transition probability” between the first excited and ground states is
proportional to the square of the number of “nucleons,” representing (in contrast to what obtains
in the random phase approximation) a cooperativity of the “super-radiant” type. The extension of
the model through the introduction of bosons permits, with the use of Bloch and Glauber
coherent states, a succinct description of the phenomenon of boson condensation.

PACS numbers: 03.65.Ca, 21.60.Jz, 42.50. 4 z

I. THE LIPKIN MODEL

The Lipkin model” is an exactly soluble model of a sys-
tem of N fermions occupying two levels (each possessing an
N-fold degeneracy) separated by an energy spacing €. Let
a,, be the annihilation operator for a particle in the state
labelled by the quantum number p (enumerating the sub-
states 1,...,N in each level or “shell”’) and o (adopting values

+ 1) is the dichotomic level index. The Hamiltonian of the
system is written as

H=je 2 Uaptfap,a +i z Aoy oy, oy o s M
p.o ppo

where a two-body ‘“monopole-monopole” interaction (of

strength }), scattering a pair of particles from one “shell” to

the other, without changing the “subshell” quantum num-

ber p, is introduced. In terms of “quasispin’ operators

‘]izzapfilap‘iil ’ (2a)
P

J,=1>o0a),a,,. (2b)
po

Satisfying angular momentum commutation relations, the
Hamiltonian may be cast into a particularly elegant form, to
wit,

H=el, +WJ? +J%). 3

It may be remarked that, m, the eigenvalue of J, is simply
half the difference between the number of particles in the
upper and the lower states, and consequently its maximum
value, namely j, equals N /2. It is clear that the unperturbed
(V =0) ground state is | j = N /2, m = — N /2) possessing
the unperturbed energy E, = — €N /2. The interaction
mixes states within the same j-multiplet corresponding to
different numbers of “hole—particle” pairs.

The Hamiltonian exhibits the following symmetries (a)
invariance under a rotation of 77 about the z axis in quasi-spin
space, (b) H— — H under a rotation of 7 about an axis lying
in the X Y-plane making an angle of 7/4 with respect to the X
and Y axes.
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Il. THE BLOCH STATES

The familiar angular momentum states | jm), with a
eigenvalues j( j + 1) and m for the operators J > and J,, are
superposed to construct a convenient basis, variously called
coherent atomic states, Bloch, or Radcliffe states,? thus

| @, jy = A explad)] jo — )
—(+ e ¥ a"\/(.zj ) | jm),
m=—j J+m
)

where « is, in general, a complex parameter specifying the
state, /", the appropriate normalization factor, and

[( 7, ..)], the binomial combinatorial. This basis has been
extensively used® in various areas of quantum optics such as
laser theory, super-radiance, and resonance propagation.

lli. THE LIPKIN MODEL AND BLOCH STATES
Employing the Bloch states as a basis, the expectation
values of the Lipkin Hamiltonian become
(a,jiH e, j) = —¢(1 = la]P)/(1 + |a]’)
+ VY + De® +a**)/(1 + ||, (3)

and introducing p=V¥ (2j — 1)/€, minimization with respect
to a yields the solutions

a?=(p+D/(p-1) for p<—1, (6a)
a’= —at, = —(p—D/(p+1) for p> +1,
(6b)
and
a>=0 when —l<p< +1. (6¢)

Regarding p, which is proportional to the interaction
strength and the number of particles, as a control parameter,
it is thus seen that for p > +1 (as also, mutatis mutandis for
p < —1) we have arrived at a minimum, which is immedi-
ately recognized to be the “deformed” Hartree-Fock
ground state as obtained by Agassi,* possessing the energy
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E,= — (Ne/2) cosy,, — [N(N ~1)/4] Vsin’y,, ,

(Ta)
through the identification
cosy, =(1—a2 /(1 +a2)=¢/[VIN-1)].  (Tb)
The corresponding ground state is best expressed as
N
la,.)=A"1] &, |vacuum), (8)

p=1
where b, is a “‘rotated” single particle operator defined by

b, = [cos(y /D], 1 —isin(x,,/D]a, .. )
The deformed Hartree—Fock description obtains for poten-
tial strengths greater than a certain critical value given by V.,
= €/(N — 1), while (within the realm of Bloch states for
| V| < V.)itis the unperturbed ground state (@ = 0) which is
stabilized, and then the situation is in fact better described by
the random phase approximation (RPA). The different
branches of the roots of the minimization condition realized
in various ranges of the control parameter p is depicted
through the bifurcation diagram shown in Fig. 1.

Confining our attention to the branch corresponding to
p> 1 wherein@® = — a?,, it may be observed that the states
|ia,,, j) and | — ia,,, j) are degenerate. The minimum at
a = 0 for the region |p| < 1 splits into these two minima
much like what occurs in a typical broken symmetry situa-
tion, for example in ¢ * field theory, as the coefficient of qua-
dratic “mass” term changes sign. The Lipkin Hamiltonian
through the interaction term mixes only an even number of
particle-hole pairs, as a consequence of the symmetry of the
Hamiltonian. Nevertheless, the states | ia,,, /) and
| — ia,,,j) contain arbitrary numbers (even as well as odd)
of such pairs, and do not possess the symmetry enjoyed by
the Hamiltonian, and the corresponding symmetry is
broken. However the gerade (or symmetric) combination of
states

has a lower energy and represents a better candidate for the

ground state. %" _ is the normalization constant. The ex-
pectation value of the Hamiltonian is

(a,j;8 1 H|a,j; 8

= (a,j|H |, j}[(1 + cos” " 2y)/(1 + cos”p)], (11)

FIG. 1. Bifurcation diagram showing stable branches.
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where cosy is defined as (1 — a®)/(1 + a?). Inserting for y
the value y,, given by Eq. (7b), the resulting expression for
the ground state energy is identical to the one obtained by
Agassi* and called the “projected” Hartree—Fock result. The
corresponding state differs from the “unprojected” wave
function through the absence of admixtures of odd numbers
of particle-hole pairs. For large values of |a| however,
siny—0 and the projected and unprojected versions become
identical.®

Just as the ground state was obtained as the symmetric
combination of Bloch states, the present approach admits of
a simple description of the first excited state, through the
orthogonal antisymmetric (or ungerade) combination,

‘a,j;u) =‘/I/~ [ia’.]> _(_1)2{‘ "‘a;j)]y (12)
which has odd numbers of hole—particle pairs unlike the ger-
ade (or ground) state which has even numbers of the same.
The nature of correlations present in the projected ground
and excited states, manifested through the basis chosen, is
further revealed by the study of the transition probability
between these states. Within the confines of this model the
simplest “‘transitions” are caused by what may be called the
“monopole” transition operators J, and J,, so named be-
cause they do not change the p-quantum number. The rel-
evant transtion matrix elements are readily calculated to
yield

(a,j, gl |, ju) =jsiny [1 — (cosy)¥17"%, (13a)
(a,j; gV, |, ju) =0, (13b)
for the case where « is real. This, and other results, for real a

may readily be extended to complex ¢ through the
observation

exp(i6J.)| a, j) = exp(if)f)|a exp(i), j) (14)
following from the definition, Eq. (4), of Bloch states, where
the operation involved is a rotation by an angle 6 about the z
axis in quasi-spin space. In the limit of large N, as also in the
strong-coupling limit (¥ large), it may be seen from Eq. (7b),
that cosy—0 and the transition matrix element becomes
proportional to V. The transition probability is thus propor-
tional to the square of the number of particles, in sharp con-
trast to what occurs in the random phase approximation
where the transition probability is proportional to the num-
ber of particles. Indeed, a strong parallelism exists between
what has been obtained here and what occurs in the theory of
super-radiance in atomic physics,® wherein a collection of N
atoms initially prepared in some excited state under suitable
conditions return to their ground states by emitting electro-
magnetic radiation, of intensity /, proportional to the square
of the number of atoms, in a super-radiant pulse, in contrast
to the normal situation where I~ N. This phenomenon has
been extensively discussed (in the atomic context) in terms of
Bloch states.

It is instructive to consider an extended version of the
Lipkin model where the Hamiltonian is

H=el, + (V/Q)J* +J )+ /DI, J_ +J_J,).

(15
Minimization of the expectation value of this Hamiltonian in
the Bloch state yields, for the parameter a, the values
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a*=0, (p+y+)(p+7y-1)
and

—(p—v-=D/(p—v+1), (16)
for control parameters satisfying | p + ¥| < 1,
|p4+vi< — 1 and(p — ) > 1 respectively, where
¥=(2j — Ljw/e€ is defined analogous to p. A perusal of the
minimization condition reveals that in the absence of the V'
term ( p = O) there exists a degeneracy with respect to the
phase of @ which is a consequence of the invariance of the
Hamiltonian (when ¥ = 0) with respect to arbitrary rota-
tions in the quasi-spin space about the Z axis. This symmetry
is broken by the very presence of ¥ and the phase of & can
then only adopt the values 0 and + 7/2.

V. THE LIPKIN MODEL AND BOSON CONDENSATION

Boson condensation (for pions and scalar bosons) in nu-
clear matter (and particularly for neutron stars) has received
considerable attention in recent years.” The Lipkin two-level
model may be extended® with the inclusion of bosons to pro-
vide an exactly-soluble system enabling an instructive dis-
cussion of the phenomenon of boson condensation. Intro-
ducing the boson annihilation operator b, and implementing
the “nucleonic” degrees of freedom through the quasispin
formalism, the system is taken to be governed by the
Hamiltonian

H=¢eJ, +(V/2)J* +J2 )+ w/DJ . J_ +J_J,)

+ob b+ GU b+ _bT), a7
where w stands for the energy of a boson and G is the cou-
pling constant of the boson to the nucleonic degree of free-
dom. The appropriate basis for the discussion of this system
will be taken tobe |a, j; B ) where a andj describe the state of
the “nucleons” as before, while S specifies the coherent state,
4 16 Glauber,” corresponding to the bosonic degree of free-
dom, and thus

la, j; B) = |, j) exp(—B*b + b ™) |0). (18)
It is readily verified that
{a,j; B1H |a,};B)
= (€ + w)j + 2jel pla* + a*»)/2
+ ¢ = Dle]? = 1141 + |e)
+0|B1P+G2AY(Pa+B*a*)/(1+la), (19
and the extremization condition yields
B= — (Gw)a*/(1 + |al’), (20a)

al(l+ la]) + ¥ —&§)A = [a)} +pla* —a) =0,
(20b)

where & =(G *2j)/we. 1t may be remarked that with "'=0
(p = 0) the Hamiltonian is symmetric under arbitrary rota-
tions about the Z axis in quasispin space accompanied by a
corresponding phase change of the boson operators. Thus
the ground state then possesses degeneracy on a circle in the
complex @ and B planes, constrained by the relation given by
Eq. (20a), provided |y — & | £ 1. The very presence of ¥V how-
ever destroys this invariance and forces  to pick a definite
phase which is O or + 7/2 depending on whether
p+y—£€<—lorp+§—vy>1For|lp+y—§|<l,
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however, the minimum resides at @ = 8 = 0 which corre-
sponds to the vacuum state of the boson sector. Consequent-
ly, the onset of boson condensation occurs when the relevant
control parameter ( £ — p — y) exceeds unity, confining our
attention to the range of parameters where real values of @
are realized. Correspondingly, noting that 2/ = N = the
number of nucleons, boson condensation takes place for nu-
cleon number above a critical threshold value given by

Nesitica = [€ — 0 + WV/[G?*/0 — v + w)]. (21)

It is instructive to note that boson condensation, in this mod-
el, is concommitant with the transition from what we have
called the RPA region to the deformed Hartree-Fock re-
gime as far as the nucleons are concerned. This is analogous
to the modification’ of the nucleonic Fermi surface in the
field of the pion condensate. It may also be noted that the
presence of attractive “internucleon® potentials lowers the
value of the critical nucleon number necessary for boson
condensation. The energy of the system corresponding to the
minima in the region of interest is given by

E=(€+wj— el +£—p—1/4£—p—1) (22

The variational energy may be driven to a somewhat lower
value by invoking the gerade state

la,j;B8) =l jip) +(— 1| —a,j;—B)1/
[2{1 + (@ = 1)¥/la® + 1)¥

X expl— 287}1"/2. (23)

V. CONCLUSION

We have described the Lipkin model as well as its exten-
sion to include bosons in the space of Bloch or angular-mo-
mentum coherent states and the Glauber coherent states and
have thereby obtained the Hartree~Fock approximation and
its projected version. The transition amplitude between the
excited and ground states exhibits a cooperativity character-
istic of the states analogous to super-radiance in atomic
physics. The possibility of boson condensation in the model
is also readily described in this framework.
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We calculate numerically a few terms of the corrections to the large-order behavior of the ground
state energy of the O (V) anharmonic oscillator by analyzing the perturbation series. We then
generate 94 terms of the perturbative expansion of the difference between the energies of the two
low lying states of the double-well potential and analyze their large-order behavior.

PACS numbers: 03.65.Db, 03.65.8q

INTRODUCTION

In this article we want to present some results, based
mainly on numerical explorations concerning the perturba-
tive expansion around instantons in quantum mechanics.
These results are a by-product of the analysis of the large-
order behavior of the perturbative expansion of the ground
state energy for various potentials.

In Sec. I we discuss the simple integral which counts the
number of diagrams of the ¢ * theory with the proper
weights.

In Sec. I1 we present the calculation of the coefficients
of the perturbative expansion of the ground state energy of
the anharmonic potential with O (N ) symmetry.

As we know, the large-order behavior of these coeffi-
cients is given by an instanton contribution. The numerical
analysis of this large-order behavior yields, therefore, an ex-
pansion around this instanton. Due to limited numerical ac-
curacy only a few terms are available.

In Sec. I11 we present a similar calculation for the dou-
ble-well potential. We recall that the perturbative expansion
of the ground state of the double potential has been discov-
ered numerically to be identical up to the sign and a coupling
normalization to the similar expansion for the O (2) anhar-
monic oscillator.

We then explain how a formula found in Landau and
Lifschitz allows one to expand systematically the difference
between the ground state energy and the first excited state
for a symmetric potential. For an analytic potential with two
minima, this difference is given by an instanton contribution
corresponding to a Euclidean path joining the two minima.

We apply this technique to the double-well potential.
We calculate, numerically, 94 terms of the expansion around
the instanton, and characterize its large-order behavior. We
verify the asymptotic nature of this expansion by comparing
the series to a numerical calculation of this energy difference
from the Schrodinger equation.

I. THE SIMPLE INTEGRAL

We shall consider as a model for our study of quantum
mechanics the simple integral which represents a zero-di-
mensional ¢ * field theory,

1 te 2 oo
2(g) = __f e~ & e gy, 6))
Vigd-=

Actually, to be closer to the real problem we shall con-
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sider a different quantity F (),
F(g) = (x*) (2

F)= — %lnz(g). @)

If the perturbative expansion of z(g) can be explicitly
obtained, the expansion of £ (g) has a somewhat more com-
plicated form. It can be generated most simply by remarking
that z(g) satisfies a differential equation

4gz" () + (1 +88)Z'(g) + 32(g) = O. Q)
Therefore, F (g) satisfies a Ricatti equation
4g°[F'(g) — F*(®)] + (1 +8g)F(g) — §=0. &)

From this equation we can derive a recursion formula
for the coefficients of the Taylor series expansion of F(g),

F(@= 2( —D*F, g%, (6)

Fk=4((k+1)Fk_, + Fan-,,_z), @
OKn<k -2

with F, = 3. ®

An amusing arithmetical remark is that 4F, is an integer
while the coefficients z, of z(g) are rational numbers with
increasing denominators.

As we know the large-order behavior of the coefficients
F,, and the coefficients z, is given by the nontrivial saddle
point of the integral (1).

More precisely, the saddle point x_,

2x, +4gx} =0 x> = — 1/2g, (9)
yields a small g expansion for the imaginary part Im z(g) of

z(g) for g negative, which gives then an expansion of z, for k
large as

_ 1 Imsg)

As Im z(g) behaves as e'/*2 for g small and negative, the
small g behavior of Im z(g) is directly related to the small g
behavior of Im F(g),

ImF(g) = Rezlglmz(g) — RCZZ(g)Imz'(g)
oo (Rez(g)]

+ O (el/Zg)‘

(11
Thereal part Re z(g) of z(g) is just given by the perturba-
tive expansion. At leading order

® 1981 American Institute of Physics 511



1/4g
ImF(g) ~ — Imz(g) ~ — _4_9

77\/2

From the Ricatti equation we can obtain directly an
equation for Im F (g)

4¢*[ImF (g)' —2ImF (g)ReF (g)] + (1 +8g)ImF (g) =0,
(13

epoJTReF () dg'. (14)

(12)

el%

ImF @)= —

fr\/ 2

If we neglect exponentially small corrections we can
replace Re F (g) by the perturbative expansion of F (g). There-
fore, the small g expansion of Im F (g), which yields an ex-
pansion of F, for k large, is directly related to the perturba-
tive expansion of F (g) itself. In addition this relation is
particularly simple on In Im F (g).

Also, the coefficients of the expansion of In[Im F (g)]
have simple arithmetical properties.

Il. THE ANHARMONIC OSCILLATOR WITH O(V)
INTERNAL SYMMETRY

We shall consider now the ground state energy of the
anharmonic oscillator with O (N ) internal symmetry whose
Hamiltonian H is given by

H=1p + x> + g(x*)*. 195

The wavefunction of the ground state depends only of
|x|. Itis convenient to write the Schrédinger equation for the
logarithmic derivative of the wavefunction #(]x|). Denoting
simply by x the radial coordinate |x|,

f®=—§mw> (16)
X

Then f(x) satisfies the Ricatti equation

f1) =) + [((V —1)/x] f(x) + x* +2gx* = 2E,  (17)
in which E (g) is the ground state energy. To generate a per-
turbative expansion of E (g) it is more convenient to use this
equation rather than the direct Schrédinger equation be-
cause the expansion of £ (x,g) involves much fewer terms than
the expansion of ¥. As a result the calculations are simpler

and the accuracy is improved.
Let us expand f(x,g) and £(g)

Q) =x+3(—9 i),

(18)
E@)= zEkgk'
Q
We get the recursion formula
A—-DE = fix) + [V =-1)/x - 2x ] fi(x)
+ > S +2x*8,1, (19)
I<i<k —1
for k>0 and with E; = N /2. (20)
Setting then
[y =T Cpxt, @1
nx0

we obtain a recursion formula for the C,
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o N
Ci "= 8,6, + (”‘f' —)CZ + L
2 2
x ¥ creizr, 22)
Tel<k —1
O<men —1
and the coeflicients E, , then, simply by
=(N/2}( -D*+1CY, 23)

The recursion formula (22) shows that the C* are all
positive rational numbers with as denominators powers of 2
(for N integer, of course). More precisely 22 ~"~1C" isan
integer for N odd and 2* ~'C" is an integer for N even.

Notice that C} is nonzero only for n<k. It is possible
starting from (22) to derive simple bounds on the C }, which
we shall not discuss here.

A systematic WK B expansion of Eq. (17) generates first
the coeflicients of highest degree at each order in g and then
successively the other coefficients. For example,

FO®x) =V x? +2ext =x (1 + i(_ 1)k+1(gx2)kcl‘§) ’
' @4)
yields

Ch = 1.3.(2k - 3) ,
k!

The next term in the WKB expansion is a generating func-

tion for C57 1 etc.

We have used these recursion formulas in the past to
generate numerically the perturbative expansion of £, up to
order 100, typically, to verify the large-order behavior re-
sults'? and to study resummation methods for these diver-
gent series.>* The results we present in this section are just
by-products of these studies.

for k2. (25)

A. Large-order behavior

A steepest descent calculation? of the path integral ex-
pression for Tre ~#* leads to a small g expansion of the
imaginary part of E (g) for g negative. Using then the integral
representation

Ekz-l—f E®) g, k> 1, (26)
T g

one obtains an expansion, for & large, of the coefficients £, .
At leading order one finds

1 2 N/2 1/3
mElg) = o {~ Z) e+ 0w, 27
and, therefore,
E, =E¥[1+0(1/k)],
) 2N/2
Easz _lk+lrk N/23k+N/2———-—. 28
r=(—1) (k + ) TN (28)

The first numerical investigations of the successive cor-
rections to expression (27) are due to Bender and Wu." In
addition, the 1/k term has been calculated analytically by
these authors' for N = 1, and by Seznec® for arbitrary V.

We have investigated these corrections numerically for
arbitrary N using about 100 terms of the perturbative expan-

J. Zinn-Justin 512



sions and a modified Neville procedure. Details about this
numerical study are given in Appendix A.
As a result we have obtained a fit of the form

a,(N)
E =Eas 1 1
‘ k( Y RIN2-1

+ a,(N) + e ) )
k+N/2-D)k+N/2-2)
This expansion yields then an expansion of Im E (g) in pow-
ersof g,

1 2 N/2
ImE —_— ( _ ___) el/3g
saﬂgg) '(N/2) g

X [1—3a,(N)g + 9N )8

o (=32, (Vg + . €
This expansion can, in particular, be obtained by a systemat-
ic calculation of the instanton contribution to the path inte-
gral for Tre =7,

The coeflicients a,, (V) are given by a set of Feynman
diagrams with modified propagators and vertices due to the
presence of the instanton field. But the weight factors of the
diagrams are not modified, so that the coefficients a, (N ) are
polynomials in N of degree 2n.

For a reason which will become clear later, it is conve-
nient to exponentiate this last expansion and write Im £ (g) as

ol s)

X exp (é + b,(N)g + b(N)g* + ) . (3n

(29)

ImE (g) =

It is in this form that we shall present the results. But
before doing this, we shall evalnate some coefficients of
b,(N), considered as polynomials in the variable ¥,
analytically.

B. Large N expansion

We can obtain the two coefficients of highest degree of
the polynomial b,(N) from the large-order behavior of the
1/N expansion as calculated by Brezin and Hikami® and De
Vega.

The reason for this is the following: The 1/N expansion
is obtained in a limit in which the product gN is kept fixed.

As a result, the large-order behavior of the 1/N expan-
sion is obtained from the estimate for ¥ large and negative of
the imaginary part of £ (g,/V) for g negative and N positive,
As E (g,N) is not only a function of g/N, it has also some
singularities at finite values of N which probably yield addi-
tional contributions to the imaginary of E (g,N ). But these
contributions vanish identically for | NV | larger than some fin-
ite value, and do not affect, therefore, the large ;N expansion
of Im¥E (g,V) at large order.

One can translate the results of Refs. 6 and 7 in terms of
an expansion for Im £ (g,V ). Setting

A = Ng, 32)
they can be written
IME(AN) = —L ( _ EN.)N”
N oo I'(N/2) A
xXCA )eN"‘"[l+0(—l—)]. (33
N
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Thefunctions 4 (4 jand C (4 )are given explicitly. For A small
they behave like

AA)=1/31 +(1/84 +O(17), (34)

CA)=1+(9/94 +0(A 7% (35)

If we expand N4 (4 ) + InC (4 ) in powers of A and re-
place A by Ng, we see that the polynomials b, (V) are of
degree n +1 only, in contrast to the polynomials a,, (V).

In addition, we obtain the two coefficients of highest
degree b "' and b7 of b, (V).

n+1
b, (V) ="3 bLN

1=0

The function 4 (4 ) is given by

hA)=(1+2)"" =1+0), (36)
My = — 2, 1
AR) = ~ o (14 34h)7"7 4

-

=~ 53 o (37)

Intermsofthefunction (1 ), thelogarithmicderivative
of C(A)is
c@i) _ 10 +24h)? 1 (d+24h)

cA) A (1 +34k)72 24 (14+34k)
1,2
21 (1 +24R)"" _1_ 38)
4 (14344) 21

The first ten terms of the expansion of these functions
are given in Table L.

From these expressions, one can verify that the coefti-
cients are alternating in sign with the order. In addition,
from the arithmetical point of view, the coefficients of 34 (4 )
and C'(A )/C (4 ) arerational numbers with only powers of 2
as denominators. More precisely 22" ! times the coefficients
or order n is an integer. The persistence of this arithmetical
property, although here it applies to the logarithmic deriva-
tive of the imaginary part, is quite remarkable.

C.Thecase N=0

After this work was essentially completed, we saw an
article® which also pointed out the relevance of the Ricatti
equation and, in addition, noted that the case N = 0 could be
solved exactly in terms of Airy functions,

We shall present here the part of the argument relevant
for our purpose.

Let us take in Eq. (17) x? as a variable and set

z=2Xx° (39

Fx) = xu(z). (40)
The equation then becomes

2zu’ + Nu — zu® + 7 +2g2* = 2E. “4n
We have already used in the recursion formula the relation

E = (N /2)u(0). 42)

For N = 0 two remarkable facts occur: The ground state
energy is exactly known as it vanishes and the equation sim-
plifies drastically,

' —u? +1 42z =0. 43)

J. Zinn-Justin 513



514

o0 00 o
mvg—-
W -
28
T
(=]
<+ &
PN
AE2
493
b
=1 N g
< 0 o~
O\\D%
o oD
SEQ
M%N
— Ao
S B2 et
AN O A
A~ 0
o ¥ O
o~
—
<+ <t @ 0O
—
28
. g”’
¢ |, |2§4
~F &
£ ® F~&K
=] n N
5 <+ N =
2 e
L
£ 888"
= S O n
T F ) v
3] ™A o
— o+ =
a -~ ~Ooa
Wy = OO
Q R R
@] o~
~
2 0 S A
N 3\08—-'
5 88
= > ¥ &
o ~ o0 o
¢ |+ a0
E - M
E —
S
(3]
o
8 NN O N
= O ¥y N
g SN
- 0 W 0
) O n
o o0 N 0o
= v A
S
w
Q
>
2
5o
Q OO0
= INE-cEa
— o P~ -
- e~
17} v QN N
< N
=
° «
g
E—q
5
£
- o N v o~
+ v~ O
= < N =
o~ o 0N =
i —
[ag]
—- [ag)
N
5
=
|
by 223*®
° & o
[+
=
[
> o3
[
B
=
(5]
2
. —_——
a0 oo
8
£
8 —
4
=
S
ot
122
L
=
L33
&
=
. -
= +
53}
- T =zofQ
e T
x |~—==0
=

J. Math. Phys., Vol.22, No. 3, March 1981

Indeed, now y(z,g) instead of being of function ofzand g
separately, is a function of only one variable. If we set

y=(1+282)/¢", (44)
and

u=g"u(y), (435)
then v( y) satisfies the differential equation

4~ +y=0. (46)

The function v( p) is the logarithmic derivative of an
Airy function. As we are interested in an expansion for g
small, we have to expand v( p) for y large

u(y)=\/y(1+i(*1)“‘uky‘~‘“2), @7)
1
with the recursion formula

1
v, =Gk —-du, , + — 2 Vil s

I<ick —1
(48)

k>2 withy, = L

Now, from Eq. (42), we get an interesting result,

lim 2E(N)/N = €(g) = u(z = 0,N = 0,g), 49)

N—O
with

u(0) = g'”u(1/g*") = €@), (50)
so that

e®) =1+ S(—D*'ng (51)

1

In this limit the coefficients of the perturbative expansion of
the ground state energy are given by a recursion formula
with only one index as in the case of the simple integral of
Sec. I.

Furthermore, we can now study easily the large-order
behavior of #(0) and, therefore, obtain information on our
polynomials b, (V) for N = 0.

To do this we shall write the differential equation for

€(@),

6gc —2ge + € —1=0. (52)
For g negative, €(g) is complex

(@) = a(g) + i3 @) (53)

Taking the imaginary part of the equation we obtain

3¢°8'(8) — 8B (®) + a(®)B(g) = 0. (54)

So that we can calculate 8 (g) in terms of a(g),

@ _ 1 a@ 69)

B 3 ¥

or
= 1 B ~1-1%. 6
/J’(g)~Cexp3g 3f0[a(g) 1 g]g,z- (56)

For g small and negative, one can replace a(g) by the
perturbative expansion of e(g) up to exponentially small cor-
rections. As a result, the logarithmic derivative of the imagi-
nary part of €(g) has an expansion directly proportional to
the expansion of €(g) itself.
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TABLE IL Values of ( —1)"*'3n2" *'b', for n<é.

n
\ 1 2 3 4 5 6
0 5 60 1105 27120 828250 30220880
1 27 438 9720 270552 9038790 352590000
2 21 618 18663 629352 23947884 1025295480
3 246 13572 626742 29050770 1423155756
4 3453 292782 18669510 1118597184
5 53226 6255252 517369608
6 868962 132848268
7 14749164
From the recursion formula (48) we see that 2* v, is N = 1,* N = 0 and the large N limit and both our numerical

an integer. Therefore, 3n2"B,, (0) is also an integer. The first
ten coefficients of B, (0) are listed in Table I.

One could then imagine expanding in powers of N
around N = 0, we haven’t done it, but an encouraging em-
pirical remark can be made. From the comparison of the
perturbative expansion of the ground state energy and the
coefficients b, (V) it follows that

Fole) + NEile) _ 1 _ adg) _ 3@V v (s7)

Bog)+ NB\g)  3g 3¢ 3g°

where we have defined

iE—B’f;ﬂ = aylg) + Naylg) + iBolg)
+ iNB\(g) + O (N %,e*%), (58)
forg= — |g| +ie.

As a general comment, it should be emphasized that, as
€(g) satisfies a Ricatti equation, it has not the analytic struc-
ture of £, (g) for general N with an infinite number of branch
points accumulating at the origin in the second sheet.®

This explains why this particular case can be solved so
explicitly.

A last point: For all negative even integer values of &,
one can find E,(g) as a solution of an algebraic equation.
This can be most easily seen be differentiating systematically
Eq. (41).

For example, if we differentiate once, we get

2zu" + (N +2u' — u® —2zuu’ +1 +4gz = 0. (59
Setting z = 0 yields

(N +2)u'(0) — u*(0) +1 = 0. (60)
So, for N = —2, we find E (g),

E (@)= W/Du0) = —1. (61)

One could, therefore, think to calculate the derivative
of Ey(g) with respect to N for N = —2, by solving the equa-
tion for 4(z) and finding u'(0). Unfortunately, the function
u(z,8) does not become this time a function of only one vari-
able and some further investigation is needed.

D. The coefficients b, (N)

The first coefficient 4,(V) which is a second degree
polynomial in & is now over determined from the results for

515 J. Math, Phys., Vol.22, No. 3, March 1981

calculations and the analytical result of Seznec” agree with
this value.

For higher-order terms we have to rely more and more
on numerical calculations. We have made the following an-
satz: The quantity 3n2*" *'b, (N ) is an integer for N integer.
In addition for NV even, 3#2"b, (V) is an integer. This means
thatin b, (V), the coefficient b ;; of N " should be divisible by
2, the coefficient of N" ~! by 4, etc.

This ansatz, which is of course compatible with the re-
sults coming from the large N limit, and the N = 0 case, has
been tested with decreasing accuracy, but beyond any doubts
for n varying form 2 to 5.

For n = 6, we have used it to try to determine all the
coefficients of (V). The result we give has a very good
chance of being correct and in any case is an excellent fit of
the numbers.

Our results for the six polynomials &,(N ) to bg(N ) are
given in Table II. One notices that the coefficients of a given
polynomial are all of the same sign and that for N positive
b,(N) alternate in sign. As g is negative, the series is, there-
fore, not Borel summable. In addition, it suggests that the
large-order behavior of the b, ’s is also dominated by an in-
stanton of action 1/3g. We know at least one case for which
this conjecture is true, it is the case N = 0 as Eq. (56) shows.

The prediction then is that, in general, b, (V) should
behave, for n large, as

b,(NY~Cn*(—=3)"*n!

We have tried to calculate for ¥ = 1 and 2 as many
terms as possible. They are given in Table III. It can be

TABLE III. The values of &, (N)(~1)"*"' for N= 1 and 2.

n N=1 N=2

1 3.95833--. 8.83333...

2 19.3437500- 56.7500...

3 174.2092014 646.01388...

4 2177.286133 9894.656250

5 34045.54329 184707.1208

6 632817.0536 4005925.573

7 1.357206 < 107 9.82462 < 10°

8 3.2942x 10% 2.679% 10°

9 8.92x 10° 8.03x 10"
10 2,65 10" 2.61x 10"
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checked that the behavior of these terms is compatible with
the prediction. In any case, as the coefficients of ( — 1)" !
X b, (N )are all positive, b, (N ) is an increasing function of N
for A positive, and N = 0 provides a lower bound. In addi-
tion, the coefficients of b, (V) are higher than or equal to (for
the term of degree zero) to the corresponding term of the
perturbative expansion (in the sense explained in the N =0
case). From this remark we can also obtain a probable lower
bound on the behavior of the b, (V).

Iil. THE DOUBLE-WELL POTENTIAL

We have also explored the ground state energy and the
energy difference between the ground state and the first ex-
cited state of the double-well potential whose Hamiltonian H
is

H=1p*+ (1 —x/g)" (62)
The analysis of the perturbative expansion of the ground

state energy E (g) is reduced to the following observation.?
The numerical calculation shows the remarkable relation

Eg)=3Eon(—28) (63)
where E,, , (g) is the ground state energy of the O (2) anhar-
monic oscillator studied in Sec. I1. This relation is obviously
only valid in the sence of a series expansion, as E,, ( — g) is
complex for g positive. In Ref. 3 it was even verified that in
the sense of functions

E{g)?é%Re[EO(z)( —g)) for g>0. (64)
The difference decreases exponentially when g goes to zero
as exp( — 1/3g).

The relation (63) has not yet been proved analytically
although this should not be too difficult.

As a result the structure of the large-order behavior of
E (g} can be found entirely in Sec. II by specializing all formu-
las to N = 2 and by changinggto —g.

We shall now study a more interesting problem, the
perturbative expansion of the difference AE (g) between the
energy of the first excited state and the ground state. This
energy difference can be calculated from the path integral
expression for exp( — SH ), by expanding the integrand
around the instanton solution which goes from one mini-
mum of the potential at O to the other at 1/1/g.

At leading order,

“—e V% (65)
\/ g
because the classical action corresponding to the instanton is
1/6g. The corrections to this formula take the form of a pow-
er series in g which we shall calculate,

AE(g)~

(66)

AE(@) = —2—e V% (1 + iekgk) .
\/ﬁg 1
But before presenting this calculation, we shall present the
recursion formula we have used to expand E (g).

A. The ground state energy

It is easy in the case of the double-weil potential to per-
form a systematic WK B expansion of the wavefunction.
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This leads to a faster and more accurate calculation of the
coefficients of the expansion of the ground state energy. The
recursion formula can also be more easily used to prove some
bounds on the coefficients.

Let us write again the Ricatti equation for the logarith-
mic derivative of the wavefunction #(x),

0= — L ing), (67)
dx

F'®) £ + 551~ xVgyY = 2E @), (68)
The WKB expansion is an expansion in powers of g, at x1/g
fixed,

fy= x -V - Y8

l—x\/g

oo 2k —1 Cc?
- Sty (69)
k=2 n=2 (l_x'\/g)”
The coefficients C'} satisfy then the recursion equation,
Citi=Citi +3n+DC 4+ > CrCi
2k —1
2am<n — 1
(70)
with C2 = C3 = 1 for k>2, and with C} =0 for
n>2k —1. If we now define
E@=1+ S Eg an
A =1
we obtain
E,=—-C%,,. 72

The recursion formula shows that all C; are positive,
again have simple airthmetical properties, but in addition
leads to simple evaluations.

Let us give an example. We can first find a generating
function for C 2* ' and, therefore, evaluate C ;¥ ~' for k
large, as C 2* ! is the coefficient of the most singular contri-
bution order by order in g,

h(z):z-—1~—- iCi""z’z"'“. (73)
z K=2

The function 4 (z) satisfies

h'+h*—224+1=0. a4
It has a trivial solution,

hy(2)= —z. )
We can, therefore, find the other solution by setting

h)= —z+1/u (76)
The function u(z) is solution of a linear equation,

u'(2) +2zu(z) ~1 = 0. )
The solution is

u@)=e- ZIJ‘ze’I dt. (78)

The quantity a is an arbitrary and, for z large, irrelevant
constant.
The large-order behavior of the coefficients of the ex-
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pansion of u(z) for z large can then be obtained, and, there-
fore, the behavior of C3* ! for k large,

koo CH'm@/N T+ ). 79

The equation for f(x,g) can then be linearized around
the sum of the most singular contributions, and an evalua-
tion of C 7 can be obtained,

Cr 2_.1—‘(31(-—21—-,’1)(—2—)2k—l-ny Kron.
\ 5 [Qk—n) 3

(80)

which is in agreement with the large-order behavior of E, '°
obtained for n = 2.

The 1/k correction can also be calculated, but the cal-
culation is very tedious.

B. The energy shift between the ground state energy
and the first excited state

We shall expand in a power series the difference 4E (g)
between the two lowest eigenstates of H. To do this we shall
use a very simple argument exposed in Landau and Lif-
shitz.'! It is based essentially upon the symmetry of the po-
tential. In 4 dimensions the symmetry of the potential with
respect to @ (d —1)-dimensional hyperplane is required.

Here the symmetry corresponds to the interchange
xvVginl —xvg.

C. The method

Let us assume that we have an analytic potential sym-
metric under the change x— — x,

Vi =V(—x),

and possessing two minima at x = 4 R.

The ground state energy can be calculated by expand-
ing the potential at one of its minima, and making a pertur-
bative calculation starting from the harmonic approxima-
tion. This yields the ground state energy up to corrections
exponentially small for large R. The leading correction can
be calculated and corresponds to the half-difference AE /2
between the ground state energy and the first excited state.

Let us assume that ¢ (x) is the wavefunction obtained
by expanding g around x = R and E,, is the corresponding
energy,

H=\p"+ V(x), 81
=@ 7x) + V(g (x) = Eup (x). (82)
The solution g,(x) obtained by expanding around x = — R
is, of course, related to ¢ (x),
Pa{x) = @,( — x). (83)
The solution ¢,(x) is valid in the region
x> —R +7n, 75>0 (84}

The symmetric situation is true for @,(x). In addition ¢ ,(x)
decreases exponentially when (x — R | increases. Asa result,
in order to calculate the leading exponential correction to

E,, we can use the variational principle with a trial function

¢E (x)3
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x>a>0, @,(x) (1+€————ZTE§;),
$.(x)§ —a<x<a, @,(x) + e@y(x), (85)
x< —a, qu(x)[s + g————i : Z; ] :

The trial function ¢,(x) is even or odd if e is +1 or —1,
respectively, and will yield, therefore, the ground state ener-
gy or the energy of the first excited state.

We now calculate

PECALILEY
@.14.)

If the derivative of ¢, at + a would be continuous, E, would
just be equal to E,, as ¢,(x) and ¢,(x) satisfy locally the
Schrédinger equation. The additional contributions come
from the discontinuity of ¢ .(x) at x = + a. The contribu-
tions from + a and — a are, of course, equal. At the same
time the norm of @, receives two identical contributions
coming from the neighborhood of + R. Integrating by part,

| Twsier +vesimn s

(86)

- j = 16,006 26 + V()62 () dx

+¢@[¢a)— ¢ Ha)] (87
We have, therefore, for E, , up to higher-order exponen-
tially small corrections,
E = E,+ 1 [@,(@) + ep(a)]
2 fpix)dx

x w:(a)+e¢s(a)—¢;(a)(1+e"’—2§‘%)]. @)

¢a

The energy difference AE is thus

AE=E, —E_ = [p(@p 5(a) — pa)p | (a)] '

S@1(x)dx

(39)
As @,(x) and @,(x) are two solutions at the same energy, the
Wronskian which appears in the numerator is independent
of a, as it should be. In higher dimensions, the Wronskian is

replaced by the charge associated with the conserved current
g, (x),

J.(¥) = ¢,(x)ue(x). (90)

In our case, in order to be able to generate a systematic
expansion of 4 £ (g) in powers of g we need a WK B expansion
of ¢ (x), as we have derived it above. In order to calculate the
norm of ¢ ,(x) we need only the simple perturbative expan-
sion of ¢ ,(x).

As we know, the logarithmic derivative of the wave-
function f(x), the Wronskian W (a) can be written

1 1
W (a) = Y(a)p (—. —a ) [f(a) +f(——-—~_ —a ) ] .
\/8 \/g
€2y

Remember that in our problem the symmetry corresponds
to x going to (1/vg) — x.
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We still have the choice of the normalization of the
wavefunction ¢(x). We choose

ng(x) = —x/2 + (*/3)Vg —In(1 —xVg)
o 2k 1 CZ

K=2 "ZZ (n~1)(1—x\/g)"'1 '

92)

As Wia) is independent of @, we can calculate it for a large,

fla)=a(l - ajg) + O(1/a),
_ _ {93)
Ingla) = —a*/2 + a’\/g/3 —In(l — a\/g) + O(1/a).
Thus

W a) = ( !

.- Vﬁg) [200 —aye)],  (99)
ag(l —a g)
Wia)=(2/\/gle” . (95)

We have completely reduced the problem to the calcu-
lation of the norm of ¥(x) with the special normalization
given above.

At leading order

g~ X +2/3 g -
Jxﬁz(x) dx = J-———_—dx +0(g)= \/ 7 + Og)
(1 —xg)

(96)
This integral has to be understood as a power series in g. The
fact that the integral does not converge as such, shows that
the series will not be Borel summable as was the case for the
series of E,(g).

At leading order we have recovered the instanton

result,

AE(g) = 2/ Jmgle~ " *[1+ 0(g)}. 97)

Higher-order calculations will involve the perturbative cal-
culation of integrals of the form

e 2/3% g
g = [ S (98)
(1—xg)

It is easy to write recursion formulas for these integrals.
These recursion formulas and other propertiesof I, (g) can be
found in Appendix B. It is easy to see that the contributions
coming from these integrals all have a positive sign, and that
the expansion of ¥”(x) is a linear combination of the 7, (g)
with positive coefficients. It is, therefore, possible to write
various lower bounds for the coefficients of g in the expan-
sion of f¢*(x) dx.

The simplest bound comes from the expansion of the
integral 7,(g). At large order 7, , behaves as

Lg) = iIZ,kgk’ 99)

Lo~G/NV 7)3%Y koo (100)

It is possible to calculate by hand a few terms of the
expansion. Higher-order calculations can be done on a com-
puter. We give in Table IV the first ten terms of the expan-
sion of the quantity L (g),
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TABLE IV. Values of —6n2"L, . It is easy to verify that these numbers are
divisible by the GCD given in Table 1.

X
i

71

1890

65953

2733150

128867746
6758057124
388879707749
24338697845358
1646577122826766
119850766679371980

O W oo -3 B LN —

—_—

L=l (———\/Z’Tg " AE (g)) :

Notice that the coefficients are rational numbers with
denominators identical to those of the expansion of the
ground state energy given by the O (2} anharmonic oscillator.
We derive in Appendix B this property for the coefficients of
In/,(g).

A check of our calculation is that we have* postulated
the first three terms of this expansion from a numerical anal-
ysis of the energy difference based on a numerical solution of
the Schridinger equation. They agree with the present cal-
culation. In addition we have verified by the same procedure
the asymptotic nature of the expansion, using the additional
terms calculated here {107 !5 accuracy].

We have calculated 94 terms of the expansion, and ana-
lyzed its large-order behavior, which is related to the triple
instanton contribution to the path integral which gives
exp{ — SH ). Some details of this analysis are reported in Ap-
pendix A,

The result is

Lig)=SL.g"
[+

3k+l

(101)

(102)

L, =

k ![3(ln6k + ) - 716— (—365— (Inbk + ) + 9)

Ink
~0(GE) | 4o

in which ¥ is the Euler constant, y = 0.5772156---. The re-
markable new fact is the appearance of Ink factors. This indi-
cates that the small g expansion of the triple instanton contri-
bution which probably governs the large orders of this
expansion has Ing factors too.

(103)

D. First-order correction to the energy difference
between the two lowest states of a symmetric potential

Using the method described in the special case of the
double-well potential, it is straightforward to calculate the
first-order correction to AE (g) for an arbitrary symmetric
analytic potential having two degenerate minima. We take as
Hamiltonian H

H=1p*+ (1/g)V(x,8). (104)
The potential is symmetric under the change
Vix)=V{—x),
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and has a small x expansion,

g’ ot 5
+ +O0(x
2Jch 6 ' 24 o)

The method used above is applicable without any modi-
fication and we just quote the result:

= exp[——f\/V(x

1
+ _J. ( B x(l—x/a))

1
+g dx[—_;—+—
0 vV

Vi(x) = (105)

AE(g) =

8
x (me— 4552/2 3%?2— + 3((12—Bx)2)]
+g<6f’; + Z—Z — 2%/)’;2) ] +0(g). (106)

In this expression E is the coefficient of g in the expansion of
the ground state energy,

E = ro_ _IE:_ (107)
32 288

APPENDIX A: EXTRAPOLATION METHODS
A. Ground state energy

We explain here the method we have used to extract the
corrections to the larger-order behavior from the coefficients
of the series expansion of the ground state energy.

Let us consider a sequence {.S, ] which admits an as-
ymptotic expansion of the form

(A1)

for n large. We want to improve the convergence of s, to-
wards a,. The standard method is to construct a Neville
table, using the following iterative scheme: One defines a
sequence of sequences {s'”} by the following recursion
formula,

SO =+ 0 ) (a2)
It is easy to verify that
87 = ay+ 0(1/n) (A3)

In our case it was possible to again improve the convergence
of this procedure by extrapolating the sequence s” at fixed n
by the means of Padé approximants. However, it appeared
simpler and more efficient to use a slightly different
procedure.'?

Starting from the sequence {s, } we can construct

{ p) (p) (p) (
S(p+l)_s(p) . 2p [s"p+ Sp 1 ][Sp Snp)]
n — n 41 y
@ -1 s, + 5P — 257
(A4)

sV =s,

One step of this procedure is equivalent to two steps of
the Neville method in the sense that two successive powers of
n are eliminated at each step. This a consequence of the main
feature of this method: The variable n does not appear ex-
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plicitly in the recursion formula, so that everything is trans-
lationally invariant in n. The following problem is, therefore,
solved approximatively: In the Neville table we have elimi-
nated successive powers of 1/n, but it might have been more
efficient to eliminate, instead, powers of 1/(n + a), witha
constant. The new procedure optimizes locally the choice of
the variable. If the only correction term would be of the form
b/(n+a), it would be eliminated in one step only.

In our example this method worked extremely well, and
no improvement coming from Padé approximants was need-
ed anymore.

B. Energy difference of the lowest lying states of the
double-well potential

In this case the analysis revealed that the structure of
the series divided by 3"n! was more complicated and did not
seem to converge. We guessed that it had the form

s, =a,lnn+b,, (A5)
where a, and b, have expansions in powers of 1/n,
ay=ap+ Tt 2y
n
(A6)
b, =PBo+ B — f =+

We had, therefore, to modify the Neville procedure in the
following way: We first calculated

s,=n(s,,., —§,) (A7)
As a result the new series had the form
s,=a,lnn+b,
a a; a
4= —+ —+ — -+ (A8)
n n

b,=B)+ —+ —+ -
n n

Now the calculation of £, involves the use of the Ne-
ville procedure, performing each step twice. At the first step
a term Inn/n? is eliminated. At the second step the term
proportional to 1/r” is cancelled.

In general, if we were to encounter a series with
structure

s, = d,(Inn)? + a,(Inn)? ="' + - + a7,
we would repeat, ¢ —1 times, the operation
n(srl +1 = sn )’

and then each Neville step g times, in order to find the limit
of a®.

(A9)

APPENDIX B: SERIES EXPANSION OF THE INTEGRALS
12(9)

We shall briefly explain some properties of the integrals
1, (g) which appear in the calculation of the coefficients of
the expansion around the simple instanton for the double-
well potential,

+ o efx‘+(2/3)x‘\/;
1,(8) =f _—dx.

B1
(1-xVyg) @
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We emphasize again that these integrals are just generating
functions of a power series in g. We shall consider first 7,(g)
because it is the leading contribution to the norm of ¥(x), and
it seems also to govern the arithmetical properties of the
whole expansion. Integrating by part, its is possible to re-
write 7,(g) as

I(g) = —2= [xe *rem=Vi gy (B2)
g
The coeflicients of the expansion can, therefore, be ob-
tained explicitly,

L(g)=  I3g"

=0

(B3)
e 4 (i)" I (3k +(5/2))
3\9 Qk+1
which can be rewritten
Vi s
I = —— 6n — 1)(6n + 1). B4
T (12! nIill( X ) @4
The large-order behavior of I5 can easily be found,
15 = —Lsee ok, (B5)

K- voo \/ .
which is, up to a factor v/, the large-order behavior of the
ground state energy, and is a lower bound for the behavior of
the expansion around the instanton.

A simple calculation shows also that 7,( g) satisfies a
differential equation

36871 5(g) + (108g —12)15(g) +351,(g) =0.  (B6)
This translates in a Ricatti equation for the logarithmic
derivative
_ 19

I(g)

36g%(F’ + F2) + (108g — 12)F(g) +35=0.

If we now expand F( g) in a power series

F(g)

(B7)
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F(g) = YF.g" (BS)
we get the recursion formula

Fo=3k+2F._ +3 3 FF ,_ , k»2
O<i<k —2

(B9)
Fy=35/12.

It follows from this equation that F, is a rational num-
ber with a denominator of the form 3(2* +2), to be compared
with the denominator of /5.

We shall now explain how we calculate the other inte-
grals 1,( g). It is straightforward, using an integration by
part, to derive the relation

I(—1,_(g)=[r+1/2]¢gl, ,(g,  (B1O)
which yields a recursion formula for the coefficients 7 £,
I5 =I5 = +1)/2)5) (B11)

Since we know 7%, these relations allow us to calculate all
Ik,
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1. INTRODUCTION

The problem of the potential scattering theory for the
Schrédinger operator H = H, + ¢ acting in the Hilbert
space % = L *(R ) is to study a spectrum of the operator H.
According to the spectral theory for a self-adjoint operator
H:577—27¢ a unique decomposition for % is

%:%ac Q%sing @%p

and H leaves each /% invariant and, moreover, H } 5%,
has an absolutely continuous spectrum, H | 5, has a sin-
gular continuous spectrum and H | 57, has a complete set
of eigenvectors.

The existence of the wave operators

2, (H,H,) = s-lim gitHg — itHs

t— +

guarantees the validity of the following conclusions
Ranf2 , C7°, CH;.

The demonstration of the existence of the wave opera-
tors is one of the main problems in the potential scattering
theory. In early days of the scattering theory J. M. Cook!
proved the following simple and strong criterion of the exis-
tence of the wave operators:

Theorem: Suppose that there is a subset
& C Y (H)nZ (q) dense in 5 so that for any pe&

f f llge"" @ || dt < 0.

Then £2 | (H,H,) exist.

M. Schechter’* has recently proved the following use-
ful generalization of the Cook theorem:

Theorem: Let H, H,, be self-adjoint operators in 57°. As-
sume that

(1) Z(B)D Z(H) and ||Bu||<const(||Hul|| + ||u|}) for
allueZ (H);

D ZH)C2(4);

(3) For all peZ (H), veZ (H,),

(Ho,¥) = (p.Ho¥) + (Bp,Ay)
((-,+) is the inner product).

(4) There is a dense subset & C %, (H,) so that for any
@e¥ thereis T, < oo with explitHo)peZ (A ) for |t | > Ty and

j e | di < o,
ti>T,

Then 2 | (H,H,) exist.
Remark: B. Simon* has found a proof of this theorem
based on some modification of Cook’s arguments.
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On the basis of physical intuition it is clear that only a
behavior of the potential g(x) at infinity is critical for the
wave operators {2 , (H,H,) to exist. The most general result
on the existence of 2 , (H,H,) refelcts this heuristic fact.

Theorem®: Let H be a self-adjoint operator so that for
any g (R ) (% is the Schwartz space) with a support of @
outside some ball {x:|x]<R } with the fixed radius R,

Hp = Hyp + q@. Let y» be a characteristic function of the
exterior of the {x:|x|<R }, and suppose that

f (1 —xrlge ™|l di< o, YpeF(R')

Then £2 _ (H,H,) exist.

Next problem of the scattering theory is the investiga-
tion of the completeness of the wave operators 2 , (H,H,)
[or the equality Ran2 , (H,H,) = 57 ,.(H)]. At present
there are two methods, at any rate, in the time-dependent
scattering theory. One method lies in the direct examining of
the existence of 2, (H,H,), where the following result was
obtained:

Theorem 1.1%7: Suppose that

sup[(l + le)“”f
xeR' |

x —y|<l

[x —p| g (y)dy
< o0,

forsomee>0and0< 6 <. Then2 , (H,,H,+ g) exist and
are complete.

Remark: By this theorem we can consider potentials
whose behavior at infinity is |x| ~'~¢, Ve > 0.

The other method to prove the completeness is based on
the fundamental Birman theorem®:

Theorem: Let H>0 be a self-adjoint operator. Suppose
that @ (H ) — @ (H,)is the trace class (see Sec. 4 below) for the
C? function @ on [0, o ) with strictly negative derivative.
Then 2 | (H,H,) exist and are complete.

This theorem is valid in a more general sitaution for the
generalized wave operators

W, (HH,) = slime™e"“"E (H,),

— 4+ o

where E__(H,) is the projection onto the #°,.(H,,). Note also
the following fact:

Chain rule: Suppose that W (H,,H ,)and W __ (H,,H,)
exist (are complete). Then W (H,,H ) exist (are complete).

The results®'" which are an analog of the Kupsh-Sand-
has theorem for the completeness have been recently
obtained.

Theorem®'*: Let VeL | (R'\S), where S is a closed set
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of Lebesquemeasurezero: V ~(x)=max{0, — V }and V" ~isa
H -form bounded operator with the bound < 1. Suppose
that y. is a characteristic function of the ball {x:|x|<R }.
Then 2 4 (H, + V,H,), exist and are complete if and only if
2 . (Hy+ V. ,Hy), where V,, = (1 — yg )V, exist and are
complete. (The operators H,+ Vand H, + V., are defined
by the form method.)

The object of this article is to demonstrate the analo-
gous principle for Schrédinger operators with a magnetic
field (;V + a)? + ¥ with general a, V. Moreover, using the
commutator method developed below the sufficient condi-
tions for the existence and completeness of the
W, [Ho(iV + (1 — yr)a)’ + (1 — yx)V ] will be given.

2. FORMULATION AND DISCUSSION OF THE BASIC
RESULTS

We shall now consider the Schrodinger operator with a
magnetic field ({V + a)® + V, where

V= (i,..., i)
dx, dx,

is the distributional gradiant and Q==(a ‘",...,a "’) is the real
valued vector function. Denote acL F(R') if and only if a'”
el P(R"),j = 1,2,...,/. Let us also assume .S is a closed set of
Lebesque measure zero. We define the sesquilinear form 7 as
the closure of the form

t[u,w] = GGV + )u,(V + a)), D)= D(V)nZ(a).
Let H (a) be an operator associating with the form . We shall
also introduce the following designations:
V t(x)=max{0, + Vi, sothat V'=V"* — V7,V *>0for
any real valued function V. 4 + Bis the form sum of the self-
adjoint operators 4,B. (Subsequently we shall usually write
A + Binstead of 4 + B.)

Our main result is

Theorem 2.1: Let acL }
pose that

(D poV-<H, +d, for some py,> 1, d>0.

(2) There exists some 0 < R < o so that the generalized
wave operators W [H,,(iV + (1 — yg)a)’ + (1 — yx)V ]
exist and are complete, where v is the characteristic func-
tion of the ball {x:[x| <R }.

Then W, (H,,H (a) + V') exist and are complete.

Remarks:

(1) The necessity of the condition (1) Theorem 2.1 fol-
lows from the Pearson example.'?

(2) Theorem 2.1 is new even in the case a = 0. (Refs. 9
and 10).

(3) In Theorem 2.4 below we shall give conditions
which guarantee the validity of the assumption (2) Theorem
2.1 (see also Ref. 14). In the case a = 0 we can use, for exam-
ple, Theorem 1.1.

Let us pick the two principal results out of Theorem 2.1:

Corollary 2.2: Suppose that 0< Vel | (R'\S) and
supp(V) is compact. Then W _ (Hy,H, + V) exist and are
compiete.

Corollary 2.3: Let acL },_(R'\.S) and supp(a) is com-
pact. Then W, (H,,H (a)) exist and are complete.

(R'\.S), VeL |

loc

(R'\.S). Sup-
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Remarks:

(1) Corollary 2.2 was obtained previously by P. Dieft
and B. Simon,'® Yu. A. Semenov,!! M. Combescure and J.
Ginibre.® (See also D. B. Pearson,'? E. B. Davies and B.
Simon.'%)

(2) In the case of the operator — 4 + V the above
Kupsch-Sandhas existence theorem precedes the complete-
ness Theorem 2.1. However, Corollary 2.3 is a new result
both for the existence problem and the completeness prob-
lem for the operator (iV + a)*.

The following theorem gives sufficient conditions for
the validity of the assumption (2) Theorem 2.1.

Theorem 2.4: Suppose that beL _(R"), QeL | (R").
Let p(x) = (1 + |x|*)""%. Suppose that b = p ~ b,

Q =p ~"Q, for some v >/ and the functions by, Q, obey the
following conditions

po4b; <H, +d,
Q.1

PoQo<Hy+d, po>1, d>0.
Then W _ (H (b) + Q + H,) exist and are complete.

Remarks:

(1) In the recent paper by J. Avron, I. Herbst and B.
Simon'® the completeness of the wave operators
W (H(a) + V,H (a)), where acL | (R’) and ¥ belongs to
the Rollnik spaceif / = 3 (see, for example, Ref. 17, p. 3)or V'
belongs to the Birman—Solomjak space (see Ref. 18) if />4,
was demonstrated. In connection with the Avron er a/. Re-
sults we may note that our methods allow proving Theorem
2.4 if we replace the assumption (2.1) by the following as-
sumption: Q belongs to the Birman—Solomjak space.

(2) Our methods aliow us to combine the results ob-
tained by different ways. For example, the following is valid:

Theorem 2.5: Suppose that ¢ and Q obey the assump-
tions of Theorem 1.1 and Theorem 2.4 (with b = 0), respec-
tively. Then W, (H, + q + Q,H,) exist and are complete.

3. CONSTRUCTION OF SELF-ADJOINT EXTENSTIONS

(i) We shall first review some of the main ideas in the
theory of quadratic forms on a Hilbert space. (Thereis a very
complete discussion in Refs. 19 and 20.

Let 7 be a complex Hilbert space, ¢ a densely defined
symmetric closed nonnegative form on %", Then there exists
a self-adjoint operator 720 such that

tlup] = (T "%, T), G@)Y=2(T").

Let us also consider a symmetric quadratic form . The
form « is called ¢-bounded if and only if Z (@)D % (t) and

\alu,u}|<ct [u,u] +d ||ul]>, VueD(t)
for some constants ¢,d>0. (Subsequently we shall put
afu,u] = aful)

The infimum of all possible values of the constants is
called a #-form bound of the form «.

If o is the -bounded form, we can represent a by the
operator Ae.¥ (¥, % % is the space of the bounded
operators.}:
afu,w] = (u,Av),

where 7. = | D ()]

e, =D(A),
.= (T +1)""%||} and 5. is a space

M. A. Perelmuter and Ya. A. Semenov 522



dual to 57, with the norm ||-||. = ||(T + 1)""%||, so
#.C Cand |<|HI<H.

As (T + A Re L NL(F.H), A>0, the
oprator (T + 4 )"2A (T + A "% is a bounded map from 7%
to 5. It is clear that

T+ AY"2AT +A)V<c+¥

for any ¥ > 0 and all sufficiently large 4 >0, wherecis a ¢-
bound of the form a.

Let a be a t-bounded form with the z-bound less than
one. Then the form ¢ + a, Z(t + a) = Z(t) is closed,
bounded from below and, consequently, it associates the self-
adjoint operator S. Moreover, we have the representation

S+
=(T+AY"[1+(T+ Ay AT+ A7)

X(T+Ay'"?, 3.1

for all sufficiently large A > 0.

Remark: A complete discussion and numerous applica-
tions of the representation (3.1) are given in Simon’s book. '’

Let 7 and r be closed symmetric nonnegative forms on
& and let Z(t )N (r) be dense in 5. Then the form
s=t+r, D) =D t)nD(isalsoclosed. Let S, T, R be
operators associated by the forms s, ¢, r, respectively. The
operator § = T -+ R is called the form sum of the operators
T, R. Notice, it is possible Z(T')nZ (R ) = [0}. (Further we
shall write + instead of + .) We shall also denote
AePK (T (AePK,(T))if and only if the form of the operator A
is bounded with respect to the form of the operator 7 with a
bound <« 1 (equals zero).

(ii) Subsequently we shall need some approximation
theorems about the convergence of the sequence of quadratic
forms.

Theorem 3.1 Ref. 19, Chapter V111, Theorem 3.11: Let
{¢, ] be a nonincreasing sequence of densely defined closed
symmetric nonnegative forms on . If T, is a self-adjoint
operator associated with ¢, , then the sequence { T, } conver-
gences in a strong resolvent sense to some self-adjoint opera-

R

tor T »0. Thus if n—oe we have T,— T, so that

(T, +AY'>(T+4Y!, Rel>0.

In particular, if the symmetric form ¢ [u] = lim, __¢,{u],
D(t,)=V,,, Z(,)is closable, then T is a self-adjoint
operator associated with the closure 7_ of the form t,.
Before formulating one more approximation theorem
we shall introduce some definitions.
Let 7 = L *(R') and V=(d/3x,,...,8/9x,) be the dis-
tributional gradient. Consider the form

Lof. du v
holuv] kZ’I <l dx,  Ox, >
={Vu,Vv), D(hy)= L V)
and the Laplace operator H, associated with the form. If
0<geL |,. (R'\S), where S is some closed set of the measure
zero, then 2 (V)nZ(g'?) is dense in L 2(R'). So we can de-
fine the form sum H, + ¢.

Let W be a multiplicative operator associated with the
measurable real-valued function W (x). Let W {u v]
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= § uWvdx be a hy-bounded form with the /1,-bound less
than one, so We PK (H,). Then the form sum Hy, + g+ W,
which is a bounded from below self-adjoint operator associ-
ated with the form h, + W + q is well defined.

Theorem 3.22%%* Let H,, q, W be above-defined.

(1) Let g,, and W, be truncated operators correspond-
ing to the g, W, respectively, so

) = <q(x) if g(x)<n,
%)= \o i q(x)>n,
Then

s-lim (Ho+q, + W, +4)'=Ho+ g+ W+A4)',

for all sufficiently large A > 0.

(2) There exist the functions Z,eC,*(R") (n = 1,2,:)
such that the operators { H,, 4+ Z,, ] are bounded from below
uniformly on n = 1,2, and

n=124

s-lim (Hy+Z, + W, +A)'=Hy+q+ W+ A1),

n—>o0

for all sufficiently large A > 0 and, consequently, by the Trot-
ter-Kato theorem

S i(H 4+ Z, -
s-lim e (ot Z) — p—tUHo+ g+ W)

H—> 00

(iii) Definition of the Schrodinger Operator with Magnetic
Field

LetacL i _(R'\S), so a=(a‘",...,.a"), a"?
€L} (R'\S),j=1,2,..,l. We shall suppose a is a real-val-
ued vector function.

Asael 1 (R'\.S)and a0 we can define the form sum
H.(a) = Hy + (1 + €)a%, (¢:0) associated with the form

t [up] = hylup] + (1 + e){au,av),

D) = DD (@) = D(VnF(|al)
Let us introduce the symmetric form a by the following way:
alu,w] = (iVu,av) + {(au,iVv),

D(a)=F(VnZ @) = Z(t.).

Lemma 3.3: The form a is ¢, -bounded with the ¢, -
bound< (1 4 €)'

Proof: Let ueZ (t,) = 2 (@), then

t [ul +\/1 +ealu)
= (((V + /1 + €aju, (iV+ /1 + €aju)>0,

t [ul —‘/1 + ealu)
= ((iV — /1 + €aju, (iV— /1 + eaju)>0.

Then ¢ [u]> /1 +€lalull. n
Introduce the form

GEN=2D(,), €>0.

The symmetric nonnegative form ¢ is closed by Lemma
3.3, so the operator H, (a) associated with the form is self-
adjoint nonnegative and

tPlup] = (u,H (ap),
ueZ (1Y), veZ (H (a)),
tOluwl = (H ()2 u,H_(a)" ),

1=t +a,
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upeZ(H (3)'?) = (),
(H@+A)'=(H@+ 1)
X[1 4+ (H(a) + 4 )1 (a)(H.(a)
+AYTHH@ +4)7,
where A (a) is the operator associated with the form a. [It
follows from Lemma 3.3 that a[u,v] = {(u .4 (a)v),
uveZ (A (a)).]
Notice that the sets &2 (A (a)) and & (@) = Z (¢ ') coincide.
It is clear that O < €, <€, implies O<H, (a)<H_ (a).
Hence it follows from Theorem 3.1, that if €40, the sequence

{ H, (a)} converges in the sense of a strong resolvent conver-
gent to the self-adjoint operator H (a)>0, so

(@ + )" (H@ +4)",

Definition: The operator H (a) = R-lim_,, H_(a) is
called the self-adjoint Schrédinger operator with a magnetic
field.

Define the form ¢, :

t,[uv} = (GV + a)u, (iV + ap),

Z(t,) = Z(VInY(a).
As operator [V + a with Z(iV + a) = Z(V)nZ (a), is
densely defined and symmetric, so it is closable. Thus the
form ¢, is closable (see Ref. 19, Chapter VI), nonnegative

and consequently its closure r,, associates the self-adjoint op-
erator H '(a). Theorem 3.1 implies H (a) = H '(a).

(iv) Approximation Theorems for the Schrodinger Oper-
ator with a Magnetic Field

Rei>0.

The object of this section is to prove the following fact:
the operator H {a) may be approximated {in the sense of a
strong resolvent convergent) be operators H (a, ) withsmooth
a, . All results given in the section can be found in Ref. 25.
Therefore we shall confine only the formulation of the re-
sults and sketch the proofs.

Theorem 3.4: Let a,a, €L}, (R'\.S). Suppose that (1)

R

ll(a — a, )@[|->0, (17— o0 ) for any peC 7 (R'\S); (2) H , (a, )7?
H  (a), (1->w), where H  (a) = H, + (1 + €)a’
Then
R
HE (all )-' H(‘ (a)’
P

Remark: The importance of the theorem seems to lie in
that the approximation of the operator H (a) can be reduced
to the approximation of an operator of the (H, + V)-type,
which is a more habitual problem. So the approximation of
the operator H (a) by H (a, ), where a, are smooth is possible
and follows now from Theorem 3.2.

Proof: Let us use the representations:

g=g"(1+¢*+A@g' ") 'e",
g _g‘f/7r1(1 J'_g]r{/z,nA (all)g[izjl lgl4/-7n’

where
= (H( (an) +ﬂ )J’ g [ = (H’(au +/1 )_19

g=(H @+A4)", g, =(H@+1)".

Asg, .} g and Lemma 3.3 implies the estimate

€>0.
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\/1+e
\/1+e*1

our problem reduces to the proof of the following:

sup [|(1 +£'7%,4 (a,)8'7,)7'<

172 172

g7, A’ ,,%g‘/zA (a)g']’.

Hence it is sufficient to prove that

Vgl/z ) Vgl/2 (3.2)

and

i " 172

ng + n'_)ag+ .
Let feL *(R"), u, = g'/*,.f> Then (2) implies

8

__l2
U= u=gf.

(3.3)

Now we shall prove

w
Vu,— iVu,
Ll

w w

au, —»au (— 1is weak convergence). (3.4)

The estimates

IV <AL o <A

imply that for the proof of (3.4) it is sufficient to show the
following:

(Vu,,@ )—>{Vu,p);

<an un ’¢ >h_)<au’¢ >
for any gee, where € is dense in L *(R").

Lete = C S (R'\S), pee. Using uc & (V)n% (a) we ob-
tain

im {Vu,,p) = lim {u,,iV¢)
= (u,iVp ) = (iVu,p ),

hm <anun’¢> = hm <un’an¢>

= {u,ap ) = (au,p).
We now prove (3.2) and (3.3). Using the identity

”uﬂ ”2 + Hvun H2 + (l + €)”a” u'l Hz
=11 = flall® + (| 9ul” + (1 + e)fjaul®,

we have

[V(u, —wl* + (1 + elja,u, —aul)’

= [|Vu, |7 + IVul® + (4 + fla, u, [I* + (1 + )lfaulf*

—2Re(Vu,Vu,) —2(1 + €)Re(a, u,,,au)

=2(|R || = Hu, II* — iflull* — Re(Va,Vu,)

— (1 + €)Refa, u, au))

2R (1P = full* = [1Vul* — (1 + e)llau)=0.
Theorem 3.4 is proved. u

Theorem 3.4 and the definition of the operator H {a) im-
ply

Theorem 3.5: Suppose that all the assumptions of Theo-
rem 3.4 are valid. Then

H(a) = R-lim lim H.(a,).

el n oo
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Corollary 3.6: Let acL 2 (R'\.S). Then

e~ |<e= i 7],
for all feL %(R").

Proof: Let a be smooth. Then the proof of (3.5) based on
the Feynman-Kac-Ito formula is given in Ref. 26 (see also
Sec. 4). Thus corollary follows from Theorem 3.5. .

Subsequently we shall consider the operator
(iV + a)> + ¥, which is more general than (iV + a)?, where
Vis a mulitiplication operator. For a correct definition of the
form sum we need the following simple

Propositon 3.7: Let ¥V be a multiplicative operator such
that Ve PK (H,). Then Ve PK (H (a)).

Proof. Using the representation

1 on e~ zH(a)e—/lzt —1/2 dt,
I'(3) Jo
and Corollary 3.6 we obtain
(H @) + A )" 2u|<(Hy + A)Y"?|u|, VYueL*R"), A>0.
Hence
|(H @) +A)"*V(H (@) + 1)
<(Hy+A)"V2V(H,+A) <1 n

(3.5)

(H@)+4)"" =

Suppose that 0 < VieL{OC (R'\S) and V& PK (H,). Us-
ing Proposition 3.7 it is not difficult to see that the definition
of the operator H = H (a) + V* — V'~ as a form sum is coo-
rect. Moreover, we have

Theorem 3.8: LetacL . _(R'\S),0<V *eL] _(R'\S),
V-e PK (H,). Suppose that V' ;= (n = 1, 2,..-) are correspond-
ing truncated operators and the consequence {a, } obeys all
assumptions of Theorem 3.4. Then

H@)+ V' —V =R-im lim lim (H. @)+ V. — V)

€10 ko0 N>
Proof: It is a direct corollary of the above mentioned
approximation theorems,
Remark: 1t was shown by T. Kato? (see also Refs. 28
and 26) that in the case .S = ¢ it is possible to omit the lim, ;.

4. SOME PRELIMINARY INFORMATION.
A. o ,-spaces

Further we shall mainly use some properties of the 7 , -
spaces. For the completeness we shall give here some defini-
tions and facts.

An operator X is called the trace (or Xeo) if and only if
there is an orthonormal basis {¢,, } ;2 _, such that

rxX=3 (X4, <o

m=1
We shall denote Xeo ,(1<7 < o) if and only if X" €8,.
A norm in the space § , is introduced by the following way:
11X, = (X",
Each g, is double idealin the space .#(L *) and, more-
over, the Holder inequality

XX ], <X, =X 4.1
wherer ' =Z27_,r 7' (for r = o we shall put
1], = |I-ID, is valid. The following simple proposition is
valid:
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Proposition 4.1: (See, for example, Ref. 29). Let X, o0 ,,
I<r <o,n=1,2,...,X,°*—>Xand sup,,, ||| X,||, <.
Then Xeo ,.

We shall also formulate a theorem which was essential-
ly proved in Refs. 10 and 22:

Theorem 4.2: Suppose that acL 2_(R'\S),

VeL | (R'\S)and ¥V ~€ PK (H,). Let s> 0, 5cR'. Then

(14 xPP~(H (@) + ¥ +4) (1 + [x]) o, ,
where r > 4.

Remark: In Refs. 10 and 22 this theorem was formulat-
ed for the case a = 0, Ve PK (H,), but it is easy to extend the
theorem for our assumptions.

Remark: Ase ~ ' ®+ V) i5 2 holomorphic semigroup in
LYR'),(H (@) + V + A Ve "H®+Vic #(1 %) ThusTheorem
4.2 and the representation
(1 + lx|2) —Se— t(H(a)+ V)

=1+ |x]~(H@+V+A1y]
= [(H(a) + ¥+ Ay 70 +Y)]
imply (1 + |x|?) ™ ‘e = 'W®+Vieq, for any 5> [ /4.

In particular, it follows that e ~*/® + ¥) i5 the integral
operator.

Below we shall also use the following well-known

Proposition 4.3: Suppose that operators F, G in L (R")
obey the assumption

|Gf|<F| f| for any feL (R")
and Feo ,, for some integer k> 1. Then Geo ,, .
Remark: For the noninteger K the validity of the propo-

sition is open and for <K < 1 the proposition is false. There
is an interesting and complete discussion in Ref. 30.

B. Integral properties
Using Corollary 3.6 it is clear that
\efr(H(n)+ V)f‘<e_lH“tft

for V feL %(R'), where acL 2 _(R'\S), 0<VeL | .(R'\S).
This estimate and the properties of ¢ ~ ¥ imply that
e~ @+ V) is an integral operator whose integral kernel

e~ H®+V)(x 3) obeys the estimate

sup  Je 'O x p)| < 0.
(x, MR xR’

C. The Feynman-Kac-Ito formula

In this section we shall consider the Feynman-Kac-Ito
formula (FKI) which has a decisive role in our proof of the
completeness of W, (H,,H (a) + V).

Let 11, be a Wiener measure on the path space £2,,, which
consists of all paths  such that [0, ] Ds—w.cR’ with
{0} = 0.

Theorem 4.4: Let acL ;. (R'\S), VeL | (R'\S),

V-e PK (H,), feL *(R'). Introduce the sets:

N4(a%x) = [coe!)ozf a’(w, + x)ds = o},
V]
£25(@%x) = 0,\2(a*x),

2y(V,a’x) = {xen g(az,x):f Viw, +x)ds = 0 }.
(0]
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Then we have (pointwise a.e.)

e = |

24V *.x)

Flor +x)
Xexp[ - Vo, +x ds | dufe), (EK)

fe™ ®f)x) = J flo, +x)U (a,0,t,x) dugw),  (FKI))

12§(a%x)

(e 1041 £

| flo, +3
12 5(a%, x)\ £2,(V,a%, x)
Xexp[ — j Viw, + x) ds] Ula,w,t,x) duyw),
o
(FKI,)
where U (a,0,t,x)eL *(2,,du,) for a.e. xeR',
U (a,0,t,x)||, (0] S 1
and formally (if a is smooth it is in fact)

U(a,w,t,x) = exp( — B),

B = —;-f divalw, + x)ds + if a(w; + x) do.
(4]

(¢]
(Here fyalw; + x) do is the Ito stochastic integral.)

We shall give a sketch of the proof. If a, ¥is smooth, FK
and FKI are well known. So our problem is the investigation
of the singular a, V. Note that for / = 3, VeL (R’) + L =(R’)
the proof of FK is contained in Reed-Simon,*’ but this proof
is also valid in our case.

Let us prove the FKI,. Consider first the case
acL *({R'). Let {a, ] be a sequence of the C & vector-valued
functions such that ||(a — a,, g ||—0 for any peC £ (R'), then

R
H,+ a :»Ho +a°H (a)=R — lim H_(a,) and

H—» 50

@.l0) = flo, + x)exp[ - EJ: a(w, + x) ds]—»q) (@)

= flo, + x}exp{ - GJ: a%w, + x) ds]

for o — a.e. wef2, and a.e. xeR". Choosing a suitable subse-

quence we can consider {e ~ 7% f)x)—{e = £ix)
pointwise a.e. For H,(a,) we have the usual Ito formula

e ™" f)x)

’
al(w, + x) ds

= [ s, +xe -
2,
for every feL *(R’), a.e. xeR/, where U (a, ,w,t,x) = e ~

B, = ‘_J( diva, (0, + x) ds
2 Do

U(an a(l):trx) dlu()(w)

B,

+ if a,(w, + x)do.
0

Let us introduce the Banach spaces L ?(£2,,,d p0),
1<p < . Denote a value of the functional BeL ?(£2,,d p,) on
the vector veL ? (£20,d u,), (1/p) + (1/p') = 1 by (v, B). Let
t> 0 be fixed. An element U, (w)=U (a,, w,t,x) belongs to
any L “2d p,) and, clearly, ||U, ||, -, 4,., = 1. The space
L ?(£2,.d n,) is weakly compact, so that there 18 a subse-
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quence | U, | which has a weak limit in L #(20,d ,):
U, Y= {vu),

uel *(20,d po), Yvel ?(20d ).
By choosing v = @, (») and using ¢, IS—,’Z ¢ we obtain
(@, U, )= (V,u)
and
(@u:U, y=exp( — tH.(a,)) f—exp( — tH,(a)) /.

Asweak lim,._,_ (@, U, ) =lim,_._{(@.u,)={p,U)
does not depend on the subsequence [ '}, then

(., U,)—{@p.u).
Thus

(p,u) = [exp( — tH(a)) f ](x)
f — ejl a’(w, + x)ds
=| flo, +x)e
12,

° Ula,w,t,x) d polw)
for u, — a.e. wef2, and a.e. xR’ It is clear that
”U”L’”({l‘,,dm,) =L

Letnow aeL ; (R'\.S)and {a, }, a sequence of the L =

loc

functions, obey assumptions of Theorem 3.4. (For example,
a, is a truncated operator corresponding to a.) Now we can
repeat the above mentioned procedure and construct
Ulawo,tx)el =(f2o,d po), WU, <20, = 1> such that

fe ™ £ )

~ f fl@, +x)
12 i(a’,x)

for iy-a.e., w, a.e. xR’ and every f €L (R"). To see this we
have used the following:

@ (@)

| f(w, + x)exp( — f a’(w, +x)ds) if wen (@’ x),
B ° if wey(a’x).

¢
— EI aX(w, + x) ds
e 0

Ulaw,tx)d pyw)

0
It s also clear that

(@, + x)exp( — e j

0

3

20, +X) ds) > f(@, + )

for ug-a.e. 0ef? §(a°x). and a.e. xeR’,
It follows from Theorem 3.4 that e ~ ¥ e —H® g9
using the dominated convergence theorem we obtain FKI,.
Proof of FK1,: The proof of FKI, shows that
(e — ({H (a) + Vx)f)(x)
- J" (V, + ea’¥w, + x) ds
= flo, + x)u(a,w,t,x)e ™
£2(a".x)
for any ¥V, eL =(R"), feL *(R') and a.e. x€R".
So if €10, we obtain

(e —~ t{H{a)+ Vk)f)(x}

d po(w)

'
/J (Vi + lw, + x) ds
)

- J- f(a)t + x)e ‘
12 51a%,x)

The limit approaching when K— o completes the proof. B
Remark: Using arguments based on the approximation

Ula,w,tx)d plw).
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theorem 3.5 it is easily to see that
supp(ajnsupp(b) = ¢

implies

Ula + b,w,tx) = Ula,w,t,x)U (b,w,t,x)

for u,-a.e. wefd, and a.e. xeR'.

Moreover, if X is a characteristic function of the ball
{x:|x|<R }, we have

Ua,o,tx) = UXga,0,tx)U((1 — Xp)a,0,t,x).

5. PRINCIPLE OF THE DECOUPLING OF FINITE
SINGULARITIES

Our proof of the completeness of wave operators is
based on the following asymptotic estimate:

Lemma 5.1: LetaeL 2_(R'\S),0<VeL | .(R'\.§) and
H = H (a) + V. Suppose that

supp(a)usupp(F ) C {x:[x| <R }
for some finite R > 0. Then

[ e, p) e e dy|<ce (s

for every t> 0 and a.e. xR/, where C and 2° > 0 are the
constants depending on ¢ and R only.
Proof: Denote

' =05@%L N\ 2,(V,a x).

Then the following equality is valid for a.e. xeR":

fw [e = Ho(x,y) — e " (x, )] dy

_j' Viw, + xjds
1 f e o Ula,w,tx) d poo)
N

In fact, let X, be a characteristic function of the ball
{x:|x|<n}. By dominated convergence theorem and (FKI,)
we have

f e Hx,y)dy
RI

=lim | e ""(x, )X, (y)dy
n-—~w JR!

= lim U(a,w,t,x)exp[ —f Viw, + x) ds]
n-vee Joye 0

XX, (@, + x}d ul(w)

= J;r U(a,w,t,x}exp[ — LI Viw, +x) ds] d u0(w).

Let |x| > 2R. Let us decompose the path space £2, on
two subsets 2" and 22§ in the following way

N = {wey: inf o, + x|>R ],
O<s<t

NP =02,\N" = {wen2,: inf |o, +x|<R},
O<s<t
and introduce the set

25 = {wefysup |o,|<|x]/2].
st
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It follows from the inequalities
oo, + x[>|lx| — lo|l,
x| — R>|x|/2,
that
NP Clwey inf ||x| — lo,||[<R}CN2E.
O<s<ge

It is clear that if wef2 § and 0<s<¢, then a(w, + x)
=0=V(w, + x). So we have 2°C 2, and

f U(a,a),t,x)exp[ — f Viw, +x) ds] d polw)

o]

= g2 +j Ula,w.tx)

2,0
Xexp[ —J Viw, + x) ds] d polw).
]

Applying the imbeddings 2 '\ 2 {'C2 P CN and the in-
equality

\U(a,a),t,x)exp[ - Lt Viw, + x) ds] |<1

we obtain

]1 —~ L' U(a,a),t,x)exp[ — J: Viw, +x) ds] d,uo(a))’

f Ula,w,tx)
208

Xexp[ - Vi, +x) ds] d 110f0)| <2 1ol2 ).

<[ — /‘0(-0(0”)[ +

The well-known estimate of the right part of the last inequal-
ity gives (see, for example, Ref. 32):

B2 )<Cre 71,
C,=C(R1), Z=ZRt).

Consider now the case |x|<2R. Introduce the notation
C, = e* " ®°. Next, we have

e~ (x,p) —e " (x, )} d y|<2<Cpe = 7",
Rl

So by putting C = max{C,,C,} we obtain the estimate (5.1j.
|
Lemma 5.2: Suppose that all the assumptions of
Lemma 5.1 are valid. Then the operator p* [e—H_¢e
{and thus [e =™ — ¢ ~'"] p #), where p(x]) = (1 + |x|?), be-
longs to the Hilbert—Schmidt class o, for every >0 and
ueR'.
Proof: Tt follows from the estimates (5.1) and

—rH]

esssup le ‘H@+V)

(x, y)eR! x R/
that the integral kernel of this operator belongs to
LR xR"). =
Theorem 5.3: Let acL , . (R'\S), O<VeL | .(R'\S).
Suppose that a and ¥ have compact supports. Then

(x Y| < o0

e—tH__eft([I(a)+V)eo,1

for every 1> 0. In particular, W, (H (a) + V,H,) exist and
are complete.
Proof: Denote G = p He  'H® V) F— - tp— 1
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where u>1/2. Since |G f|<F | f| for every feL *(R")
(pointwise a.e.), so by Poposition 4.3 Geo , because Feo ,.
By analogy e = ‘A ®@+ V) 5 ~teq , (u>1/2). In view of the
identity

%IH(,___e»tH

- [(e —@/DH, _ o (t/Z)H)pp] [ p- Hg— (1/2)Hu]
+ [e — (1/2)Hp — M] [p,u(e~ (t/2)H,
—e WP [H=H(a)+ V],
we see that every operator in square brackets is the Hilbert~
Schmidt operator, and the product of the two Hilbert—
Schmidt operators is a trace operator. A completeness of the
W, (H, H,} follows from the Birman theorem. L]
Theorem 5.4: Let acL 2 (R'\S), O<VeL |,.(R'\.S)
and V (x) has a compact support. Then
e tH(a) __ e t(H (a) + V)ea. ,

e

(5.2)

foreverys>0andhence W (H (8) + ¥, H (a)) existand are
complete.
Proof: 1t follows from the (FKI,) that

I[e-lH(a)_efl(H(n)—kV)]fg[e-—tH(,_eil(ﬂn"‘ V)]|f|

for every feL *(R') (pointwise a.e.). In particular,
p
py[efl(H(a)+ V) _ e/tll(a)]ea2

for every <€R!, because by Lemma 5.2
p,u[e —tH, e t(H, + V)]eo. 5
Moreover, combining the inequality

|p~#e—t(H(n)+ V)fl<p~yegtm.|fl

and Proposition 4.3 we have

p ye—tll(a)eo. ”
p— ue—'(H(“)+ V)EO'Z, u>1/2

Now, by analogy with the proof of Theorem 5.3 we obtain

{5.2). |
Theorem 5.5: Let VeL | (R'\S), V€ PK (H,) and

supp(V ) C {x:]x|<R } for some finite R > 0. Then

e‘AlH)——e‘AIHGU'I

foreveryt>0,where H - =H,— V", H=H,+ V.
Proof: It follows from the proof of Theorem 5.3 that it is
sufficient to show the following inclusions

p e Meo, u>1/2,

~tH —e"”]eaz.

phle
The first inclusion is the consequence of Theorem 4.2.

Let us consider the operator 4 = p ~#[e ="
—e "M],ueR". Lety ¢(-) = (1 — y,)(-), where y, isachar-
acteristic function of the set

{we{lozf Viw, + x)ds = oo }.
¢}

Using (FK) and the Holder inequality we have for every
feL*(R')
e~ —e ") f(x)

f’V((u\+x)d.v . ~J{"V'(w\+x)dx
f e 1 —yi(@x)e }
12,
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X fl@, +x)d po(@)]

V(e + x)ds

<(L | fw, + x)'apef“ d uy(w))" *

([ 7@+l
2,
— ' Hw, + X) ds 4
X{1 =y, (@x)e [y ) dp@)
<(e«t(l-l,,— pV')lflap)l/p(e-tH(,__e—r(H(,+ V‘))
x| flo=orye, 4 L,
p

'

P

where 0 <a < 1 and pe(1, o) is fixed by the condition
pV €PK (H,) (note that it is always possible). Moreover, we
have used the obvious inequality

t
o<l — exp( — f V*(w, + x) ds)/yj(a),x)gl
0
for u, — a.e. o, a.e. xeR".
Putting @ = 1/ p and denoting
C= ple " —
v = u(p +1)/(p — 1), we have from the last inequality

AFI<(BIFDACI P+ L =1
P D

—(H,— V)
s

B=p e

e~ t(H, + V')),

for every f€L *(R’) (pointwise a.e.).
We must show that A€o ,. In fact,

2 e =3 (de; Ae;)

i

<Y <(Be,)(Ce) ")
<57; (|Be, ||* 7.l Ce, ||

<« IBe i (S lice D"

for every finite sequence of characteristic functions of the in
pairs disjoint sets. If L is the subspace of L >(R’) generated by
{e;} and P, is a corresponding orthoproyector, then

(4] =tr(44%)

= sup (P A4A*) = sup Z [ZCA T

<(sup 3 || Be, H2)2/p(SLL1p > liCe; »
= B INCHE”.

we have only to remark B, Ceo,.

Theorem 5.6: Let VeL |, (R'\S), V ~ e PK (H,) and yx
be a characteristic function of the ball {x:|x|<R }. Then
W (H,+ V, Hy) exist and are complete if and only if
W, (Hy+ (1 — yr )V, H,) exist and are complete for arbi-
trary R < .

Proof: Denote V,, = (1 — yg)V, Vr = yr V. Suppose
that W, (H, + V., ,H,) exist and are complete for some
R < . Theexistence and completeness of W . (H, + V.H,)
will be implied by the chain rule if we demonstrate the exis-
tence and the completeness of W, (Hy + V., — Vi,
HO + Vex)’ Wi (Ho + V,Ho + Vex - VRl)-
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It follows from (FK) that

‘e_ (Hot Vo Vi )f"' e t(H, + Vc,)f)(x)‘

o flo, + x)exp[ — Lt Voo — V2 )@, + %) ds]

1+ e - [ Vi, +nas]))
<J;“ | f(e, +x)|exp[ — Ll Viw, +x) ds]
{1 —exp[—JOl Vi (o, +x)ds]}

— [e~1(H‘,— VY _ g {H = Vo+ Vi )]lfl
Hence
SHH A Vo = V) e+ V)]fl

|ptle
<pﬂ[e—trﬂn~ V(e HHam Y+ V,;)],f,
and, obviously,
'p— ;Le"(Hn+ Vi = Vg )fl
<p~ Hg — 1 (Hy — V')|f" #>l/2_
The operators in the right parts of the last two inequalities
belong to o ,, so that the operators in the left parts of these
inequalities also belongs to o ,. Thus the above-mentioned
arguments give

e [Hit V-V e—t(H(,+ V)

€0 .

—t(H,+ V) _ ,— 1 H+ V= Vy )fo]-

The trace of the operator e
lows from the inequalities:

e

S HH Vi = Vi) - t(Hy+ V)]fl

|ptle
<p“[e
|p* tg — t(Hy+ V)pr— ue—t(HlmV’)If"

which are the consequence of the (FK) and the above-men-
tioned argurments.
We have only to apply the chain rule and Birman theo-
rem to obtain the existence and the completeness of
W (Hy+ V,Hy).
The proof of the inverse assertion is analogous. |
Theorem 5.7 (The general principle of the decoupling of
finite singularities): Let acL 2 _(R'\S), VeL | (R'\S),
V-e PK (H,). Let yr be a characteristic function of the ball
{x:[x|<R }.Then W (H (a) + V') exist and are complete if
and only if W [H ((1 — xr)a) + (1 — )V, H,] exist and
are complete for arbitrary R < co.
Proof: Introduce the notations

a, =(1—ygrla, ap =yga,
Vex:(l_XR)’/’ VR ZXR;/'
Using the chain rule we obtain
Wj: (HO’H(aex) + I/ex)
=W, (HH@+ V)W (H@+V, H@,,)+ V)
X Wj: (H(aex) + ,7’ H(aex) + Vex)’
W:t (HO’H(a) + V)
= Wi (H()’H(aex) + Vex)Wi (H(aex)
+ Vex! H(aex) + V)Wj: (H(aex) + I/’ H(a) + V)’
So we need to show the existence and the completeness of the
operators W, (H(a)+ V,H(a.,) + V), W_(H (a,) + V,

— t(H,y — V‘)__( —t(H,—V + V'E)]|f];

e
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H(a,) + V.,). By the Birman theorem and the above argu-
ments it is sufficient to show that

p Fexp[ —t(H@)+ V])eo, u>1/2
(it is the consequence of Theorem 4.2)

and

A=p*lexpl — 1 (H @) + V)]]
—exp[ — 1 (H (a,) + V) ]eb

A=p*lexpl —t(H @) + V)]
—exp[ —t(H(a) + V..))]eb .

Lemma 5.8: Aco , and 40 ,.
Proof: Denote y:(w) = (1 — ya )w), where ya (w)is the
characteristic function of the set Swef2,:f) a*(w, + x) ds

= w0 }.Letp> landpV -€PK (H,). Using (FKI,), the Holder
inequality, the property

Ua,w,tx) = Ula,, wtx)U(ag 0.t ,x)

and the inequalities |U (a,, 0.t x)|<]1,
[1 — Ulag @, ,x)[<2, we have

I(e* t(H@)+ V) _ e—l(H(ﬂ‘-.)ﬂF V))f(x),
‘

= t V- D

<J:2” | f(o, + x)lexp(J; (w, + x) ds)
X |1 — U(ag,w,t x)ys (@) d polw)
<21/p(e—t(H“pV')lf'l)l/p

X fﬂ £ @, +)|[1 = Ulag ot K, @) d @)

for any feL *(R") (pointwise a.e.).
Consider the operator N:L *—L ? defined by the
equality

V) = f fw,+ %)

I1— Ulag.o:t x)y;, @) d po®), fELYR').

It is clear that N | f|>0and |V f|<2~ “*"| f|.The latter im-
plies that ¥ is an integral operator and its integral kernel
obeys the estimate

esssup |V (x,»)| < 0.
(x, )R’ xR’
Moreover, by analogy with the proof of Lemma 5.1 we ob-
tain the estimate

0<J‘ N, p)dy<Ce= " for ae. xeR/,
-
where C, 2”7 > 0 depend on R, T only.

Thus p“N, N p*eo , for every ue#'. Putting
A4 = p*lexpl —t(H (a) + V)]]

—exp[ —1(H (a,) + V)],
B=2p~texp(—t(H,— V")), C= p "N,

1
v= ,up———+ , #>1/2,
p—1

and using (5.3) it is not difficult to see that
|[Af|<@B|f)"XC|f|)"7 and B,Cec , so that Aco ,. Let
us prove the inclusion 4 €0 ,. It follows from (FKI,) that

le—r(H(-)+ V) _ e—t(H(n)+ V))f’
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<(e—r(H(,—- V')_efr(H(.f Vot Vg ))|fl
_{,_(e*I(anV)__e

Combining the last inequality and Theorem 5.6 we obtain
A ,€0,. Thus Lemma 5.8 and Theorem 5.7 are proved. W

R Vi

6. ONE SUFFICIENT CRITERION OF THE
COMPLETENESS OF THE WAVE OPERATORS
W, (H@) + V.Ap)

In Sec. 4 we solved the problem of decoupling of finite
singularities for the potential ¥ and magnetic field a. Thus
the probelm of the completeness of the W, (H (a) + V,H,)
is equivalent to the definition of conditions which guarantee
the validity of the assumption (2) of Theorem 2.1. In this
direction we shall prove the following theorem:

Theorem 6.1: Let p(x) = (1 + |x|*)'/. Suppose that
b= p~ by, Q= p~*Q, for some v >/ and the functions
by, (O, obey the assumptions

4b2ePK (H,),
Qo< PK (H,).

Then
(HO)+Q+1) = Hy+ 1) teo,

for all integers k >1/2 and all sufficiently large A> 0. In par-
ticular, W, (H (b) + Q,H,) exist and are complete.

Proof: Introduce the operators H, (b),
H.=H, + (1 + e)b?, € > 0, where ¢ is fixed by the condition
(1 + e)b,’e PK (H,). Then it is sufficient to show that

HO)+Q+A) “—HDB)+1) "o, (6.1)

(Hb)+A) “—(H.(b)+1) ‘eo,, (6.2)
(He(b)+i)7k‘(H++}b)ikeal7 (63)
(H4+A) *—(Hy+ 1) *eo,. (6.4)

We shall consider (6.3) only, since other inclusions are anal-
ogous to (6.3) and their proofs are more simple. Let
b,ep by, by, eC R and

(H.0b,)+4) " —(H.,

_(H0+/l)ﬂk7

‘where H , , = H, + (1 + €)b}. (It is possible by Theorems
3.4and 3.2)

+A) A (H B +4)

Thus by Proposition 4.1 it is sufficient to show that
ZME(Hs(bn) +/1)7k - (H+,n +/{ )7ke0-l

and sup, |||Z, |||, < .
Denoteg = (H_(b, + 1), g, (H, ,+2A)" Using
the representationg = g'/%(1 + g'/*A (b, )g'/’)'g'{* we have

g —g. = Z g g —g. gk
2 kflf_/l/l [1+gliZA(b)]/2 _1}
g i+ 172
z k—lfjgl_*/}{ z (_1)
Jj=0 m=1
[gl/ZA (b )gl/Z } j+1/2.
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Denote

2k —(2j+1) _2j+1
a;= o v, B;= & V.
We have
g —g = 2g""‘“”+p “

Jj=0

(S (=1 [p™g'2A D, + p” 17}

m=1
Xp~ ﬂ’g’f 12
It follows from Lemma A1 (see Appendix) that

”p gl/zA (b )gl/z B/||<C<1

for ali sufficiently large A > 0, where C is # independent.
Hence, the series

S (=" [p g PA®g' 2 + p” 1"

m =1
converges to some bounded operator T ;. Note that || 7', || are
dominant by the n independent constants. Thus

2 gk—]—jgl/Zp

j=0
It follows from Theorem 4.2 that

gk _gk+ 'Tj pfﬁ,gj:l/z'

p “gleo, (6.5)
g /gl/Zp e, . (6.6)
where

| .
rat< Tmm{Bj,ZjJrl},
ra< %min{ a2k —2j—1}.

[(6.5) is a direct consequence of Theorem 4.2.] Equation
(6.6) follows from the identity

I\—I—ng/Zp a;
4
:[gkfl~jp——74M~1)][py(M71]g112p~yM],

M=2k-2j—-1, y=a,/M,

4

Theorem 4.2, and the Hélder inequality (4.1). Moreover,

1g“~ '~ %'"Cp "I,
e~ "0, s

are dominated by the # independent constants.
Using the Holder inequality for o, — spaces we get

111

=|llg" =" e T p gl L

<llgt &' UL T e el L
1 1 1 . <2k v>

— = — 4 — <min{ —,— ).

r s 72 I

Using theinequalities k >/ /2and v > /, we obtain ¢ ;€0 , and,
hence, g€ — g*, €0, uniformly in # = 1,2, [ |
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Remarks:

(1) If />3, we can take b %L | (R'), j = 1,...,/, with a
suitable norm in L !, where L 2(R') consists of all measur-
able functions which obey the estimate

171 ==s0p ¢ [meas{x( £GOI > 11177 < o.

Note that L #(R‘)C L (R’) (see Ref. 31) and the inequalities
(2.1) follows from the Strichartz inequality

| fll , <const|| f|l,., V&l ,» 1<p<l
There is a discussion of the best constant in this inequality in
Refs. 33 and 34.

(2) Suppose that the functions e, g obey the assumption:
W . (H (e) + q,H,) exist and are complete and, moreover,
e’c PK(H,), gc PK(H,). (For example, e = 0, and g obeys
the assumption of Theorem 1.1.) Using (FKI) and the repre-
sentation of the powers of resolvent by the semigroup, we
obtain the inequality
lp ' (H ) +g+A)"fI<p'(Ho+g+A)"?| f|. This

_ 1
APPENDIX: COMMUTATOR ESTIMATES
Let us introduce the following notations:
p=pE) =00+ x[)"? A®) =bV+iVb, g =

Hy+b>+A)",

says that o' (H (e) + ¢ + A )"'%b ,, for all integer k> 1/2
(see Theorem 4.2 and the Remark 1 below Proposition 4.3).
Hence we can replace the operator H,, in Theorem 6.1 by the
operator H (e) + g and to prove thereby the existence and the
completeness of the W, (H (e +b) + ¢ + Q,H,).

Note that the proof of Theorem 6.1 is based on the argu-
ments which are very general. So we can extend them on the
case of elliptic operators of higher order. We shall confine to
a formulation of the theorem:

Theorem 6.2: Let H, be an elliptic operator of the order
2m with C = coefficients. Suppose that A4 is an operator asso-
ciated with the symmetric form 2. 5 < (@, s D “u,

D Pv) |a| + | B| <2m and, moreover, A = p ~“Ay, v> 1,
Ao PK (H,). Then W (H, + A,H,) exist and are complete.

Remark: Evidently, Theorem 6.2 is the most general
result (without consideration of the behavior of coefficients
at the infinity) about the completeness of W_ (H, + A,H,)
for the elliptic operator H,, of higher order (see, for example,
Refs. 35-38.

A>0.

Suppose that the vector function b and the function Q obey the assumptions of Theorem 6.1 and, moreover, beC 2 (R'),

=a,!).

We shall consider in this section the estimates of the norm of the operator

pgA MR 2 p? a, B30, a+ B=v.

Put [4, B] = AB — BA. It is easy to see the following equalities are valid (on the Schwartz space .%°)

- d
[V, pa] =ax, p (VkE

Ox,
(8. p*] =g.[4, p*1g..

), [4, p%] = 2a p® " 2xV + ap"“z[l+ (@ —2)

Let 7 = i( 8 — a) p” ~*xb,, then, clearly,
A®=Vp~bop™ P+ p~bop iV=p “AM)p "+7
and
PELAME L P’ =81 p A o) p~ 7 [g‘f,p"] +[p

172

+8'°A (bo)g ' + pg'* mg'? p”.
Our assumptions about b, imply that

sup llg'*4 (bo)g'{|| < 1

for all sulﬁclently large 4 > 0.

(recall that b=a,)

"8 p T A MR + g PAb) p P [¢'p”)

(A

We shall now consider all other terms in the equality (A1). We shall prove that if A— oo, their norms tend to zero

uniformly on b,
Consider the commutator [ p%g'/?]. Note, at first, that

gZZE(H,—f-/i)“&: ﬁlf é"lﬁ(H.-*l»/{ +§)‘ld§
o]

{see, for example, Ref. 19, Chapter V.3), so that

172 1 * -1/ a -1 “ -1 _1
[p*%8Y =;J; EPp*(H + A+ E) ] dE = %L EVH. AA+EY [ po A JH. + A +E) dE

= — _Z_:_J;wé-—I/Z(H++/1 +§)-1pa‘2XV(H‘+/l +§)-1 dé—

531 J. Math. Phys., Vol.22, No. 3, March 1981

M. A. Perelmuter and Ya. A. Semenov 531



_« T ean -1 _ |x[2 -1
2 [" e a ey @ ) el as ey as

Next we have

peTHH. 48 =H. + 8 p* P+ (H A8 [ p A JH. + 8

=H 4+8)"'p* 2+ Ci{(H. +8) p**(H. + )" + C5(H. + 8o p *(H. + &)’
+ Ci(H. + 8 p* *xV(H, + 8),

where @, = (|x|*(1 + |x|*)'eL =, C{, C}, C} are constants depending on « and / only.

The last item in (A2) is transposed in the following way (omitting the constant C ;)

(H. +8)'Vx p* "Y(H, + 8)" — (H.+ 8)'(Vx p* *)NH. + 6)"!

=(H, +6)'Vxp® *(H. + 8)' — (H. 4+ 8)'(I + (@ — Do) p* *(H. + 8.
It is obvious that the representation for p* ~*(H, + 8)' as a finite sum consisting of three kinds of terms shown below

(A2)

may be obtained by the above mentioned commutation process.
(D) CHH. +8)'P,(H. +8)'p 09, (H.+ )" p° " k>0,
Q) d;(H. +8)'p, (H. +8)'p,, @, p°~ H. +8)7,

(3) ej(H+ + 5)—)‘91',1 (H+ + 5)*161‘.2 "'gj,r ,(H+ + 5)—1xpa _X’V(H+ + 5)_]
where all ¢, obey the condition a — ¢, <0, all obey the condition ¢ — £#°; +1<0 and the function g ., @, ,, ¢, are ele-

(j=1, 2,.,N),

ments of L *(R'), moreover, their -norms depend on a and / only.

Thus we have
”f 5—1/2(H‘+1 +§)-lpav2(H*+/1 +§)-}p—aA (bo)(H,,-i-ﬂ)_l/z d§”
0

<3 (C;uf EVH AA+EY'Q, (HoA A+ E)'Q 0y (Ho+ A+ E) 0™ YA BNH . +A)" 2 dE |

i=1

+ djlifo §H AA+EY '@ Ho A A+ E)' 0000, p° 7 H AL+ E) p A B)H. A+ A) 1 dE ||

+ e,-]|f EVAH AA+EV'O, H AL +E)'0,,0,, (H +A+ENxp" "7V
0

XH, +4 +£)' p~“AM)H. +A)'dE )

N
= > (Cil; +d,1;;, +e;l3),

J=1

1y <Ci(@l. Dsup .+ A+ 62 p A Gl + 472 [ " 6770+ )7 7 d,

12 <Cal. Diup .+ 4+ £ p A ol + 2 [ " 6770+ 6) " d,

1‘,;3 <C3(a,1,_]')ki Sglig (”Vk(H* +A +§)-‘/2”X||(H,+i +§)—1/2p»aA (bo)(H¢ +A)-l/2”)"£w 5-1/2(§+/1)—r,~1 d§.

The following relations were used in the last estimate:

IV + A+ E)ILY @y ¥jms 0,mEL “(R),

pa-t,<1, xk pa—,‘f"l<],
s§ug||(H¢ +A+EY2p A MYH. + ) < L.
>

The latter is the direct consequence of the equality
P~ A (bo) = A (p~bo) + ia p® ~*xby

and the following estimates
lgCA @ Zll <L llp™" b Pl <1, sup |(H. + 4 + £ HH. + A) <1
>
Note that each estimate for the 7, I,,, I, contain the integral ¥(1) = f&€ *(A + £)~*~' d§ — type, k> 0. Since
YA y-0, (A— ), we have

HLw EVHH. AA+EN PP THH A A+ E) p T AGYH. +AY 2 dE || = Z,(4),

M. A. Perelmuter and Ya. A. Semenov
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where Z7,(1 )>0(A— x ). By analogy we have

Hfm EVHH. AA+EY p T IXVH A A+ E) p A WIH. A A) AL |50 (A e0).

Thus we have
I{p"8'* 1~ “A (o)g' < Z°(A)
for any 4 > 0, where lim, ., #(1)=0.
The following can be proved similarly
llg'*A (o) p ~ 7 g% p” ]l -0,
So we need only to consider the term

172 172

| p°g' g’
As was proved in Ref. 22,

(0 H. A AY'"2p~ Wx, I<KHy + A,) %, ),

el =1p€p (B—a)p xbyp g

e Plp Ay p~ "8 p? 1|0 (4—).

Pl

where A, — o0 if - o0, S0 that using our assumptions about b, and the boundess of the x, p~*(k = 1,2,...,/ ) we obtain:
| 0°8" g2 p P | <|(Ho + 4,) (B — @) {xbo| p?(Hy + A 572 —0  (A—c0).

Thus we have

Lemma A.1: Suppose that b obey all the assumptions of Theorem 6.1 and, moreover, beC & (R’). Leta, 820,a + £ = v.

Then
I p7e'?A ()" * 0" || <1
uniformly in b, for all sufficiently large A > 0.
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The nonrelativistic quantum electrodynamics is formulated in a mathematically rigorous way.
The self-adjointness and the basic spectral property of the Hamiltonians are proved.

PACS numbers: 03.70. + k, 03.65.Db

1. INTRODUCTION

We consider a system of one nonrelativistic electron in
an external potential such as the Coulomb potential interact-
ing with a transverse radiation field. Our ultimate aim is to
give a rigorous mathematical foundation, though within a
nonrelativistic context, of the physical theory'~ of the Lamb
shift and spontaneous emission of photons, which have so far
been formulated only in terms of the formal perturbation
theory.

As a first step, this paper gives a fundamental frame-
work by defining the Hamiltonians of the system and prov-
ing their self-adjointness and their basic spectral property.
We encounter a problem of perturbation of eigenvalues em-
bedded in a continuous spectrum, and it is conjectured that
the Lamb shift and the spontaneous emission of photons
should be understood in terms of “resonances.”

The outline of the paper is as follows: In Sec. 2 we give
some notations and definitions. In defining the interaction of
the electron with the quantized radiation field, we use the
dipole approximation for simplicity and introduce an ultra-
violet cutoff in order to make the Hamiltonians well defined.
In Sec. 3 we prove the self-adjointness of the Hamiltonians
by using the technique of approximate dressing transforma-
tion, which is usually used to contro} infinite momentum
limit.*~® In Sec. 4 we analyze the spectrum of the Hamilto-
nians using the method of asymptotic fields”® and the ana-
lytic perturbation theory. In Sec. 5 we give some remarks on
the subject.

2. SOME NOTATIONS AND DEFINITIONS

The Hibert space .5 ,, for the radiation field in the
Coulomb gauge is defined as the 2-fold tensor product of the
usual Fock space % for the neutral scalar field*;

Fem =5 7. (2.1)
The tensor product of this space % 5, with the space of

electron wave functions L %(R *) gives the Hilbert space % for
our model:

H =LIR*N®F gum- 2.2)
The Hamiltonian of the atom is given by
H(V)= —(1/2m)4 + V, (2.3)

with m the electron bare mass and V the external potential;
we assume that Vis real and

“Present address: Department of Mathematics, Tokyo Institute of Tech-
nology, Oh-okayama, Meguro-ku, Tokyo 152, Japan.
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VeL =(R*) + LYR?). (2.4)

Intermsofa(f)[resp.a*(f)}/EL ¥R *),theusualannihila-
tion (resp. creation) operator for the neutral scalar field,? the

operatores a *V(f), fel %R 3),j = 1, 2, for the radiation field
are defined in F ., as

a* " f)=a*(f1el, a**(f)=1Iea*(f), (2.5)

where a #(f) denotes either a(f) or a*(f). They satisfy the fol-
lowing commutation relations on the set of finite particle
vectors in .

[a9(F), 2*D(g)]= 5, fd k f(kg(k),
others =0, jl=12, fgeL*R?). (2.6)

The free Hamiltonian H ™ for the radiation field is de-
fined as

=3 [k (Klawvmjar),

J=1

(2.7)

H §™ is self-adjoint and non-negative on the maximal
domain.

All the operatores in L %R ) (or in % g, ) have natural
extensions to #: If A is a densely defined closable operator
inL*R> (orin & ), then 4 ® I (resp., I ® 4 ) is a densely
defined closed operator in %°. We write 4 @ I (resp., [® A )
simply as 4.

Fora.e. keR * we take e "eR 3, j = 1,2, which represent
the polarizations of the radiation, satisfying the following
conditions:
e(k)-e"(k) =5, jl = 1,2, e"(k)x e?(k)

=k/|k|, e —k)=e"k), ¥ — k)= — e?(k].

Let v be a rotation invariant, real function on R 3 satisfying

lo/v/[Kfll2 < 00, [0/ K]}z < oo, (2.8)
and then
A= 3 M@ ) ae~ *vei/y/ K|
+ a¥(e™ve'/v/ |k|) } (2.9)

is the radiation field with an ultraviolet cutoff v.
The minimal interaction between the atom and the radi-
ation field is given in the dipole approximation by the sum of

H{ )= A /m) — iV).A (o) (2.10)
and the diamagnetic term
H P(v) = (12/2m)A} o), (2.11)
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where AeR denotes the electron charge. The mass renormal-
ization counter term is given by

W)= —A’R(v)d (2.12)
to the second order in the electron charge with
R (v) = (17247°m?)||v/ K| ||3. (2.13)

The renormalized Hamiltonian H ™(V) for our model is giv-
en formally by

HV) = HY(V) + HEM + H) + H o) + W ().

(2.14)
3. SELF-ADJOINTNESS OF THE HAMILTONIANS

Let

Hy= —(1/2m)A + HEM. (3.1)

H,, is self-adjoint and non-negative with
D (H,) = D (4 )nD (H §™). Our aim in this section is to prove
the following.

Theorem 3.1: The renormalized Hamiltonian H (V')
given in (2.14) is self-adjoint with D (H (V' )} = D (H,).
Further

H™(V)>infS (H(V)), (3.2)
where 3 (H (V') denotes the spectrum of H §{¥) in (2.3).

By direct computations using basic estimates® for the
operators a *(+), it can be proved that the interactions
HY(v), j=1,2, are Hy-bounded:

H Y)¥ l|<allHo¥ || + b ||¥|.¥eD (Hy), j=12, (3.3)

where a > 0 and b > 0 are constants. However, the relative
bound a of H {(v) with respect to H,, is not smaller than one
unless |4 | is sufficiently small. Therefore, for large values of
|4 |, we cannot directly apply the Kato—Rellich theorem to
prove the self-adjointness of H, + H (v} + H ?(v). The
main point of our proofis to use the dressing transformation.

We begin with the definition of the generator of the
dressing transformation. Let K > 0 and let

A 2 . .
Ty = — ————— 3 (—~ iV)-{a¥({k| ~*vge¥)
= = S~ Tk
— a*([k| = vge)}, (3.4)
where
o =W Kk 3.9
0 0< k| <X.
Let
D.=SeFoF, (3.6)

where S = {fe#(R *)| Fourier transform of fisin C $(R *)},
and F is the set of finite particle vectors in .% . In the same
way as in Ref. 6 we can prove the following.

Lemma 3.1: D is a set of analytic vectors for T and
Ty is essentially skew—adjoint on D,

We write the closure of T | Dy simply as T. Let

H':rcn(V)=H;](V) +H(I)EM +H(Il)(y) -+ W(y) ‘37)

This operator is the renormalized Hamiltonian without the
diamagnetic term. We denote H [**(0)[resp., H ;~"(0)] by
H " (resp., H.™"). By using Lemma 3.1, the H,-bounded-
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ness of H /™" and some limiting argumens, we can prove the
following.

Lemma 3.2: (1)¢”* maps D (H,) onto D (Hy). (2) For ail
o>0and K>o0,

e - TKH rren eTx — H :):en on D (HO)’

VoX k

(3.8)
where
I, O<lki<K
0, K<lk|
This lemma can be proved in the same way as in Ref. 4.

Lemma 3.3: H ™"(V) is self-adjoint with
D{H (V)= D(H,)and

H ™ (V)>infZ (H (V).

Proof: Tt is easy to see that

|W ()% | <2mA 2R ()| Ho¥ ||, ¥eD (Ho).
This inequality together with (3.3) gives

ICH Ploxe) + Wloxe )P l<cx (HE 1+ 121D,
YeD (H,), {3.11)

where ¢ > 0 is a constant such that ¢,—0 as K— + 0. We
fix the value of K such that ¢ < 1. Then it follows from (3.11)
and the Kato-Rellich theorem that H ;" is self-adjoint with
D (H 7") = D (H,). Therefore, by Lemma 3.2, H ™" is self-
adjoint with D(H,"")=D(H,). Furthermore, using (3.8), we
can show that

H]™> —(1/2m)A. (3.12)
We next consider H (V') = H " + V. It follows from the
closed graph theorem that there exists a constant ¢ > 0 such
that

X (k) = (3.9)

(3.10)

[HoW ||<e(|H ¥ || + 1), WeD (H,). (3.13)

On the other hand, we have the following well-known esti-
mate from the assumption (2.4) on V (see, e.g., Ref. 9, p. 303):

|V [i<ell - (1/2mA® || + b(e|¥[, ¥eD(),
(3.14)

where € > Qs arbitrary and b (€) is a constant which depends
on €. Combining (3.13) and (3.14) we get

[V <cellH ¥ || + (b {€) + ce)||¥ ||, ¥eD (H,).
Since € > 0 is arbitrary, it follows from the Kato-Rellich
theorem that H /""(¥) is self-adjoint and bounded below
with D (H [""(V')) = D (H,). Inequality (3.10) follows from
(3.12).

Proof of Theorem 3.1: Let L = H,, + 1. It follows from
(3.3) that

| H W I<cl| LY ||, ¥eD (H,).

By using commutation relations and basic estimates on
a #s, we can show that for some constant ¢’ >0

(L®H W) — (H LWL 9| L@,

&, WeD(H,).

Therefore it follows from the Nelson commutator theorem
(see, e.g., Ref. 10, Sec. X) that H ;™" is essentially self-adjoint
on D (H,). On the other hand, by direct computations using
the positivity of H ;™" [cf. (3.12)] and commutation relations,
we can show that for some constant a >0
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H (12 + | H D) [P <al([H 7| + (2 117),

YeD (H,). (3.15)
Since D (H !™")nD (H ‘P(v)) = D (H,) and H ;"" is closed on
D (Hy) by Lemma 3.3, it follows from (3.15) that H " is closed
on D (H,). Thus H " is self-adjoint with D (H ") = D (H,).
The proof of the self-adjointness of H (V)= H ;> + V is
similar to that of H ;*"(V). Since H {*(v) is non-negative, in-
equality (3.2) follows from (3.10).

Remark: We can also consider the operator

H,(V)=H{V)+H™ + H{v) + HP(v)
as well as

H{(V)=HV)+ HE" + H ')
as a Hamiltonian. Let

A, =(2mR ()~ "2
Suppose that |1 | #£A_. Then, by using Lemma 3.2, we can
prove the following'':

(A) (1) H (V) is self-adjoint with
D(H (V)= D(H,); (2) H(V)is bounded below if and
onlyif |4 | <A..

(B) H,(V) is self-adjoint and bounded below with
D(H,(V)) =D (H,).

It should be noted that the boundedness below of
H (V) breaks down for |4 | > A,. Inthe case |4 | =4, we
can prove that if VeL “(R 3), then H (V) [resp..H (V)] is
essentially self-adjoint, bounded below on D (H,) and

D( H,(V)) Lresp.D( H'(V)) 12D (H,). In particular we

4. SPECTRUM OF THE HAMILTONIANS

In this section we study the spectrum of the Hamilto-
nians. We first prove the existence of asymptotic fields to
obtain some information on the spectrum, and then analyze
the spectrum by using the analytic perturbation theory,
where we shall introduce an infrared cutoff'in the interaction
to make the problem manageable. We shall consider only the
renormalized Hamiltonian H ;*(V'). The other three Hamil-
tonians H ;""(V'), H,(V), and H (V) can be treated
similarly.

Let

N= (/K] < oo} (1)
For fin L %R *)nN and reR, we define a*V( f), j = 1,2, by

af(/)(f) —e" "’"ff’"lV)er'tH.JVba#m(f)e -irH.,(V)e“HT"(V’, 4.2)
where

H\V)=HJV)+ HEM. (4.3)
a,Yf), j = 1,2 are well defined on D (H,). By the same meth-
od as in Refs. 7 and 8, we can prove the following.
Lemma4.1: Suppose veC *(R *)inaddition to(2.8). Let #bein
D (H,) and fbe in L %R *)n V. Then the strong limits

s- lim V()W =a®9( f)¥ existand {H V), a%(f)}
>+

satisfies the same commutation relations as that of
{HEM, a®Y( f)}. Furthermore, if ¥ is an eigenvector of
Hy(V), thena’, (f)¥=0, j=12.

536 J. Math. Phys., Vol.22, No. 3, March 1981

Let
E(v) = infX (H (V). (4.4)

Then, by Theorem 3.1, we have E (v)>infX (H (V).
Proposition 4.1: Let v be as in Lemma 4.1. If £ (v)is an
eigenvalue of H *"(V'), then
SHTV) =ZJHV) = Ev), o), (4.5)

where 3 (H V') denotes the essential spectrum of
H(V).

Proof: Let ¥ be an eigenvector corresponding to the
eigenvalue E (v). Let H = H (V) — E(v). Forany z >0 it
follows from Lemma 4.1 that

(H — p)a*7(f)¥ = a*/(([k| — u) /)¥, (4.6)

where fand (k| farein L *(R *)nN. Itis easy to find a sequence
(£, } such that £, ,|k| £, &L (R, ||, ||, = 1 and

la* (k| — 1) £, )P [| >0 as n—o0. Put ¥, = a* i f, ).
Then, it follows from (4.6) that ||(H — )%, [|—0 as — co.
On the other hand, we have |, || = ||f, (|, = 1. Therefore u
isin X' (H ). Since p is arbitrary, (0,00 ) C 3 (H }. On the other
hand, wehave X (H ) C [0, oc ) by definition of . Therefore we
get I (H) =2, (H)=[0,). This means (4.5).

By a standard theorem on the spectrum of tensor prod-
uct of self-adjoint operators (e.g., Ref. 12, Sec. VIII} we have
Z(HyV)) = (infZ (H§(¥)), 0 ), so that Hy(V) has no dis-
crete spectrum and all the eigenvalues of Hy(V') are embed-
ded in the continuous spectrum. Thus, we have here a prob-
lem of the perturbation of eigenvalues embeded in the
continuous spectrum. In the present case we can avoid in
part this difficulty by introducing an infrared cutoff in the
interaction, and then we can use the analytic perturbation
theory. The idea of our procedure in the following is due to
Ref. 5.

Let 0> 0and let

K, = (keR||k|>a}.
Then, we have
F =F K, )8 F(K;),
where
FK,)=Co| & (sL7K,)]
n=1 s
f(K;):Cea[ o (®L2(Kf,))].
n=1 g

Let
K,=L RN [F(K,)o{N2)]e[F(K,)e{n}],

where

2= {1,00,}eF(K¢).

One can easily prove the following.

Lemma 4.2: (1) %, and ", reduce H (V).

(2} E(v,) = infX(H V) | ).

Theorem 4.1: Let o> 0. Suppose that # (V) has the
discrete spectrum E, < E, < -+, at the bottom of the spectrum
with the multiplicity ,»; for each E;. Then, for each E; such
that E; < E, + o there exists a constant 7,(v,0) such that if
|4 | <r;(v,0), then H *(V'} has ,»; eigenvalues (not necessar-
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ily distinct) near E; which are analytic in 4, where r;(v,0)
depends on v and o. In particular, if |1 | < r,(v,0), then E (v,)
is an eigenvalue of H [""(V'), i.e., the ground state for & ;"(V)
exists.

Proof: Since T (HEM | 27 ,) = {0}u[o, ), we see that
the discrete spectrum of H,, (V') | &7 is
{E;|E; <E,+ o}(#¢). Since HY(v), j = 1,2, and W (v) are
H,-bounded and H, is H,(V )-bounded,

H,(v)=H M) + H'P(v) + W {v)is Hy(v)-bounded. Therefore
H (V) is an analytic family of type (A) for sufficiently small
|4 | {see Ref. 9, p. 377, Ref. 13, p. 16). Thus we can apply the
analytic perturbation theory to H **(V) | 7, taking
Hy(V) } 5 ,) as the unperturbed operator and H, (v,)) | 7,
as the perturbation, thereby establishing the first half of the
theorem. In particular, infS (H (V') | 77, ) is an eigenval-
ue of H (V) | Z°, if |4 | <ry(v,0). By Lemma 4.2, (2), it
follows that E (v,) is an eigenvalue of H (V) if |A | < 7o{v,0)
and thus the latter half of the theorem is proved.

By combining Theorem 4.1 with Proposition 4.1 we ob-
tain the following.

Theorem 4.2: Let o > 0. Suppose that inf3 (H (V) is a
discrete eigenvalue of H £(V). Then, there exists a constant
Hv,0) > Osuch thatforall |4 | < rv,0), E (v,)isan eigenvalue
of H (V) and

SHTV) =2 (HTV) = E (v,), 0). (4.8)

Proof: We first suppose that veC *(R *) and supp vCK, in
addition to (2.8) and prove (4.8) by using Theorem 4.1 and
Proposition 4.1. Then, by alimiting argument, we prove (4.8)
for general v.

Remark: (4.8) shows that all the eigenvalues of H [*(V')
with small |4 | are embedded in the continuous spectrum.

5. CONCLUDING REMARKS

We have proved the self-adjointness of the Hamilto-
nians (Theorem 3.1 and Remark at the end of Sec. 3) and the
basic property of the infrared cutoff Hamiltonian with small
coupling constant (Theorem 4.2). But our results are not so
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strong and should be considered as a first step towards the
construction of a more complete theory for our model in-
cluding the rigorous formulation of the Lamb shift and the
spontaneous emission of photons. As was mentioned in Sec.
4, we are faced with the problem of the perturbation of eigen-
values embedded in the continous spectrum. The perturba-
tion theory of eigenvalues embedded in the continuous spec-
trum has been developed by some authors for some classes of
operators (see, e.g., Ref. 14 and references cited therein) and
it has been known that it leads us to the so-called “‘reson-
ances” (see, e.g., Ref. 13, Sec. XII). From this point of view, it
may be conjectured that the Lamb shift and the spontaneous
emission of photons correspond to the “resonance”. Howev-
er, we have not yet succeeded in proving this conjecture for
our model and this problem is left for future studies.
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The concept of contact between manifolds is applied to space—times of general relativity. For a
given background space-time a contact approximation of second order is defined and interpreted
both from the point of view of a metric pertubation and of a higher order tangent manifold. In the
first case, an application to the high frequency gravitational wave hypothesis is suggested. In the
second case, a constant curvature tangent bundle is constructed and suggested as a means to

define a ten parameter local space-time symmetry.

PACS numbers: 04.20.Cv

1. INTRODUCTION

The Minkowski tangent spaces to a given space~time of
general relativity represent the state of zero gravity. Except
for the metric signature and Lorentz symmetry, these tan-
gent spaces do not contribute substantially to the knowledge
of the local geometry of the space-time itself. On the other
hand, it is a known fact that the geometry of a manifold in a
small neighborhood of a point can be expressed in terms of
osculating or contact geometries. The construction and
physical interpretation of similar contact structure for
space-times of general relativity is the object of this note.

Mathematically speaking, there is one basic motivation
for the construction of these contact structures. Because of
the geometrical nature of the gravitational field, the two-
body problem for local gravitational fields may be treated by
means of the concept of contact of two space—times. In this
fashion, a completely geometrical interaction can be de-
scribed. The usual metric perturbation methods rely on the
hypothesis of convergence of a power series expansion of the
background metric. Because the experimental evidences in
general relativity are scarce, this hypothesis may be criti-
sized. By use of the contact method such difficulty can at
least be minimized reducing the mentioned series to a Taylor
expansion of some basic functions.

From the physical point of view, two motivations are
considered. One of them looks for a better description of the
high frequency gravitational wave as emitted by a collapsing
background. In this case a contact approximation of second
order is regarded as a linear approximation where the per-
turbation term depends on the curvature of the background.

The second motivation is derived from the need to de-
fine a local symmetry in space—time in substitution to the
Poincaré group. The Poincaré group is a symmetry which is
broken by the gravitational field. This fact makes that group
unsuitable to be used as a symmetry in a quantum field the-
ory or in a group theoretic description of particles on a
curved background. The construction of tangent space-
times with nonzero constant curvature may be used to define
adequate groups of symmetry.

2. CONTACT APPROXIMATION

The notion of contact between manifolds was firstly in-
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troduced by Cartan.' It generalizes the elementary notion of
contact between curves and surfaces. The basic concept can
be described as follows: If X, X are two mappings of a mani-
fold S into a homogeneous space G /H then X and X are said
to have a contact of order k, if for each ¢g€S there is a geG
such that X and goX agree up to the order k at ¢.2 Here this
concept is addapted to the case where X and X are two local
embeddings of space—times in a p-dimensional pseudo-Eu-
clidean space M (r,s) with signature r + s. Two problems
may, in principle, be considered: In the first case X and X are
the embedding of two distinct space-times $ and S respec-
tively. In the second case X and X are distinct embeddings of
asingle space-time S. However, since X and X are taken to be
isometric embeddings, they are equivalent up to an isometry
of M (r.s). Therefore, the second problem becomes meaning-
less and only the first one will be considered. In particular, .S
will be taken to be a given space~time, while S will be deter-
mined from contact considerations.

The notion of k-order contact can be described in a
more general sense by the use of a Grassmann manifold
G,M X (q)) in M (r,s) which is the set of all four-dimensional
planes through a point X (g) of M (r,s). It follows that
G,M X (g)) is an analytic manifold.> At each point X (g) of
M (r,s) a Grassmann manifold is constructed so that a Grass-
mann bundle B,(M ) with fibers G,{M,X (q)) and base M (r.s)
may be defined. The embedding X: S—M (r,s) induces a map
ty:S—B (M )defined by t,(q) = X, (T,(s)), where geS, X is
the derivative map of X and T, (S} is the tangent space to S at
g. If 7’ denotes the projection map of B,(M ), it follows that
X = 7'ot, 1s another embedding of S. Therefore, a first order
contact between two embeddings X and X at geS and geS can
be defined by the conditions: X (g) = X (@), tylg) = tz(@).

Higher order Grassmann bundles M " ' = B, (M "),

n = 0,1,...,k, may be defined by iteration. Let M ® = M (r,s),
M'=B,M?°,.,M"*" =B, (M"), sothat M"* ' is the
Grassmann manifold of 4-planes through a point of a fiber in
M". Each of these M " * ! is an analytic manifold and the
embedding ¢ induces an embedding 7 'y which by turn in-
duces ¢ %, and so forth, until £"y: S—>M "+ ' If X """ de-
notes the derivative map of X, " (with X, ° = X, ) and 7,
denotes the projection map of the tangent bundle 7" * 'S,
then, according to Fig. 1, the induced embeddings are given
by
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no__ n — 1 — 1 —1
tX __X* 077-" °7Tn~1°"'°770 y

where 7, = 7 is the projection map of the tangent bundle 7S.
_ In terms of these induced embeddings, two embeddiggs
X, X are said to have contact of at least order & at geS, geS, if

t"g) =t n =012,k

Since 1" is determined by the derivative map X", it
follows that X and X have contact of at least order k when the
k th-order Taylor polynomials of X and X agree at g and .*
In other words, if g ‘and § (i = 1,...,4) are the coordinates of
g and § respectively in S and S, then X and X have contact of
at least order k if

k) . X N R . .
X =X(g)+ (' — ¢')\X,(g) + 3" — ¢)x’ — ¢))X ,,(g) + -
=X@+ & — X ,(@) + 47 — IF — FIX,,(q) +

e

’

k)
where X', X denote the & th-order Taylor polynomials of X
and X respectively.

The & th-order contact neighborhood of a point ¢ in Sis
the set of points xeS on which the contact of order k with Sis
made. It has a radius A4 such that

Af=x — g = (g,x' — g)x’ — g) <€,
where g; ; is the metric tensor of S and ¢ a sufficiently small
number so that powers of € greater than k are neglected.

Taking X as a position vector in M (r,s), a Cartesian

frame in that space can be chosen so that the Taylor polyno-
(k)
mial X may be expressed in terms of its Cartesian compo-
K)o
nents X “(x} {(all Greek indices run from 1 to p while small

case Latin indices run from 1 to 4).

T*s L B, (M9
| 1
1 I
] 1
i K !
k ‘x
¥ 1 Y
X
s » —+ B,M)
1
ty
L
v
Ts Xx B, {M)
tx
T T
)
S X M
FIG. 1.
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Given a space~time S with minimal embedding X in
M (r,5), the k th-order contact approximation to S at g isa

fk) .
space-time S defined by the k th-order Taylor polynomial
(k) S
X *“. For example, the first order contact approximation §' is
just the Minkowski tangent space—time to S at g generated in
M (r,s) by the coordinates:

X* = Xtig) + b — X g 2.9

@
The second order contact approximation S defined by

X+ = X(g)+ (¥ — gIX* g) + 1x' — g)x’ — gK* g
(2.2)

{plus the condition that it satisfies Einstein’s equation) repre-
sents the simplest nontrivial approximation to the space-
time S at a neighborhood of ¢

(2)
3.GEOMETRY OF S

Since S has embedding class p — 4, there are p — 4 unit
vectors 77,4, in M (r,s) orthogonal to S and to themselves (cap-
ital Latin indice run from 5 to p). A point of S'in M (r,s} is
specified by a set of p Cartesian coordinates X #(x') while a
point of M not in S has Cartesian coordinates

ZHx'x*) = XH(x) + x'gt L, (x), (3.1)
where x* are p — 4 parameters.

A Gaussian coordinate system in M (r,s) may also be
defined with coordinates x* = (x',x*). If 5,,, denote the Car-
tesian components of the metric tensor of M (r,s), its Gaus-
sian components are given by

ga{)’(x,v’x}(] = Zu,czz V) B"Im&
in particular, g,5 = 7"4,7" 5,1, Since the vectors n* ,,
are orthonormal, then g ,; = €845, where e* = + 1,

A =5,...,p, depending on the signature of M (r,s). On the oth-
er hand, considering that X * ; are vectors tangent to S

n#‘.XH,: TIVlA] = 0’ (32)
then

g4 = X", + xB??“(m,f)ﬂ"(Am,w

= xBﬂ“w i My = XBPABH
where P, = 7" 5,:m" 47, 1t follows that
Py + Py, =0andg,, s = 0, where |y denotes the restric-
tion to S. Finally, again using (3.2},
gij = X#,fX v,j’r’yv + 2xAX‘u,(r n\l\A 1) 77/,“'

+ xAxBﬂ#(A i 1 Mrrs (3.3)
sothatg,;|s = g,;(S). If g’ denotes the inverse matrix of
8.5, the Christoffel symbols of the first and second types in
the Gaussian system are defined in the usual manner and
Iy = g,sI" 5. The restriction of some of these compo-
nents to S gives some useful identities.” In particular, denote

by = —FijAls = +1gals
From (3.3)
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8ija = 2Xﬂ.(i77v(.4 1 Tw 2’(377“(,4 ),(fﬂv(l} 1) Tns
where symmetrization applies to /, j only. Therefore
b= + /. G MRS
Differentiating (3.2) with respect to x’ and replacing in the
above expression gives

bi_/A = - 77;1\'77‘}(.4 ]Xu.l'j IS (3'4)

From this expression it follows that
X“,ij = —gABbtjA"]H(BQ + FiijH,k'
At this point it may be convenient to use geodesic coordi-
nates at ¢ in S so that the above expression is reduced to
X“,u = —gABbfjA 7.8 (3.5)
The curvature radius of S at the point ¢, corresponding
to a normal 77,,, and a displacement dx’, is a particular value
of x* such that Z* remains fixed at the center of curvature®:
AZ* =Z*+ dx'
={X", +x*"9",,)dx*=0 (no sum). (3.6)

Contracted multiplication of this equation by 7,,,X " ; and
7,7, g1VeSs respectively

g, + xAb,-jA Jdx' =0, (3.7)
and

P pdx =0 (3.8)
Equation (3.7) has nontrivial solution x* = p* ; when

det(g,, +x*b,,,) =0. (3.9)

The quantities b, , are intimately associated to the Rie-
mannian curvature of S. This follows from the vanishing of
the Riemann tensor of M (r,s) writen in the Gaussian system:
R,z5 =0.Then R 4, |s = 0and in particular R, ;|5 =0,
from which Gauss equation is obtained:

R ij/\-l(S) =2g™(S )gABbm(k 1410118 (3.10)

From (3.5) and (2.2) it follows that

2 ) )

X" =X"g) + x' —g)X*,

- %(xi - qi)(xj - qj) gABbijA 77“13;-
{(3.11)
2)

Then the metric of S is given by

2) @ 2

8 =X X" =g, + Vi (3.12)
where

Vi = (xk - qk)(xl - ql)gABbikA (q)bj[B(q)' {3.13)

In the case of second order contact, y;; is a small quantity of
the order of A 2. Then (3.12) may be compared to the linear-
ized space-time solution of Einstein’s equations. In fact, ina
suitable coordinate system, g, ;(¢) can be written as 77, S0 that
(3.12)looks exactly like the usual linear approximation when
7., is regarded as a perturbation on the flat metric. However,
there are some differences to be noted. Here the background
space-time is S and the additional term y;; is a function of

the curvature of S. If S were flat then y,, would be zero as a
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consequence of (3.10). Also note that while g, ;(q) is calculat-
ed at a point of S, y, ; is defined in the contact neighborhood.
It will be of interest to express b, ,, in terms of the curva-

ture radii of the background. This can be obtained from an
(2)
additional condition imposed on S. From (3.12), g, ;q)
2
=g,; — ¥;;- In Eq. (3.9) it follows that

2)
det(g;; — v;; + x"b,;,) = 0. (3.14)

Now suppose tht for a solution x* = p, £0 of (3.9) it is also
2

true that g,; + p”,b,,, = 0. That is

2)

b= —8:,/p". (3.15)

i {2} L {2)
Since b, = b, 4, the definition of the curvature radius of S :

(2} (2) 2)

det(g; +pA(i}b(jA}:Os (3.16)

gives after using (3.15)
{2) 2)
det gij(l —pAm/p Am] =0,
2
sothatp”, =p~,. Therefore the condition (3.15) ensures

)
that the curvature radii of Sand § coincide at g. Then (3.16)

can be rewritten as
2) A
det(g,; +p%;b,,4) =0

which is trivially satisfied in view of (3.15). As a matter of
2l
fact, Eq. (3.7) for S’ becomes identically satisfied. This means

that with condition (3.15) all directions dx’ define a curva-
(2)

ture line through q and consequently the point g in .S looks

like an umbilic point and the suffix (/) may be dropped in
(2) (2} 2)
p*. Denoting p”' = p“, for a given (i), a single curvature

radius in the subspace of M (r,s) normal to $ may be defined
by

1 1
2 @

p* p*

Lo_ g

< (3.17)
pz

4. HIGH FREQUENCY WAVES

Now consider some properties of the intrinsic geometry
2)
of § when it is regarded as a space-time of general relativity.
@)
The covariant metric tensor of S is defined so that
2) 12 ) . .
g'g 4 = &', . Within the considered order of approximation,
@2 )
£'/ may be written as

2)

g’ =g"lq) — & 98’ lg)¥us- (4.1)

M. D. Maia 540



2)
The condition for S to be a solution of Einstein’s equa-

tions is obtained exactly as in the case of as the linear solu-

tion, where the Minkowski metric 7,; is replaced by g, ;(g)-
2 @)

The Christoffel symbols I"'; of g, are

(2)

T =8 + Vi — Vi)
Introducing the notations

Y :gkl(‘I)Vku wl’j =Y %gf,(Q)V,
2
then Einstein’s tensor for S, may be written as

T = g“(q)tlf,»k.:,

2
G, = [gkl(Q)l”i,,k[ — T — Tji +gij(q)gk1(‘I)Tk,l]'

(4.2)

Choosing the usual gauge g*'(¢)¢,., = O, the linear wave
equation follows from Einstein’s Equation G, ; = KT;;.
Therefore, a time-dependent ¢, ; may have a gravitational
wave interpretation as seen by an observer in S inside the
contact neighborhood with wave ripples superimposed on
the curved background. Notice that the perturbation term is
derived from the curvature of S. This fact can be seen from
(3.10) which relates b, ;, toR /(S ). Alternatively b, ,, can be
expressed in terms of the curvature radius of S as derived
from (3.9), or explicitly from (3.15), if the umbilic condition is
used. Considering the last case, the perturbation term {3.13)
can be written as

[T

2 @
= (" —q")x' —~ ’)g’wii (4.3)
Yij = q q9 7 . .

Define a tensor 4,; by
2 @

881 =hi;8&u-
Then y;; = (4 */p’)h;; and (3.12) becomes

(2)

8 =gij(q)+(/1 /p)zhij' (4.4)

This expression can be compared to the expression obtained
in the high frequency limit hypothesis, according to which
the metric g,; is expanded in powers of the ratio of the wave-
length to the curvature radius. In the case of a strong curva-
ture the curvature radius is small and the power series is
assumed to converge when the wavelength is comparatively
smaller,”* Although it appear to be a reasonable hypothesis,
the series convergence is questionable.® Considering the
analogy with the contact approximation, the only expansion
required is the Taylor expansion of the functions X* and no
additional expansion parameter is postulated. Thus, if 4 is to
be compared to the wavelength in the high frequency wave
theory, it follows that the wavelength is nothing but a mea-
sure of the size of the contact neighborhood. Accordingly, if
the contact neighborhood in S has strong curvature, then the
frequency of the emitted gravitational waves has to be high
to keep the ratio (4 /p)* small. Notice, however, that nothing
prevents the consideration of low frequency waves as de-
rived form (4.4). In fact, if S has weak curvature in the con-
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tact neighborhood, then p will be large and A can also be a
relatively large length. Therefore, it appears that (4.4) can
describe a wide band local gravitational radiation emitted by
the background.

5. CONSTANT CURVATURE CONTACT BUNDLE
@)
A particularly interesting case is that when S is special-
@)
ized to have constant curvature. It was seen that when S

satisfies Eq. (3.15), it will show g as an umbilic point.

A straightforward calculation of the Riemannian cur-
@
vature of S gives

12)

Ru=208"—-0~qx"—q)

2)
XgmngACgBDbanbmsD]bj[I\A bix1ps

where indices inside vertical bars are not under skew symme-
2)
trization. Then, after use of {3.15) with the notation p, the

last expression becomes

2 @ 2 42
81 8i 8ix 8
_oal _
Riju =g 2 2 @ e
A B A
e P P p

(21
_+_ gmn(xr . qr)(xs _ q$) BgCD

2 @2 @ 12 2 @
grnr &ms gjk 8 gjl gik
@ @ o RN
B
PP P P p P
or
(2) 1 /12 2) 2 (2) (2)
R, u= o 1 — - (818 — &;x8ul (5.1)
2 2
P Y

2)
Now, for a contact of second order, 4 %/p* is negligible inside

the contact neighborhood. Then it follows that
(2 , 2 @
Rjww=K"g,/8x — 818 (5.2)
. . (2) .
which characterize S as a constant curvature manifold with

{2) 12)
K? = p 2. Under the condition that S is also a solution of
@)
Einstein’s equations, in view of the results in Sec. 4, S repre-

sents a linear solution with constant curvature. These con-
@

stant curvature contact space-times, denoted S _( p) are
minimally embedded in a five-dimensional subspace of

M (r,s) [either M (4,1) or M (3,2)]. They can be defined in all
regular point of S with curvature such that A €p?. This means
that the diameter of the contact neighborhood has to be suffi-
ciently small in regions of S with strong curvature, but it can
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be fairly large for regions of weak curvature. Thus a second
@ )
order contact bundle S ( p) with constant curvature with fi-

2) .
bers .S and base S may be constructed. In particular when

(2} . - .
S, {p)is alinearized version of the de Sitter space-time with

2
curvature radius (p) (a function of the position in.S ) a de Sitter
bundle is obtained. This de Sitter bundle shows a local de
Sitter symmetry at each point of S. Such bundle has been
proposed as an additional property of the space—times of
general relativity.'®!! Its mathematical existence and con-
struction, as shown above, may be taken as a consequence of
the local differential geometry of the space~times.
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We derive necessary and sufficient tensor conditions for the existence of a four-parameter
isometry group G, which acts multiply transitively on a Riemannian V. We then apply these
results to determine which spatially homogeneous cosmological models have induced 3-metrics
which are invariant under such a four-parameter group.

PACS numbers: 04.20.Jb

1. INTRODUCTION

In this paper we define a space-~time to be a four-di-
mensional manifold V, with a Lorentzian metric g which
satisfies the Einstein field equations. Space-times are
often found, studied and invariantly classified using n-
parameter isometry groups G, under which g is in-
variant. If » < 6-and G, acts transitively on orbits which
are three-dimensional spacelike hypersurfaces, then
n=3, 4 or 6 and the space-times are called spatially
homogeneous. When n =6 they are also isotropic and
are called Friedmann—Robertson~Walker (FRW) models
(cf. Ellis and MacCallum! and Eisenhart? for terminol-
ogy.)

Historically, isometry groups have two major appli-
cations in general relativity. The imposition of an iso-
metry group on a V, makes the field equations more
tractable so that new exact solutions may be found.
Secondly, isometry groups are used to invariantly
classify known space-times. This technique fails how-
ever for space-~times whose metrics are not invariant
under any G,. The Szekeres® space-times which admit
no isometry group (cf. Bonnor, Sulaiman and Tomi-
mura?) are a good example. The Szekeres space-times
are not generic solutions to the field equations, since
studies by Collins and Szafron® and Berger, Eardley
and Olson® have shown that the three-dimensional
spacelike hypersurfaces V¥ are conformally flat. In
fact, there is a subclass of the Szekeres models in
which the induced 3-metric g* on each hypersurface V¥
is invariant under a G} (since each V¥ is flat) while
the 4-metric g on V, is not invariant under any isome-
try group G,.

These results suggest two applications of “intrinsic
symmetries”. The first is to use a combination of in-
trinsic symmetries and extrinsic symmetries, to in-
variantly classify known space-times, even if they
possess no isometry group G, under which g is invari-
ant. The second application is to impose a combination
of intrinsic symmetries (spatial flatness, spatial con-
formal flatness, restrictions on the eigenvalues of the
3-Ricci tensors of the V¥’s, the existence of G*’s under
which the g*’s are invariant, etc.) and extrinsic sym-
metries (restrictions on the eigenvalues of the expan-
sion tensor, restrictions on the acceleration vector,
etc.) in order to make the field equations more tractable
in the search for new exact solutions. This program

2)This material is based upon work supported by the National
Science Foundation under Grant PHY-7911923.
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has been started in Collins and Szafron,” Szafron and
Collins,® Collins and Szafron,’ Spero and Szafron'® and
Wainwright.!!

The easiest way to impose intrinsic symmetries is by
tensor conditions on the quantities of the V¥, “Spatial
flatness”, the demand that each V¥ is flat, is equiva-
lent to demanding that the 3-Ricci tensors of the V¥’s
vanish. “Spatial conformal flatness”, the demand that
each V¥ is conformally flat, is equivalent to demanding
that the. Cotton— York tensor (cf. York'? and Wainwright!®)
vanishes.

In this paper, we begin to explore the consequences
of imposing isometry groups G} on the induced 3-me-~
trics g* of spacelike hypersurfaces V¥. Infact, Ellis
and MacCallum®* have already begun this study from a
different point of view. It is well known (cf. Eisenhart®)
that the existence of a G¥ under which g* of a V¥ is in-
variant, is equivalent to the tensor condition: the 3-
Ricci tensor is isotropic (has three equal eigenvalues)
or equivalently that the trace free 3-Ricci tensor van-
ishes. They have imposed this tensor condition on spa-
tially homogeneous space-times. They delineate all
Bianchi—Behr types in which this condition is possible
and indicate when it leads to the existence of a G, or G,
under which the full space-time metric g is invariant.

We generalize these results by studying the effects of
the existence of G}’s under which g* on each V¥ is in-
variant (the existence of a G¥ is of course impossible,
c.f. Eisenhart'®). In order to impose this condition
easily, it must first be cast in tensor form. Such a
formulation is independent of the V, in which the V¥’s
are imbedded and independent of the field equations.
For this reason, the result should be of general inter-
est in differential geometry. We derive such a condi-
tion in Sec. 2., and believe it to be new.

In Sec. 3., we review the results of Ellis and Mac-
Callum on G¥’s and use the formulation in Sec. 2 to
impose a G on the induced 3-metrics g* of the spatially
homogeneous space~times with interesting results. It
turns out that every Bianchi~Behr type II or type VI
(h=~1) space-time has a G¥ under which the 3-metrics
g* of the hypersurfaces are invariant, but do not in
general admit a G,. We give a complete list of which
Bianchi-Behr types may admit a G} and under what
conditions the G} becomes a G .

2. MULTIPLY TRANSITIVEG, ONA V,
In this section V, will be a three-dimensional Rie-

mannian manifold with positive definite metric tensor g:
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ds?=g pdx"dx® . 2.1)

Since V, does not have to be imbedded in a Lorentzian
V, we shall omit the *’s which were used in Sec. 1.
Throughout this paper, Greek indices will run from 1

to 3 and Latin indices will run from 0 to 3. Semicolon
denotes a covariant derivative and comma denotes a partial
derivative. We denote the components of the Ricci ten-
sor by R, the Ricci scalar by R, the trace-free Ricci
tensor components by

saﬂzRaﬁ_éRgaﬂy 2.2)
and define the scalar S, by
S%=3S,,5*%. (2.3)

The trace-free Cotton-York tensor C*# is defined by
Cebgnar (RS, ~458.R)., (2.4)

We shall use the orthonormal tetrad formalism of Ellis
and MacCallum?’ throughout this paper, but in this sec-
tion the tetrad is really only a triad since we are in V.
We shall prove the following:

Theorem: Let V,be a three-dimensional Riemannian
manifold with metric tensor g. The following are equiv-
alent:

(1) g is invariant under a four-parameter isometry
group G,, multiply transitive on V,.

(2) There exist coordinates on V, in which

ds?=(w?)?+ (@?2)*+ (w?)?,
w'=dx - (2B/G)dy + (yB/G)z ,
w?’=A/G)y, w*=(A/G)z,

where G=1+3k(y*+2%), k=0, 1, or -1; and A, B are
constants.

(3) R, has two equal eigenvalues, the spatial gradient
of S vanishes (S, =0)

(2.5)

and

Cas=2S,4, (2.6)
where either:

(). A constant, AS,z#0;

(ii) A=0, S,4#0, and R, has zero as its third
eigenvalue;

or
(i) S,5=0.

Remarks: From Eq. (2.11), it will be seen that the
spatial gradient of R also vanishes, but it is not neces-
sary to assume this in (3).

In the coordinates (2.5) the four Killing vectors of the
theorem are:

£,=4By 8/0x + 2yz 8/8y + (4 +kz® ~ky?)8 /82
£,==4Bz 8/0x + (4 +ky% —kz)D /By + 2ky2 8/0z ,
£,=8/8x, £, ,=y8/8z=28/8y.

The condition that R,z has two equal eigenvalues is
equivalent to demanding that S,z has two equal eigen-
values. We can cast the eigenvalue conditions of (3)
into tensor form by defining the invariant

2.7)
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T=45%-3(5,,5%5,%)2.
Then R, 'has two equal eigenvalues if and only if T=0,
and the third eigenvalue of R, is zero if and only if
T=45%-3R3S%~ éRz)2 .

Condition (3) part (iii), S,z=0, occurs if and only if a
G, is admitted.

Pyoof that (1)=— (2): Cartan®® has shown that if (1) is
true, then we can find coordinates (2.4). On the other
hand, Killing’s equations

gaﬁga, A+ga).€a, B+gBA, aga =0 ’

in coordinates (2.5) can be solved by a long and tedious
procedure and four independent solutions (2.7) can be
found. [It is not too difficult to check, however, that
the four vector fields (2.7) are solutions.]

Pyoof that (2)~ (3): We solve the equations
2.8)

where w®, are given by (2.5) to obtain the tetrad (which
is really a triad) dual to the one forms of (2.5):

9 G o zB 8
©i%0r ©2TX 5y A oy %TA b

« , A_§o
wWiyes = B

Using the formulas (A1) of Appendix A, we compute the
commutation coefficients of (2.9):
Ay =Npy=Ng3=Ny3=0,
ag=-n,=izkA™, (2.10)
ap=nyg=5yRAT,
1y, =—2BA2,
We then use formulas (A4) and (2.10) to compute the
components of the Ricci tensor in the orthonormal
tetrad (2.9):
Ru = 232/A4, Ry, =Ra3 = (RAZ - ZBZ)/A4 3
Ryp=R;3=Rp=0.
Equations (2.2) and (2.11) then yield
S,, = (8B%-2rA?)/3A%, S,,=5,;= (kA% - 4B?)/3A%,
(2.12)
H we compute the tetrad components of C,;, using (2.4)
or the formulas (A5) of Appendix A (which is much
easier), we find, on using (2.11) that
Co:ﬁ= —GBSQB/AZ .

The proof is thus finished.

The proof that (3)~ (2) is quite complicated and we
relegate the most tedious part to a preliminary lemma
given in Appendix B.

Proof that (3)— (2): I the Ricci tensor is isotropic
(or equivalently S,,=0) then it is well known that V,
admits a G, (cf. Eisenhart'®) so that (1) is satisfied.
But (1)~ (2) has been shown so the proof is complete.
Henceforth, we assume

Ses?0.

Then by the lemma of Appendix B, we choose a tetrad
which is a Ricci eigenframe in which:

(2.11)

(2.13)

2.14)
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(2.15)

Ay =M13= Ay =Ny +A3=Ngy =Ny =Ng3=0,
and
(2.16)

We write out the formula for R, =R, from (A4), sub-
ject to (2.15) and (2.16):

A=3ny.

Ry, =R, =28,a,+28a;,— 40, —4a,* -1 )%, (2.17)
But 8,8=0, so by (2.3) and (B8),

8y (Rzz‘Ru)=0;
so that from (2.17)

20,a,+20,a,— 4a,> - 4a,* =B, {2.18)

where B is constant.
We now introduce a coordinate system. From condi-
tions (2.15), applied to the commutators of (A1} we have

(e, e;]=[e,, €]=0,

so that e, and e, form a surface which we label x;=z
=const, while e, and e, form a surface which we label
x%=y=const. Then

e, .a/a;,.:ez.a/az:el.a/ay=e3.a/ay=0,
so that we can write
e,=aa/ox, e,=bo/ox+c8/dy, e,=r8/sx+sa/oz,
(2.19)

where a, b, ¢, 7, and s are functions of x,y,z. If we

apply the coordinate transformation

- 1
x=f —ox,
a

we obtain:

y=y, z2=2

e, =8/0x, e,=bd/ax+ca/oy, ey=rbd/ox+s8/8y,
(2.20)

where we have dropped the hats from x, vy, 2z, b, c, 7,
and s. Applying the commutation relations (Al) to the
tetrad (2.20) and using (2.15) and (2.16) leads to:
bo=c,=v,=5.=0,
az==n,=(s/2c)c,, ay=n,;;=(/2s)s,, (2.21)
ny=3k=cr, ~sb,+bs/clc,~ cr/s)s,,

where subscripts denote partial differentiation. Equa-
tion (2.18) can now be rewritten, using (2.21), as

slsc/c) +(cs/s), = (cs,/s)? = (sc Je)?=R. (2.22)

A computation of the 1-forms dual [use Eq. (2.8)] to the
tetrad (2.20) yields

wh=dx = ®/c)dy y ~ (v/s)dz ,

w?=dy/c, wi=dz/s. (2.23)
Consider the line element
ds*=(w?)?+ ()%, (2.24)

A calculation of the Gaussian curvature of a 2-space
with line element (2.24), subject to (2.23) yields

stzs/ (gzzgss _g232) =B.
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Thus, (2.24) is a metric on a 2-space of constant curva-
ture. Eisenhart?® has shown that we can perform a
coordinate transformation

;;:;:(y,z), 2 =§(y,z)
8o that
w?=dy/F, w=dz/F,
where F=1+318(32+2%. We modify the transformation
slightly and drop *’ s so that
w?=(A/Gldy, w=A/GMz,
where A is constant and G=1+3k(y%+z%); £=0, 1 or
-~1. Our 1-forms (2.23) now have the form
W =dx ~ (b/Gldy - r/Gldz ,
w?=(A/G)dy, w=(A/G)z, (2.25)

where b and r are different arbitrary functions of y and
z than appear in (2.23).
We now perform a coordinate transformation

T=x+f(y,2), $=y,2=z2
so that
wt=dx = (f,+bGdy - (f,+7GNdz,
w?=(A/G)dy, w’=(A/Gldz. (2.26)
We wish to choose f(y,z) to satisfy the two conditions
fy+b/G=2B/G, f +r/G=~yB/G, 2.27)

where B is some constant. The integrability condition
for (2.27) is f,, =f,,, thatis

Gr,~Gb,+bG, =rG, =-2B. (2.28)

But on comparing (2.23) and (2.25) we see that
cC=8= (G/A) s
s0 that (2.21) becomes:

Gr,=Gb,+bG,=7G =\ (2.29)

So the integrability condition (2.28) can be satisfied by
choosing B=-3M. Dropping *’s, our 1-forms (2.26) be-
come (2.5) and the theorem is proved.

3. SPATIALLY HOMOGENEOUS SPACE-TIMES WITH
G¥'s

In this section we assume that V, is a four-dimen-
sional manifold with a Lorentzian metric g invariant
under a G, simply transitive on spacelike hypersur-
faces V¥. That is, we are looking at all spatially homo-
geneous space-times except the Kantowski-Sachs
models.?! These space-times have been invariantly
classified by the Bianchi~Behr type of groups which
they admit. We give this classification in Table I. We
seek the answers to two questions:

(1) What are the Bianchi-Behr types of the V, which
can admit a G¥ under which the induced metrics g* of
the spacelike hypersurfaces are invariant?

(2} In which of these space-times is the metric g in-
variant under G¥ so that we really have a G?

Included in the results will be the case studied by Ellis
and MacCallum® for G¥’s,
We will perform all calculations in the canonical te-
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TABLE I. The Bianchi-Behr classification of spatially homo-
geneous spacetimes. This information is taken from Ellis and
MacCallum.? The cannonical tetrad has a,=a; =nip=ny3=0,
ay=a, ny =ny, Ryy=n,y, nyg=ng with:

Group Class Group Type a ny n, ny Bianchi type
A I o 0 0 0 I
II 0 + 0 0 II
VI 0o + + 0 VI
VI, 6o + - 0 VI
X 0+ o+ + X
VIl 0o + + - VI
B v + 0 0 0 v
v + 0 0 + IV
v, + 0 o+ + VI
VI, + 0 + - VI (IIif h=~1)

trad of Table I. We begin by considering space-times
which admit a group from class A. From Egs. (Ad) in
the canonical tetrad of Table I:

L 2 2 2
R =3(n2=ny? —n, ) 41,104,

RY,=3(n2—n2-n)+n,ng, 3.1)
R;"3=% (ng?=n2=n,2) tn,n,,

and
R¥,=R%=R%=0. 3.2)

From the theorem and Eq. (3.2), one of the following
conditions is necessary:

) R’ﬂ =R:2$R3*3: Cﬂ = cgz s

(i) Ry =RE#R},, CY=CF, (3.3)
(iii) R;2=R;3*Rfu C;2=C;3,

(iv) R} =R},=R%.

Substitution of conditions (3.3) into (A5) with (3.1) yields
the corresponding four possibilities:

(i) n, =n,#n,, nz#0,

(1) my=nz#n,, n,#0, (3.4)

(iii) ny=ns#n,, n,#0,
(ivlny=ny=n,, Or n,=n, #nz=0 or n;=n; n;=0

or n2=n3, n1=0_

By the theorem, any of the conditions (3.4) is also suffi-
cient. Condition (iv) is necessary and sufficient for the
existence of a G}, We now look at each type from class
A subject to the conditions (3.4).

Type I: All space-times satisfy (iv) so there is a G¥.

Type II: All space-times satisfy (iii) so there is a G,

Type VII;: A subset (n,=n,) of the space-times sat-
isfy (iv), so they possess a G¥. Since this subset has
ny=n,#0, the Jacobi identities (A3) imply that 6,=6,.
This subset is therefore locally rotationally sym-
metric (cf. Ellis and MacCallum?®) so there is a G¥C G¥
which is really a G.

Type VI;: No space-times satisfy any of the condi-
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tions (3.4) so no G¥ can exist.

Type IX: A subset (which by renumbering takes the
form n, =n,#n4,n,# 0) satisfies one of the first three
conditions so there exists a G¥. Again by (A3) the G*
is really a G,. A second subset (1, =n,=n,) satisfies
(iv) so there is a G¥. However ny=n,=n,# 0 and the
Jacobi identities (A3) imply 6, =6,=6, so that the shear
tensor vanishes thus the G¥ is a G, (these are some
FRW models).

Type VIII: A subset (n,=n,) satsifies (i) so there is
a G¥ which by (A3) is really G,

We now turn to those space-times which admit a class
B group. From Egs. (A4) in the canonical tetrad of
Table I:

RY ==z (ny=ny)? = 2a,%,
RE=3(n,? =ns) - 2a,2,
Ri=3(ns®-n,2) - 2,2, (3.5)
R} =a,(ny;=ny),
RE,=R}=0.
In order fo impose the necessary condition that R}, has

two equal eigenvalues we look at the characteristic
equation

det[R¥, =¢8] =0. (3.6)
Since RY%, =R¥ =0, (3.6) becomes
BY - 0[RS, - ¢)RE -¢) - R =0. (3.7

There are two cases in which (3.7) may have two equal
solutions for ¢. Case one is when R}, is a repeated
root, in which case

(R -R})RYL-RY)-RYE=0,
which upon substituting from (3.5) implies
(ny=ng)(nymz+a®)=0. (3.8)
The second case is when
h=0)RE-0)—~RE)?=0

has two equal roots for ¢. Using the quadratic formula
leads to the equivalent condition

R¥ =R%-R%=0. @.9)
By (3.5), this becomes
Hp =ty » (3.10)

But condition (3.10) implies S¥z=0 which is necessary
and sufficient for the existence of a G¥. If n,#¥n, then
by (3.8)

Nyng+a,2=0. (3.11)

A long calculation using the general definition of CJ,
given in Appendix A [we cannot use (A5) since we are
not in a Ricci eigenframe] leads to

Cry=3(n,+n,)S%,. (3.12)

So by the theorem, condition (3.11) is also sufficient

for the existence of a Gf. We now look at each type

from class B subject to the condition (3.10) or (3.11).
Type V: All space-times satisfy (3.10) so there is a
G¥.
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Type IV: No space-times satisfy (3.10) or (3.11) so
no G¥ can exist.

Type VIL: A subset (n,=n,) satisfy condition (3.10) s
there exists a G¢. Since n,=n,#0, the Jacobi identi-
ties (A3) imply that 6,=6,, so there exists a G¥C G¥
which is really a G,.

Type VIL: All space-times with »=—1 satisfy (3.11)
so there exists a Gf. No space-times with other
values of & possess a G¥.
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APPENDIX A

This Appendix contains formulas related to the ortho-
normal tetrad formalism as presented by Ellis and
MacCallum?® and augmented by Wainwright.®® We have
assumed that our tetrad e,, =0, 1,2,3 has e;=u hyper-
surface orthogonal so that the vorticity tensor w van-
ishes.

The commutators of e, are:

[eq, €,]=ile,— 6,e;, — (0,5 — Ri)e, — (0,5 + 82 )e;,
[eo, €, =ti% o~ (0,5 +2,)e, —~ 6,8, — (0,3~ 2))eg,
[eo, €3] =€ — (0,5 = 2,)e, = (0,5 +2,)e,~ 65e,,
[e,,€,]= (3 ~aj)e, + (ny;+a,)e, +nge,, (A1)
[es, €3] =ny,e,+ (n,,—az)e, + (n;+ajy)e,,
[es, ;] = (n,, +a,)€, +nge,+ (ngs —ay)e;.
The Jacobi identities:

(X, (v, z]]+[Y,[Z, X]) +[2,[X, Y]] =0,
applied to the vector fields e,, eg, and e, are
847y + B 7yp +8aM5, + 8,85~ 83, = 2(n,, 4, +7,,a,+725a5) =0,
Bafpn+ 837y + 87, ,+0,0, = 8,05 = 2(nga, +nyas+n,,a,) =0,
B37gs +0 Mgy +8,Mp5 +8,dy — 8,0, = 2(ngy Ay +1g)8, +153a,) =0

(A2)
In addition, for a spatially homogeneous space-time,
with a canonical tetvad some of the Jacobi identities ap-
plied to the vector fields e, e,, €5 yield:
BoMy +6,+6;-6,)n,,=0,
BoMg+ (03+8, = O,0n,,=0, (A3)
BoMgg + (0, +0,=0,0n,,=0.
The 3-Ricci tensor R}, on the hypersurfaces ortho-
gonal to e, are given by:
RY=208,a,+8,(a,=nyy) +85(ag +n,,) + 2(am , — azn,,)
+2(nf =gy ~nls) +nans ~2% - 2(a%+aZ+al),
R3=20,0,+08,(ny+a,) +05(a; —n,) +2(agn,, ~a,ny)

1.2 _ .2 __ 3
+3(ngy—nf ~nd) +n ng —2nf3—2(af+a§+a§),
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R¥,=2030,+8,(a; =ny)+8,(a,+n,5) + 2(amy ~ayn,,)
+3 (nds —nly =n3) 41,0y =202, ~ 2(af+a2+a?),

R =308,(a,+n,3) +38,(a; =ny) ~305(ny, ~ny,) +a,(n,, ~n,,)
FAyNas = Ayy +my5(0 )y +05, =1gs) +20 370,

R =38,(a, _”12)"'%33(“1*'"23) +305(nyy ~ny) +a,(ng; =ny,)
AN =AM +ny5(nyy ~ng, +733) + 20015M 5.

Ry =30,(a5+n,5) +58,(a;—n,5) +30, (g3 =1 5) +a, (55— 155)

+A3My3 = AaN 1 R (0, +ap+135) +2015m,5 . (A4)

The Cotton-York tensor (1.2) is in general:
Cxeb_ Znuu(a[av _av]R*B)u + 4n”°‘R* B))\+ na uunﬂxaR:an
- R*naﬂ _n‘wR mvéaﬂ .

However, in a 3-Ricci eigenframe (R}, =R} =R} =0) it
simplifies to:

C¥=2n,RY + (—nyy =y +ng)RY+ (=) +700 =Ngs)RYs,
Cly=(=nyy =npy+ng)RY + 21 RY + (nyy=ng —ng)RY;,
Cly=(=nyy 15y =nag)RY + () =nyp ~ma3)RY + 2053 RY;
Cl==~08;(RY, — RY) +n,(RY + RE - 2RY) +a,(RY, - RY)
Cl==0,(RY; ~ RY) +n,3(RY - 2RE +RY) +a,(RY - RY),
C=—0,(RY — RE) +ny5(-2RY +RE+RE) +a, (R, - RY) .
(A5)

APPENDIX B

In this Appendix, we prove the following lemma:
Lemma: Let V,; be a three-dimensional Riemannian
manifold. Assume that R, (or equivalently S,,) has two
equal eigenvalues and that S, is not identically zero.
Assume that the spatial gradient of $2=35,,S*® van-

ishes (S, =0) and
CaB=)\Sa59 (Bl)

with either:
(i) » constant, A#0,
or {ii) x=0 and R,z has zero as its third eigenvalue.

Then there exists a Ricci eigenframe (R, =R,;=R,,=0)
in which

Ay =Ny3 = Qy=Nyp+A3 =Ny =Ny =Ng3 =0, (B2)
and in which
A=3n,,. (B3)

Pyoof: We begin by choosing a Ricci eigenframe in
which

R,=R;3=Ry=0, R, #Ry=Ry. (B4)
The remaining tetrad freedom is a rotation:
8 =e, (B5)

&,=e,cos¢ +e;sing,
&, =—e,sing +e, cos¢ ,

and the following quantities are invariant under the ro-
tation:
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I, =a,,

L= (s —a,)%+ (n,,+a5)?, (B6)
Iy=nyy,

Iy= (ngp=ngg)®+ 5,

(cf. Collins and Szafron?” or Ellis®). Conditions (B1)
and (B4) imply

C23=C22—033=0,

which, using (A5), becomes

Rpg =Hgp =N33=0. (B7)
Definition (2.2) together with (B4) implies
Sy =%(Ru _Raz): S52=553= '%(Rn-Rzz) ’ (B8)

80 that the first three equations from (A5) now become

C =Sy, Cpp= Cay = XS5y = 7S, , (B9)
where

A=3n,,. (B10)
Equations (B1) and (B4) imply

C,,=Cy3=0, (B11)
while the conditions 8,5 =8,5 =0 together with (B8)
yields

95(Ry; =R ) =9,y = Ryp) = 0. (B12)

Applying (B11) and (B12) to the fourth and fifth equa-
tions of (A5), and recalling (B4), we find

Ny —Ay=Nyp+a;=0. (B13)
We now use a tetrad rotation (B5) to set

Nyp=0, (B14)
and Eq. (B7) provides

N43=0. (B15)

From the partial list of invariants (B6), we see that
(B7), (B10), and (B13) are preserved. It remains only
to show that a, =0.

The first Jacobi identity (A2) is now

1@, =0. (B16)
In case (i), A# 0 so (B10) and (B16) imply

a, =0, B17)
and the lemma is proved. In case (ii), A=0 so that
(B10) implies

7, =0, (B18)
and R,, =0 converts the first equation of (A4) to

912,=a,° . (B19)

Adding and subtracting the second and third equations
from (A2) with twice the fourth and fifth equations from
(A4), now yields
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0,0, =0,a,=0; 9,a,=0,a,, 8,0,=a,d,. (B20)

Applying 8, to the second equation from (A4) and using
(B18), (B19), (B20), (B13), (B14), (B15), and the com-
mutation relations (A2) yields

8ty =2a,R,,. (B21)
The conditions 8,5 =R, =0 together with (B8) imply
9,R,,=0. (B22)

Equations (B21), (B22), (B4) and the fact that R,, =0
yield

a1=0, (B23)

so the lemma is proved.
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We develop a new theory of the pure gravitational field by treating superspace as a fiber bundle
with space-time as the base space, and Fermi space, with anticommuting Majorana spinor
coordinate 6, as the typical fiber. In the fiber bundle geometry, a spin-3/2 field arises
automatically. It comes in through the commutation relations of the basis vectors in the
horizontal lift basis, or through the metric in the local direct-product basis. The Lagrangian is
taken to be the scalar curvature of the fiber bundle, in analogy with general relativity with no
source terms. The theory is self sourced and the spin-3/2 field and usual spin-2 field appear as
gauge fields. The theory is also completely basis invariant. The field equations correctly describe a
spin-3/2 field coupled to general relativity, with the correct “energy—-momentum tensor” of the
spin-3/2 field appearing automatically. We thus end up with a very simple, geometrical theory
which contains far fewer fields that the geometrical work of Arnowitt and Nath while keeping
their elegance of formulation. The resulting field equations are similar to those of simple
supergravity with only a spin-3/2 field appearing in addition to the spin-2 Einstein field, however,

supersymmetry invariance seems to play little or no direct role in the present theory.

PACS numbers: 04.50. + h, 11.30.Pb
. INTRODUCTION

Supersymmetry'~ and its possible role in gravitation
theory has received considerable recent attention. Salam and
Strathdee® introduced the idea of using linear transforma-
tions in an eight-dimensional superspace z* = {x#, 87} to
describe the usual supersymmetry transformation. Here x #
are the usual Bose space~time coordinates and 8 ' are Major-
ana spinor anticommuting Fermi coordinates. Arnowitt and
Nath* then extended this to arbitrary coordinate transfor-
mations in superspace which leave the line element

ds*=dz"'g,, dz*® (1

invariant. In this elegant geometrical theory, the Lagrangian
is taken to be the scalar curvature of superspace and the
single gauge superfield g ,, contains all the physical fields in
the theory. To accommodate electricity and magnetism, or
other internal symmetry groups, the Fermi sector is enlarged
by adding an internal symmetry index to ' to give 8 “. Re-
cently the arbitrary n-point Green’s functions of spontane-
ously broken gauge supersymmetry have been shown® to be
ultraviolet finite to arbitrary loop order for N»>2, where 4V is
the number of Fermi coordinates. This augurs well for a
renormalizable theory of gravitation. The chief disadvan-
tage of this theory is that the superfield g, contains a large
number of higher order ordinary fields even in the case of
pure gravity. If electricity and magnetism are put in, not one,
but a large number of additional fields appear. One hopes
that nature has not been so extravagant.

An alaternative approach to a renormalizable theory of
gravitation has been the supergravity work of Freedman,
van Nieuwenhuizen, and Ferrara® and of Deser and Zu-
mino.” This has been extended to larger gauge groups and
elaborated by numerous authors.® The simple version of this
theory (hereinafter denoted FvFDZ) constructs a Lagran-
gian which is explicitly invariant under a supersymmetry
transformation of the fields. The action describes massless
spin-2 and spin-3/2 Majorana fields and is the sum of the
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Einstein and Rarita-Schwinger® actions. This theory seems
to be 1- and 2-loop finite'® but 3-loop divergent.'' Thus the
spin-3/2 field seems to improve greatly the renormalizability
of the gravitational field but problems remain. This ap-
proach lacks the geometrical elegance of the Arnowitt and
Nath theory but has the great advantage of containing far
fewer fields, so that higher order fields do not have to be
neglected whenever an explicit calculation is made.

In this paper we propose a new fiber bundle theory of
the gravitational field which is similar to the Nath and
Arnowitt**!? theory in its geometrical elegance but which
contains far fewer physical fields. In addition to the usual
spin-2 Einstein field, a spin-3/2 field appears quite naturally,
so that we end up with something similar to simple supergra-
vity. We will be concerned in this paper only with a pure
gravitational field. Coupling to matter fields will be taken up
in a subsequent paper.

In Sec. II below, we discuss the fiber bundle geometry.
The field equations are worked out in Sec. III, and we con-
clude with a discussion of results in Sec. IV.

Il. BASIC GEOMETRY

Rather than treat eight-dimensional superspace as a
general Riemannian manifold as Arnowitt and Nath do, we
will take it to have the structure of a fiber bundle P, with real
space—time M as the base manifold and the four-dimensional
Fermi space F, with anticommuting Majorana spinor co-
ordinates 6, as the typical fiber. This approach is much clos-
er to how a gauge group is conventionally associated with
space-time and has the enormous benefit of introducing far
fewer physical fields as we shall see. We are essentially taking
superspace to be a kind of generalized topological product of
Fand M.

Cho'? has written a very interesting paper unifying
gravitation with a nonabelian gauge group. We will use this
paper, appropriately modified, in the development which
follows.
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We choose a coordinate basis'* §, = d,, for the base
manifold M with commutation relations

., 6.1=18..9.]1=0. (2)
We also assume that M is a metric manifold with metricg,,, .
This g,,, will depend on x* but not on the Fermi coordinate
@". Similarly, we choose a coordinate basis for the Fermi
space F with the basis vectors satisfying anticommutators,

{6:.6,} =19:,9;} =0. (3)

F can also be taken to be a metric manifold with metric g,;
which depends on 8, but contains no space~time dependent
physical fields. g; can be expanded in general in a finite pow-
er series in 8’ with contributions up through four powers of
the 8°s. For the structure of the fiber bundle P, '* we consider
the fibration A = (P,M,IT) where the base space M and the
bundle space P are smooth manifolds and /7 is a C ® map-
ping of P into M. I7 is surjective and satisfies the condition of
local triviality: for any xeM there exists an open neighbor-
hood U of x, a manifold F, and an isomorphism (diffeomor-
phism) @ of IT ~}(U)onto U X FsuchthatIT (¢ ~!(x, ) =
for all xeU and @€F. I1 is called the projection of the fibration
and for each xeM, the inverse image P, = IT ~'(x)is a closed
submanifold of P called the fiber over x. It represents the
local gauge degree of freedom at x. Local triviality implies
that all P,. are diffeomorphic to P, for all x'eU, a neighbor-
hood of x. The fibration can be viewed as a bundle of fibers or
fiber bundle, especially since all the fibers are diffeomorphic
to the same manifold F, the typical fiber.

To go further, we now need a connection I" in P. We
first note that the basis &, of F can be mapped naturally into
the fiber bundle.'® The resulting fields in the bundle will be
denoted by £,". These are tangent to the fiber space and form
a subspace, called the vertical subspace ¥, of the tangent
space T,(P) to P. A connection'*'* is then taken to be a
choice of a subspace of T, (P) called the horizontal subspace
H, at each point of P such that

(a) The tangent space 7, (P) is the direct sum of V, and
H,

(b) Forall @eFand peP, H,, = R, H,,where R,: (p, )
€P X F—pbOeP with p(6¢ ) = (p8) ¢ for all B, geF, peP.

(c) H, is smooth on P.

We can now define the horizontal lift of any vector 4 at xeM.
The horizontal lift of 4 will be a unique vector AeH ateach
pointof the fiber /7 ~'(x)suchthat I7 (4 ) = 4.'"* Wecan hori-
zontally lift our basis vectors £, in M and denote these by § e
These § ., along with the £." defined above, form a natural
basis for the fiber bundle called the horizontal lift basis with
commutation relations in the bundle

{é’ i*’ § j*; =

[gl’*’g;t] :0 (4‘)

[é‘/t ’ §1] = /u § *
[We will use Greek letters i, v, p, etc. to denote Bose indices,
lower case Latin indices i, j, k, etc. to denote Fermi indices,
and upper case Latin letters 4, B, C, etc. to denote a fiber

bundle index which ranges over both Bose and Fermi indi-
ces. The latter takes on eight values. We can keep track of
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of anticommuting Fermi variables by associating a Grass-
man parity a, b, etc. with each fiber bundle index A4, B, etc., as
in the work of Arnowitt and Nath.? ¢ = 1 if 4 is Fermi and
a = 0if 4 is Bose. If we change the order of two quantities
H,p and Q €, , for example, we have H,,Q €,

=(— lfetrblerd+agC H,,.] Wewill use this horizon-
tal lift basis extensively below because of the simplications it
makes in actual calculations. Other bases are also possible, of
course, and the theory is completely basis-invariant as we
shall see. One other basis in particular is useful, especially in
understanding gauge covariant derivatives. This is the local
direct-product basis, which we discuss below.

The first two commutation relations in (4) follow imme-
diately from the definition of the respective basis vectors.
The third relation is the statement that [§ o é, ] is vertical.
This follows since the projection with I7 of any horizontal
component into M must give [£, , &, ] which vanishes from
{2). This third commutation relation is quite important for
us, since it brings in F ;,,, which will be related to the spin-
3/2 field. We see that the §, form a noncoordinate basis. In
the local direct-product basis, as we shall see, the corre-
sponding commutator vanishes. In this latter basis, F ;, en-
ters the theory completely through the metric y,, of the
fiber bundle [see (6'), (23), and the definition of B, following
(20)]. In the horizontal lift basis, the metric is simpleand F |,
enters the theory through the commutation relations of the
basis vectors as in (4).

Let us now turn to the metric 7 ,, in the fiber bundle.
We shall require 7, to be compatible with the metrics g,,,
and g, on M and F by requiring!*'®

yABé:éf: 8uv >
Vas EXEX = gu s (5)
Yas é : 3 ¥ =0,

where this last condition is that the horizontal and vertical

subspaces be orthogonal. This is a basis-invariant definition.
In the horizontal lift basis, this metric is particularly simple:

o <g,ll\’ 0)
SN WA

yAE = (gw Q).
0 gxk

y 48 is not in this simple diagonal form in any other basis. In
the local direct-product basis, we have for comparison that

_ (i,w‘*‘gikBLB}: B:A,gik) (©)
Vs = ik B‘kr 8 ’

where we used (5) and (21). This is much more difficult to use
in calculations than (6).

The horizontal lift basis gives rise to one further simpli-
fication. Note thatg,,,, = O and g;,, = 0, where a comma
denotes a partial derivative. These follow from our defini-
tions of the M and F manifolds and of their respective me-
trics. We can take these over into the fiber bundle by writing
V.v: = 0and p, ;» = 0in the horizontal 11ft basis. These are
now directional derlvatxves along & * and § ,, respectively.
They follow from the isomorphism of §; and £ *; and from

(6)
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the definition of the horizontal lift, and are basis-invariant
statements. If we work in some other barred basis, ¥, ; =0
will still hold, but in terms of quantities in that basis y;, 7 #0.
The horizontal lift basis thus simplifies the fiber bundle met-
ric in its form and in its dependence on x,, and 6;.

At this point we have two quantities which may serve as
physical fields, g,,, (x) and F ;, (x,8). Note that g, (x) is not a
superfield but a simple function of x,,. F ;, (x, § ), however,
does look like a superfield and may contain large numbers of
physical fields when expanded in a power series m 8;. To
determine the fiber space dependence of F ,,, let us look at
the Jacobi identities. One of these is

Er€. E N1+ [ NN+ [£r.61]

=0, {7
Using {4) gives

(¥, —Fi.6r]=0, (8)
which becomes

—(FFL)EF+FL {EX. € =0, (9)
and finally

—d¥F!, =0 or Fl, = (10)

v,
Thus F/, is a simple function of x,, and we end up with just
g,.»(x)and F_(x)for physical fields. This is in sharp contrast
with the work of Arnowitt and Nath where the superfield
g.4s(x, 8 contains a large number of physical fields.
A second Jacobi identity is

[gp’ [§# ’§V]]+ [gu’ [é_v ’g ]]+ [gv’ [§p rg,u]]

(11)
This becomes
& Fi+E, Fiy+&,F) =0, (12)
or
FI:VP+F‘:P#+FP’/‘V—O’ “3)

where we must remember that the partial derivatives refer to
the horizontal lift basis. To work out the remaining two Ja-
cobi identities, weneed [ £ *, £ *] , which is not given in (4).
This can be written

(X, 86X =V 62—V, £, (14)
where Vin is the covariant derivative in the £ ; direction, and

we have assumed zero torsion. This involves the Christoffel
symbol I" /}, in the Fermi sector. Thus from (36) below we
have

[er.é2)=2r &, (15)
The Jacobi identity involving & * , £ ¥ , and £ ¥ then becomes

Cip.+Tf,;+T)=0. {16)
Finally, the Jacobi identity involving £ ¥, £ *, and f,,
becomes

51""—-0 or I'j, =0. (17)

This last equation is satisfied identically sinceg;, , = Ointhe
horizontal lift basis and I" ;, is a function of g,, only, from
{37) below.

We would now like to introduce potentials. To do this
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we need to define connection forms and cross sections of the
fiber bundle. Given a connection I", we can always define a
connection form @ such that'?

€t =w, £F° =

o) =0l €L =0, (18)
where o=0w' £; and o' are real valued 1-forms. A cross sec-
tion ofx, ) is then a submanifold of P which is diffeomor-
phicto an open subset U of M with Il(a(x, §)) = x.Leto - £,
be a vector in the tangent space T, 4, (P)to Patoix, 8)
induced by o : xeU—oix, 8 eIl ~'(U). We can then define a
connection form 4 ' on U [or ofx, 6)] by

ANE)=A0"E =0lo-E) =00 -£,)& . (19)
The A " are then identified as our vector potentials. They
depend on the choice of the cross section ofx, €). We can
define the trivial cross section o,(x) as the set of points

= (x, 8) with fixed 8. For each 6 there corresponds such a
cross section. We can also introduce the local direct product
basis £, ,, and £ = £*. For all @ the En form a basis of the
tangent space of the trivial cross sections o, {x).'> The com-
mutation relations for this basis are

(£..5)=0
[£&.£.1=0, (20)
[étu !étv]:O

We can define potentials in this basis as B (x, 0)=4 ! i
= o 5 {x, 8)), and using (18) write

bo=E —Eo\E)=E —EBLx0)= (21)
Thus 5# is the usual gauge covariant derivative if one writes
it out in the more usual local direct-product basis rather than
working in the horizontal lift basis as we have been doing.
We will continue to work in the horizontal lift basis, where
this derivative wil{ often be denoted by a comma, but this
shows the role of £, as a gauge covariant derivative. Thus a
major advantage of the horizontal lift basis is that the deriva-
tives are automatically gauge covariant.

Now £/, can be written in terms of 4 ("' by writing (4)

# .

as
D.§, =D, 5, =—FuL&r. (22)

We can map this into the tangent space T, ot (P} using the
mapping o as above and then operate with o' using {18) to get
F, =D A4 L"” —-D, 4. (23)
Either F [, or 4 7" can be used to describe the spin-3/2 field.

We will work primarily with the gauge invariant quantity
F ., in the following, although the 4 (/" is more closely relat-
ed to the ¥, spinor fields of supergravity.®” Note that F / is

essentially the curvature 2-form associated with the connec-
tion 1-form ."

il FIELD EQUATIONS

The fiber bundle space P has been organized into an
eight-dimensional Riemann space above. We can calculate
the curvature of the bundle and use the eight-dimensional
extension of the Hilbert action of general relativity for our
action principle. Before we do this, we need to define covar-
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iant derivatives in terms of Christoffel symbols I” ;- and
write out the curvature tensor R ,;-? in terms of I" ;- and
F [,. We have the double complication of having anticom-
muting variables and also a noncoordinate basis (the price we
pay for using the horizontal lift basis).

The covariant derivative of a contravariant vector ¥ 4
can be defined as*

VAs=V" , + Vg, (24)
(In the horizontal lift basis, this derivative is both gauge co-
variant and generally covariant.) Unfortunately we then
have two types of covariant vectors, U 7 = V “ g, and U,

= gp, V * with slightly different covariant derivatives

Upp=Upp — (=120, I (25)
and

Uba=Ufs—(=1""US 5. (26)
The behavior of higher-rank tensors can be seen by consider-
ing products of different kinds of vectors. In particular, the
covariant derivative of the metric ¥, in the fiber bundle is

Yap.c =Vas.c — | Yap I sc

— (= pedrrerdy o L e =0, (27)

since it has one lower index of each type.* We can now solve
(27) for I 2. remembering that we are interested in general
in a noncoordinate basis (4). In Arnowitt and Nath,* we have
the following symmetry properties,

Yoe =(— 17" yep (28)
and

F§D=(—1)b+d+bd+(b+d)crp%. (29)

(28) will hold for us but (29) must be modified because of our
noncoordinate basis to give

(_1)b+d+bd+(b+d)c1‘§8__I'\BCD___:HDCB, (30)

_ 1)b(b+d)

where H S, must be determined in terms of F ;, from the
commutation relations (4). Solving (27) for I” jr. , watching
anticommuting variables, and using (30), gives after a labori-
ous calculation that

Tip=(— l)be%[( — 1) Yabp
Eal el VR YL P yPE
ngA ___(~ l)be+|b+c](a+f)%,}/c3 HSA 7/DE

2
— (=1 Ty Hpp yPF. {31)

This reduces to the Arnowitt and Nath* form if H§, =0
and to the usual form’ for I 5, in anoncoordinate basis if all
the indices are Bose indices.

We can now use

[§A1§B]=V§A§B—V§A §A’ (32)

where £, = ( §A .. » & ¥) are basis vectors obeying (4), to get
H 4% interms of F ;, . We have assumed zero torsion. We
have

Vebpg=T 5, Ec{(— 1 70+9 (33)
for the covariant derivative of the basis vector £5. Thus,
using (30),
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[£€4,65) =T 5 Ec(— 1) T0+o
— PG (1P rree
ES [( - 1)b+a+ba+1b+a|cl,ACB —Hﬁa
ch ( _ 1)0+a[b+0)
— T G §c(—1preere. (34)
(34) and hence (30) are consistent with the commutation rela-
tions (4) if

i i :. = B:
C_[FGB, if C=i, A=a, B (33)

AB — .
0, otherwise

We also note that
[§7k’§f]= —Zrijcgc(*‘ 1y
=2r;&f, (36)
since I" / = 0 from (31) and our work below. This was used
in (15) above.
Using (6) to write 7,5 in terms of g, and g; and using
Vi =0and yy , = 0 in the horizontal lift basis, we can

write out the various components of I f5 in (31} as

Frj/j = lz[gaﬁ,ﬂ +g[3§,a __gaB,éS]gée’

F(iﬁZ%Fliﬁ’

I“fj:-rj?z:“%gijFéagaB’ o7
[‘(;'j.:l"j;,:(),

Fi]l'(: ~5 —8u,; +gjl,i—g'jv’]glk’

Before we can write down field equations, we still must
define the curvature tensor R 5 ” in terms of I” jc and F ;. .
We can get this by parallel transport of a vector around a
closed loop consisting of five sides dx==dx "¢ ,, dx'=dx"*& ,,
[dx,dx'}, —dx,and — dx’, where dx * are components of a
small vector in our basis £,.'” We must again be careful of
anticommuting variables and take into account that we have
a noncoordinate basis so that [dx, dx']#0. The result is

R AFGB ZFI:?G,B( - l)bg —rng,G
4T D=1
_ FFCB F(,?G(_ l)bla + ¢}
_r;iEHgB(_1)g+b+bg+etb+g)’ (38)

where H £, is given in (35). This agrees with the result of
Misner, Thorne, and Wheeler'” when we have all Bose co-
ordinates and with the result of Arnowitt and Nath* when

H £, = 0(coordinate basis). (Iam using the sign conventions

of Ref. 4.)

We can now define

R =(—1]R CABC (39)
and the curvature scalar

R=(—17y"? Ry, . (40)

Our variational principle for the field equations will then be
taken to be

éf(-—y)”szsz=O, (41)
where we vary with respect to the metric ¥ *# and
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y==dety ,p . Explicit calculation shows that the field equa-
tions which follow from (41) are

R =0. (42)

It should be emphasized that the variational principle (41) is
completely basis-invariant. We will work in the horizontal
lift basis but any other basis would Iead to the same final
results. Also note that (41) is very geometrical and is a simple
and elegant generalization of general relativity to the fiber
bundle. No “source” terms are present so that the theory is
completely self-sourced. The spin-3/2 field F ;, which is
buried in (42) arises completely naturally in the geometry of
the fiber bundle and does not have to be put into (41) by hand
as in the supergravity theories.%” Both 8., and F arise as
gauge fields, with the fundamental gauge group being the
group of arbitrary coordinate transformation in the fiber
bundle.

We are now in a position to write out our field equations
(42) in terms of g,4(x), g, and F ;, (x). Putting (38) and (39)
into (42) and using (37) gives
Ruv =R LEV) + %gji

é',, F:Bgéﬁ'{'i(F‘fu,i‘*'sz Fj:‘)=09

(43)
Rw’ = - igji(Féu géa)’a — 18 gu g F«fﬁ
+18, Fi. 8°T5 =0, (44)
Ry =R —(igu Fro8™88y Fs, 8 =0, (45)
where
RLEV‘E r;iv,a _F:a.v +r/.‘z5vr;a —'r:ﬁraﬁv (46)
and
RF'=Ij+ T+ Ty+TiT}. (47)
We note that the curvature tensor (39) has the symmetries
R,= —-R, and R;,= —R,, (48)

butthat R, #R,, because of the F ;, terms. In fact (43) has
the form of the sum of a symmetric part and an antisymme-
tric part. These must vanish separately so that (43) becomes

RE +1g,Fl, Fl,¢%=0 (43a)
and

F, ,+F, I;=0. (43b)
Now from our definitions of covariant derivatives in (24)-
(26) we can write

F;ﬂ;C=F¢iﬂ,C +F;BFJ-"C—F;5F§C—F5"BF§C,
(49)
where C is a general index. Using (49) and (37) shows that
{43b) can be written as

and (44) can be written as
g, (F”,), =0. (51)

Thus our field equations (43a), (45), (50), and (51) can be writ-
ten in completely covariant form.

If we look at (43a) we see that R (5!, F, and g % are all
functions of x,, only while g, is a function of §; only (a power
series with terms up to 6 ¢). (43a) thus implies that g, must be

aconstant matrix and not a function 6, and can be written as
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8i = on; (52)
where Q is a constant and 7, = (— C ~'),,. Cis the charge
conjugation matrix (C* = C ~'and C” = — C)and is the
only constant Fermi sector matrix which is available to play
this role.* Note that the conclusion (52) holds only in the
horizontal lift basis. It would not hold in some other basis.
Using (52) and (10), our field equations can be simplified to
the following form:

RGY —18.5 RE'=— (87x/cH) T,,, {53)

(F”,), =0, (54)

Fk F', =0, (55)
with

- CzTyv =i Féy Fe, — 18.. 1, Fiﬂ F P (56)
We used (55) to write (56) in traceless form and identified
0= 16mx/c*. (57)

R 7 and R refer to the Einstein quantities. (Notice that
our fiber bundle equations are sourceless since R ,, = 0.) We
also must satisfy the cyclic condition on F v from the Jacobi
identity (13). The Jacobi identity (16) and the field equation
(43b) are identically satisfied using (52) and (10). We thus end
up with a very simple set of equations. These equations were
derived in the horizontal lift basis. Any other basis will givea
set of equations which are equivalent to these, although indi-
vidual components of R , ; look different in different bases. '3
The variational principle (41) is basis invariant since R is a
scalar, and hence the theory is completely basis invariant.
We can write out R as

R=RGy*+ R y"— Ly, Fi, Fiv*y",
(58)

R’} and R 7 are given in (46) and (47). This R would take
the same form in any basis.

It is important to note that our final set of equations
(13), (53)-(55) is invariant under general x,, coordinate trans-
formations and under “gauge transformations” of the A4
in (23). Since the 4 (7" are the coefficients of cross section
dependent connection forms, different gauges correspond to
different choices of the cross section.'® More explicitly, F ;v
given in (23) is invariant under a change in the potentials of
the form

AP A 4D, €lx), (59)

where €'(x) is a spinor which depends only on x, . Itis easy to
show that (57) corresponds to a change in cross section
o(x, ) in (19). Under this transformation

8F,,, =D, (D, €(x)) - D, (D, €(x))
[Dv ’Dy.] €i(x) = [é—v ’§u]6i(x)
= —Fi, 1 ex)=0, (60)

since £ * €(x) = 0. All of our derivatives are also gauge co-
variant. Our field equations are thus invariant under “gauge
transformations” of the form (59).

As in general relativity, we have differential Bianchi
identities which reduce the number of independent equa-
tions which the g ., (x) and F ;, (x) must satisfy. We can write

"
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the variation of (41) with respect to y,, as
f(-y)”z( — 1)°[R4% —§ y4BR | 8y, d%2=0. (61)

Under an infinitesimal coordinate transformation,
2=+ £, (62)

we have

8V 45=715(2) — Vu5(2)
=Vac €5+ (=1 Py E S+ Vasc €€
(63)

This can be put in the form

OV =648 +(— 1)a+b+ab§B;A +7Ai§5H6iB
+(_1)a+b+abyﬂi§5HﬁiA’ (64)

where we used (30) and H /; is given by (35). Putting (64) into
(61) and noting that the result must hold for arbitrary £,
leads finally to the Bianchi identity

(= 1R ** —4y*"R) ,=0. (65)

This represents eight identities.

At this point it is interesting to see if the number of
independent equations versus the number of unknown quan-
tities makes sense. If we use (23) to write F , in terms of 4 [,
we have 16 unknown components of 4 ; , and ten unknown
components of g,,, to be determined. The cyclic Jacobi iden-
tity (13) is satisfied identically for F [, of the form (23). We
are left with the ten equations (53) and the 16 equations (54).
These 26 equations are reduced to 18 independent equations
if the Bianchi indentities (65) are taken into account. Since
we have 26 unknowns, we have eight degrees of freedom that
remain to be specified. These are just four x,, coordinate
conditions plus four gauge fixing conditions for 4 ;, so that
the numbers work out as one might expect.

IV. DISCUSSION

Our final set of equations (13), (53)—(56) represents a
massless spin-3/2 field coupled to general relativity. Unfor-
tunately, the spin-3/2 field is in a very unfamiliar representa-
tion. To verify that we do indeed have a spin-3/2 field, we
can start with the massless, spin-3/2, two-component spinor
equations of Corson,’

9, =0 (66)
and

I y.,'=0 (67)
along with the complex conjugate equations

3, P =0 (68)
and

¥y, =0. (69)

(We use Latin letters near the end of the alphabet to denote a
two-component spinor index.) These spinors must be sym-
metric under interchange of indices to prevent lower spins
from appearing also. These spinorial derivatives are defined,
for example, as

ar’u an g yr'u (70)
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with the g7;, given in terms of the Pauli spin matrices and
the unit matrix as in Corson.'® Now, extending the develop-
ing of Corson a bit, we can write a general antisymmetric
tensor with one 2 component spinor index as

G;:v =C0[gpjr gvs'p ¢rpt+gyr‘sgvps pri] (71)
along with the dual

G/.:v = —Co[gyjr gvs’p ¢rpl—gyisgvp's ¢ip’] ’ (72)
where C,, is some constant.

A second general antisymmetric tensor with one dotted
spinor index can be written as

Hyi= ~Col 8. 8uip X"i +8u'8ups X "] (73)
along with the dual H, .vi- It is now easy to see by adding and
subtracting the divergences of (71) and (72) and the diver-
gence of (73) and its dual equation that the spin-3/2 field
equations given in (66)—(69) are completely equivalent to the

equations
3G, =G, '=d*H,,=d*H,,=0. (74)

From the way in which G,,," and H,,,; are defined, we can
now combine these to give a four-component spinor

. G,
Fi = (H ) (75)
vt

where i = 1,2,3,4. Outr spin-3/2 field equations in flat space
then become

“Fi, =d*F} =0, (76a)
with the antisymmetric field F |, satisfying
FF©=Fi Fr=0. (76b)

(76b) follows from the symmetry properties of the basic spin-
ors in (66)-(69). These symmetry properties are necessary to
prevent the appearance of lower spin fields. The derivation
of (76a) and (76b), can be reversed leading back to {66)—(69),
which shows that (76a) and (76b) do indeed represent a field
with spin 3/2 and only spin 3/2 present. One advantage of
this representation is that it generalizes readily to curved
space giving finally

(F*™,),=0 (77)
and the dual
F”,).,=0, (78)

where a semicolon denotes a covariant derivative. It is im-
portant to note that F [, itself represents the physical spin-
3/2 field in this representation, and that this physical field
satisfies first-order, ghostless equations as we would expect.
The reason is that the equivalent spinor equations (66)—(69)
are uncoupled linear equations for this massless case (and
only for this case). [In the massive case our Egs. (74} acquire a
vector potential term on the right and become second order
equations in terms of the spinors @ or y. In this case C,
becomes proportional to the mass in (71). Using the massive
version of (66)—(69) shows that F ;, , for example, is then pro-
portional to a derivative of y and (74) become second order
equations in terms of y. Thus our description (74) works for
the present massless gauge fields but is inferior to a Rarita—-
Schwinger formulation in the massive case.] It is interesting
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that the spin-3/2 field of FVFDZ, ¥ ; , can also be written in
terms of the @ and y spinors in equations similar to (71)-(73),
and we have a crude correspondence F ;, ~7, ¥ between
their field and ours. Unfortunately, no neat mathematical
relation between F ;, and ¥ seems to exist.

Equation (77} is now identical with our field equation
for F 7, given in (54). Also (78) is equivalent to our Jacobi
relation (13). Similarly, we can show in a rather tedious cal-
culation using two-component spinors that our unfamiliar
energy—momentum tensor given in (56) is equivalent to the
usual energy-momentum tensor for a spin-3/2 field. We no-
tice in this context, that the effective Lagrangian for the spin-
3/2 field in (58) and the field equations (54) both have a Max-
well-like form so that it is not suprising that the energy—
momentum tensor {56) also has a Maxwell-like form in this
representation. We should comment that our remaining
equation (55) holds for a sourceless massless spin-3/2 field in
the same way that F **F,, = E? — B? = 0 holds for solu-
tions of the sourceless Maxwell equations. It is thus not real-
ly a field equation. Thus we conclude that our equations do
indeed represent a massless spin-3/2 field coupled to general
relativity.

The role of supersymmetry transformations in this the-
ory also merits discussion. In Arnowitt and Nath,* the usual
supersymmetry transformation

x* =x#* 4+ Ligy o,

(79)

B =08"+¢€',
where €' is an infinitesimal Majorana spinor parameter,
plays the same role as the Poincaré transformations play in
the transition from special to general relativity. The funda-
mental gauge group is thus the group of arbitrary coordinate
transformations in supersymmetry space for Arnowitt and
Nath. The supersymmetry transformation (70} thus becomes
submerged only to resurface later in their work as a result of
spontaneous symmetry breaking. Similarly, in our work our
field equations do not possess supersymmetry invariance.
Whether or not supersymmetry plays any role after sponta-
neous symmetry breaking in the present theory remains to be
seen since we have not yet worked out spontaneous symme-
try breaking effects. It seems rather unlikely that supersym-
metry will emerge, however, since spontaneous symmetry
breaking itself may be a problem in this self-sourced theory.
No scalar fields are now present for spontaneous symmetry
breaking, and it is not at all clear how they can arise in a
natural way.

Another potential problem in the absence of supersym-
metry invariance is that our spin-2-3/2 system may suffer
from acausal propagation. It is well known that massless
high spin gauge theories need to be treated with great care.?°
The related questions of supersymmetry invariance and be-
havior of our spin-2-3/2 system clearly deserves more atten-
tion in subsequent work.

The similarity between this work and simple N = 1 su-
pergravity is striking, even though our field equations do not
possess supersymmetry invariance. We have a theory which
is coordinate system and basis invariant under transforma-
tions in superspace and which ends up quite naturally with a
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spin 3/2, massless field coupled to general relativity. Beyond
that, however, the similarities cease. First, it would certainly
be nice if supersymmetry invariance could be accomodated
in some fashion in the present theory. Second, our spin-3/2
field seems to bear no simple relationship to that of
FvFDZ,%’ primarily because of our peculiar representation.
Third, torsion plays a different role in the two theories. We
have explicitly taken our eight-dimensional torsion to be
zero, as in the work of Arnowitt and Nath. Four-dimension-
al torsion, however, plays a key role in supergravity especial-
ly in the first-order formulation. Qur effective Langrangian
is “nonminimally” coupled in terms of Rarita—Schwinger
fields with this ‘“nonminimal” coupling following from the
fiber bundle structure of the theory. Thus we end up with
something more akin to the torsionless original version® of
supergravity with nonminimal four Fermion couplings pre-
sent, than to the first-order formulation with torsion.®’

A number of things remain to be considered in future
papers. Since massless spin-3/2 fields very likely do not exist
in nature, spontaneous symmetry breaking probably plays a
role and gives a large mass to the spin-3/2 field. As we men-
tioned above, spontaneous symmetry breaking may be a
problem in this theory, however. We have also discussed
only a pure gravitational field above. How matter fields are
to be put in is yet to be seen. Hopefully one can do this
without destroying the geometrical elegance of the theory,
perhaps by way of an associated fiber bundle. Ultimately,
renormalizability must be considered. Other theories sug-
gest that the spin-3/2 field may make the theory more renor-
malizable than general relativity, especially if supersym-
metry can somehow be accomodated.

To summarize, we have a very simple and elegant geo-
metrical formulation of superspace using a fiber bundle. A
spin-3/2 field rather magically appears in the fiber bundle
geometry in addition to the usual spin-2 gravitational field.
These fields are both gauge fields and the basic theory is
sourceless. A certain economy is achieved since these fields
are the only ones to appear rather than the very large number
of fields which appear in the work of Arnowitt and Nath.*
The resulting equations are similar to those of the simple
supergravity of FvFDZ,%7 but our field equations do not
possess supersymmetry invariance. This paper shows how a
self-sourced theory of gravitation can be formulated in su-
perspace in a fiber bundle approach. Whether or not the
present theory leads to a renormalizable theory of the gravi-
tational field remains to be seen.

'J. Wess and B. Zumino, Nucl. Phys. B 70, 39 {1974); B. Zumino, in Pro-
ceedings of the XVII International Conference on High Energy Physics,
London, 1974, edited by J. R. Smith (Rutherford Laboratory, Chilton,
Didcot, Berkshire, England, 1974), pp.1-254.

2D. V. Volkov and V. A. Soroka, Zh. Eksp. Teor. Fiz. Pis'ma Red. 18, 529
(1973) [JETP Lett. 18, 312 (1973)].

’A. Salam and J. Strathdee, Nucl. Phys. B 76, 477 (1974); B 80, 499 (1974);
Phys. Rev. D 11, 1521 (1975).

“P. Nath and R. Arnowitt, Phys. Lett. B 56, 177 (1975); R. Arnowitt, P.
Nath, and B. Zumino, Phys. Lett. B 56, 81 (1975); P. Nath and R.

D. K. Ross 555



Arnowitt, J. Phys. (Paris) 37, C2-75 (1976); R. Arnowitt and P. Nath, Gen.
Rel. Grav. 7, 89 (1976); P. Nath, in Gauge Theories and Modern Field
Theory. Proceedings of the Boston Conference, 1975, edited by R.
Arnowitt and P. Nath (MIT Press, Cambridge, Mass., 1976}, p. 281; R.
Arnowitt and P. Nath, Phys. Rev. Lett. 36, 1526 {1976); Phys. Rev. D 15,
1033 (1977); P. Nath and R. Arnowitt, Phys. Rev. D 18, 2759 (1978).

°P. Nath and R. Arnowitt, Phys. Rev. Lett. 42, 138 (1979).

°D. Z. Freedman, P. van Nieuwenhuizen, and S. Ferrara, Phys. Rev. D 13,
3214(1976); D. Z. Freedman and P. van Nieuwenhuizen, Phys. Rev. D 14,
912 (1976).

’S. Deser and B. Zumino, Physics Lett. B 62, 335 (1976).

®A recent review talk by B. Zumino at Liblice, Czechoslovakia contains
numerous references. Columbia University Preprint CU-TP-132, June
1978.

“W. Rarita and J. Schwinger, Phys. Rev. 60, 61 (1941).

'9See the review by M. Grisaru and P. van Nieuwenhuizen in Deeper Path-
ways in High-energy Physics, Proc. Orbis Scientiae, Coral Gables, 1977
(Plenum, New York, 1977).

'S, Deser, J. H. Kay, and K. S. Stelle, Phys. Rev. Lett. 38, 527 (1977}.

?P. Nath and R. Arnowittt, Phys. Lett. B 65, 73 (1976).

'*Y. M. Cho, J. Math. Phys. 16, 2029 (1975).

'“The reader is referred to the following for general mathematical back-

556 J. Math. Phys., Vol.22, No. 3, March 1981

ground. S. Sternberg, Lectures on Differential Geomerry (Prentice—Hall,

Englewoood Cliffs, N. J., 1964}); S. Kobayashi and K. Nomizu, Founda-

tions of Differential Geometry (Interscience, New York, 1963); R. L. Bish-
op and R. J. Crittenden, Geometry of Manifolds {Academic, New York,

1965); W. Drechsler and M. E. Mayer, Fiber Bundie Techniques in Gauge
Theories, (Springer, New York, 1977).

M. E. Mayer, Ref. 14.

'*T, Kaluza, Sitzber. Preuss. Akad. Wiss., 966 (1921); O. Klein, Z. Physik
37, 895 (1926); B. DeWitt, Dynamical Theories of Groups and Fields (Gor-
don and Breach, New York, 1965), p. 139; R. Kerner, Ann. Inst. H. Poin-
caré 9, 143 (1968); A. Trautman, Rep. Math. Phys. 1, 29 (1970).

YC. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, San
Francisco, 1973).

"®A. Trautman, Ref. 16.

YE. M. Corson, Tensors, Spinors, and Relativistic Wave-Equations,
(Blackie, Glasgow, 1953).

27T Cukierda and J. Lukierski, J. Math Phys. 11, 46 {1970); C. Fronsdal and
J. Fang, Phys. Rev. D 18, 3630 (1978); F. A Berends, J. W. van Holden, P.
van Nieuwenhuizen, Phys. Lett. B 83, 188 {1979}, Nucl. Phys. B 154, 261
(1979); D. H. Tchrakian, Lett. Nuovo Cimento 24, 18 {1979); T. Cur-
tright, Phys. Lett B85, 219 (1979); C. Aragone and S. Deser, Phys. Lett. B
86, 161 {1979).

D. K. Ross 556



Gauge groups in a fiber bundie approach to superspace and the gravitational

field
D. K. Ross

Physics Department and Ames Laboratory, USDOE, Iowa State University, Ames, Towa 50011

(Received 22 May 1980; accepted for publication 15 September 1980)

A semisimple Lie group is incorporated into our fiber bundle model of superspace and the
gravitational field. The Lagrangian density is taken to be the scalar curvature of the (8 4 n)-
dimensional fiber bundle where 7 is the dimensionality of the Lie group. The resulting field
equations describe a nonabelian gauge field correctly coupled to the spin-3/2 gravitino and the

spin-2 graviton.
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1. INTRODUCTION

We have recently formulated a fiber bundle model' of
superspace in which four-dimensional Fermi space F, with
anticommuting Majorana spinor coordinates 8, plays the
role of the typical fiber and space-time plays the role of the
base space. In this model, superspace becomes a fiber bundle
rather than a general eight-dimensional Riemannian mani-
fold as in the gauge supersymmetry work of Nath and
Arnowitt.” The Lagrangian density is taken to be the scalar
curvature of the fiber bundle. A spin 3/2 field appears rather
magically, and the resulting “self-sourced” field equations
describe this gravitino field correctly coupled to the spin 2
field of general relativity. No other fields are present. Al-
though the theory bears a strong resemblance to simple
N = 1 supergravity,” supersymmetry invariance is not
present.

The purpose of the present paper is to extend our fiber
bundle model by including a gauge group such as SO(8),*
SO(3),° SU(4),° etc., all of which have been discussed in the
context of supergravity. We need to do this if we are to have
any hope of obtaining a physically realistic theory. So far we
have only a pure gravitational field. Nath and Arnowitt>’
put in a gauge group by enlarging the number of Fermi co-
ordinates from 6 to 6 “, where g refers to the gauge group.
More conventional supergravity*~® puts in a gauge group by
constructing Lagrangians whose couplings are invariant un-
der larger irreducible representations of the global super-
symmetry algebra.

For us, there are several possible ways of putting a
gauge group G ( a general semisimple Lie group) into our
fiber bundle. These include: {1) a hierarchical model in which
our previous fiber bundle plays the role of the base space of a
new, larger fiber bundle with principal fiber G,(2) a model
with space-time as the base space and a Fermi space with an
enlarged number of coordinates 8 “,(3) a model with an
eight-dimensional general Riemannian manifold with co-
ordinates (x,, ,6,) as the base space and G as the principal
fiber, and (4) a model with space—time as the base space and
the direct product F X G as the typical fiber, where Fis four-
dimensional Fermi space and G is the Lie group. Of these
models only (4) leads to a reasonable theory with no extrane-
ous fields beyond what one would expect. We will explore
model (4) in the following. Note that {4) is essentially the
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method of Nath and Arnowitt? correctly transcribed into
fiber bundle language whereas, contrary to expectations, (2)
is not.

il. STRUCTURE OF THE FIBER BUNDLE

Cho® has written a very nice paper in which he puts a
Lie group into general relativity by way of a fiber bundle. We
will follow his approach below. Choose a set of # linearly
independent left invariant vector fields &, for a basis of the
Lie group G.° Thus we have ¥ aeG, L £, = £,, where L, :
beG—abeG. These £, are also a basis of the Lie algebra & of
G which forms an n-dimensional vector space. They have
commutation relations

(€aiés ] =fEbbes (1)

where the /7, are the structure constants of the group G.
This is a noncoordinate basis. Following our work in I and
11, the four-dimensional Fermi space F with anticommuting
Majorana coordinates 8, can be considered to be a group.
We can choose a coordinate basis for # with the basis vectors
satisfying anticommutation relations,

{giygj} =0. (2)
{In the following a,b,c,d,e will denote n-dimensional group
indices; /, j,k,/ will denote four-dimensional Fermi indices;
lower case Greek letters will denote four-dimensional space—
time indices; upper case 4,B,C,D,E,F,G, will denote (8 + n)-
dimensional fiber bundle indices; and r,s will denote the
combination of group plus Fermi indices takingon 4 + n
values.) If we now consider the direct product F X G, we will
have

[£..6:]1=0 (3)
also. (1), (2), and (3) can then be considered to be the commu-
tation relations of the basis vectors of F X G. Since both com-
mutators and anticommutators appear, (1), (2), and (3) are
the basis of a Grassman algebra.

Now we want to consider a fiber bundle P whose base
space M is space~time and whose typical tiber is F X G. We
consider the fibration A = (P.M,IT ), where the base space M
and the bundle space Pare smooth manifolds and the projec-
tion /1 is a C * mapping of Pinto M. IT is surjective and
locally trivial: for any xeM there exists an open neighbor-
hood U of x, a manifold F X G and an isomorphism (diffeo-

© 1981 American Institute of Physics 557



morphism)® of IT ~! (U) onto U X (F X G) such that

IT (@ ~'(x,2) = x for all xeU and «cF X G (we denote ele-
ments of Fby 8, elements of G by g, and elements of F X G by
a, B ,etc. [T ~' (x)is a closed submanifold of Pcalled the fiber
over x. The fibers are diffeomorphic to F X G, the typical
fiber.

Following Cho, the basis vectors £, and &; of F X G can
now be mapped naturally into the fiber bundle P where they
will be designated £_* and £, *. These are tangent to the fiber
space and form a subspace, called the vertical subspace ¥, of
the tangent space 7,,(P) to P. In the fiber bundle, they have
the commutation relations

[§a*8u* ] =Sbc™ (4)

zgi*’é—j*} =0, {5)
and

[£*6.*]=0. (6)

To go further, we need to define a connection I". This is
a choice of a horizontal subspace H, at each point of Psuch
that

a) The tangent space T,{P) is the direct sum of ¥, and

H,

b)For all zeF X G and peP, H,, = R_H, where R :
(p,2)eL. X (F X G }opacP with p(a #) = pla)# for all a, B
eF X G, peP.

c) H, is smooth on P.

Using this connection, we can define the horizontal lift
of any vector 4 at xeM as the unique vector AeH at each
point of the fiber /T ~(x) such that I7 (A ) =A. We can also
define a coordinate basis §,, = d,, in the base space with

[5.6.1=0. {7

These £, can be horizontally lifted into the bundle and de-
noted there by § " (§u ,&:*,£,¥) form a very convenient basis
for the fiber bundle with commutation relations’

[E.€.]= —FL&*—Fit* (8)
[ép’fj*] =0, 9
[éy Ea *] =0, (10)

along with (4), (5), and (6). This horizontal lift basis is very
convenient for calculations though not the only possible ba-
sis, of course. (8) is simply the statement that [¢,,¢, ] must
be vertical. The coefficients F/,, and F'%, will play the role of
physical fields in the following.

Given a connection I", we can always define a connec-
tion form @ such that

o'(E*) =86, (1)

0(€,) =0, (12)
where r and s are summed over both Fermi (i) and group (a)
indices. As in Papers I and 11, we can define a cross section
o{x) as a submanifold of P which is diffeomorphic to an open
subset U of M with /7 (o{x)) = x. If 0-§,, is a vector in the
tangent space to Pat o{x} induced by o:xeU—oi{x|ell ~YU},
we can define a connection form 4 ' on U [or on o(x)] by

ANEN=AYE, = 0(0,) = o0, (13)
A " are our cross-section dependent potentials. Now as in
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TandII, f .. is the gauge covariant derivative D, when we
write it out in the local direct product basis. We can define
the trivial cross section g, as the set of points p = (x,<) with
« fixed, where  is an element of F X G. If £, and £, denote
basis vectors in the local direct product basis, we have

=8 —Ew€)=E ~EB;=D,, (14)
where B =A " (see I and II for details). We see that
zgy—g:iB;—gaBz (15}

and hence involves both the potential B, ‘associated with the
spin 3/2 gravitino field and the potential B, “ associated with
the gauge group G.

Our fields F},, can now be written in terms of the poten-
tials B}, in the local direct product basis. Using (8) and {14},
we can write

F., =d;B, ~3d,B, (16)
and

F¢, =d,B%~3d;B, +f%B;B" (17)
so that F,,, and F;, take the forms we might expect. d,

denotes a partial derivative in the local direct product basis.
In the following, we will deal primarily with F;,, and F;,
rather than the potentials.

We can denote a metric for the base space M as g,,, (x)
and for the four-dimensional Fermi space as g;,(6 ). It is im-
portant that these can depend at most only on x and #respec-
tively. The metric for the semisimple Lie group G can be
written as

8ap =fadaf§b w, (18)

where W is a constant to be determined later and f¢_ are
structure constants for the group. [Note that the definition
of g, will not work for the abelian group U(1). In that case
we can let g,,(U(1) is one-dimensional) float until we get to
the field equations. Quantities such as g,, F,, F ., will ap-
pear in these equations. If weletg,, = 1 and F ,; = F,; (the
electromagnetic field tensor), our resulting field equations
correctly describe electricity and magnetism coupled to the
spin 2 graviton and the spin 3/2 gravitino fields. In fact, in
this case, ¥ "' R 5, vanishes identically, so that the cosmologi-
cal constant term in (63) never even appears.] We can define a
metric 7,5 on the fiber bundle, which is compatible with the
above metrics and the fact that F X G is the typical fiber, as

VasbnE2 =g, (19)
VABé';Ag Z-B = &ik» (20)
7/AB§;A§5 = 8ab>» 21)
tpé A€ =0, (22)
Y€ tEE =0, (23)
YapE '€ =0. (24)

This is a basis invariant definition. In the horizontal lift ba-
sis, 7,44 is particularly simple and we have

8. 0 O
vap=|0 g O] (25)
O O gab
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In another basis, off diagonal terms would appear.

At this point, we have g, (x) and the superfields
F' (x,6,a)and F;, (x,6,a) which can play the role of physical
fields. The fiber space dependence of F,,, and F;,,, is given by
the Jacobi identites, which will greatly simplify these super-
fields. There are ten Jacobi identites, one of which is

[ l6 6211 + [ L6411+ (6016611 =0 (26)
Using (8) and (9), this becomes
[£.* —F.§*]=0 (27)

which can be written as

— (@ FLE* — (0*FL)6.* + Fi, {6:*6,*)1 =0.
(28)
Using (5) gives finally
d*Fi, =0 (29)
and :
d*F;, =0. (30)

Thus these two fields are not functions of the Fermi coordi-
nates 6. The other nine Jacobi identities can be worked out
similarly using the commutation relations and the
expression

[£*6*] =26, {31)
where I} is the Christoffel symbol. We summarize as fol-

lows: F,,, can only be a function of x*; F;, can only be a
function of x* and group coordinates a; I" ,’; canoly bea

1

(_ 1)A'+B’+A’B’+A'D'

Fig=(—-17° b [( /7/AD,B +
*VAB,D]?’D ‘“%Hfm —{—
— (= W By cH 5y

function of 8. In addition we must satisfy the following
equations:

bofea Ffeafba + fouf e =0, (32)
., +F fh =0, (33)
9 F s + 3, Ff, + aJs Fly=0, (34)
0, F 5y +3,F3, +3;F2, =0, (35)
O,*T) +3,*T'L, + 3, *r,g =0. (36)

(32) is merely the statement that f,,. =g,./ ;. must be fully
antisymmetric. (33) is the well-known gauge covariance of
nonabelian gauge field and ({36) will be found later to be satis-
fied identically in the horizontal lift basis. (34) and (35) are
the statements that F:; and F¢; can be written in terms of
potentials. If we wish to deal with the fields themselves rath-
er than potentials, (34) and (35) behave like additional field
equations.

It is important to note that the Jacobi identities tell us
that F},, and F?,, are not superfields but ordinary space-
time ﬁelds ThlS vastly reduces the number of possible phys-
ical fields in the theory to just g, (x),F W(x), and F, (x).

We still need Christoffel symbols before we can write
out our field equations. As in I and II, we have the doubl:
complication of having anticommuting variables and also a
noncoordinate basis, since we chose to work in the horizon-
tal lift basis where the metric is particularly simple. From I
and 11, we have

V8D.A
BE +(B +C)A' +C) Cc ,,DE
1) %YCBHDAVD

(37)

for the Christoffel symbol in the fiber bundle. A comma denotes the directional derivative in the horizontal lift basis. 4, B, etc.
are fiber bundle indices and in the present paper include (i,i,a,). 4 ' is the Grassman parity associated with index 4 and is + 1if

A is Fermi (i) and zero if A is Bose (1 or a). HS, is given by

C B' '+ D' +BD' +(B' +D)IC'C C
Hpp=(—-1) ‘ “I'ps —I'5p,

(38)

and vanishes in a coordinate basis. In the horizontal lift basis, we have

F,, ifA=p, B=v, D=i
b Fg, ifd=y, B=v, D=a
Hyp = o .
—fab lfAza, B-’—'b, D:d
0 otherwise.

Writing out the Christoffel symbols gives
r;‘ty %[gﬂﬁ,y + 85 - 85 ]g&"
F:,} = - %[ — 8y t &ty — 8y ]glk’
Iy =180is + 8rau — Bana 187 + e
+ %gcbffiagde + %gacfzbgde’

=4,

I = %F,““,

r,, = = — A8 bﬂg‘svy
1—“ _F;m = —1g, 5,;8“"

The remaining 18 Christoffel symbols all vanish.
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(39)

(40)
(41)

(42)
(43)
(44)
(45)
(46)
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Il. FIELD EQUATIONS

The variational principle for the field equations will be taken to be

BJJ —y Rd®*"z=0,

(47)

where R is the scalar curvature of the 8 + n-dimensional fiber bundle. We vary with respect to the metric 7%, and y==dety,,.
No cosmological constant term is included. The field equations which follow from this are

RFG =(— I)A'R AFGA =0.

(48)

We can calculate the curvature tensor R “ ., by transporting a vector around a closed loop being careful of our noncoordinate

basis as in I and II1. This leads to

RFG =(“ I}A'F:'G,A(— ”AIG"“(— l)Al I:‘A,G

+(_ l)AFgGFéA( _ I)G’C’ _(_ l)ArgAFéG( . 1)A'(A’+C'l

__(_ l)A‘I—‘,:‘EHgA( _ 1)G’+A'+A’G'+E'(A'+G')=0.

Using (39) through (46) allows us to write this out. Exactly as
in I and II, we find that the field equations imply that g,
must be of the form

8y = Qny» (50)
where Q is a constant and 7, = ( — C ~'),. Cis the charge
conjugation matrix and is the only constant Fermi sector
matrix which is available to play this role. Conclusion (50)
holds only in the horizontal lift basis and is another way that

this basis simplifies calculations. After considerable simplifi-
cation, the field equations then can be written as

(EIR,;V + %aniF{SyFifﬁg‘SB + %gangpFl\:BgéB = 0’ (51)

Fi..=0, (52)
Fia, =0, (33)
F"‘“"Fj“a =0, (54)
Faav;a j— O’ (55)
FemeFi =0, (56)
E Ry — 180.86aF TF 4, =0, (57)
where
(E)vaEer,a - rza.v + Fﬁv ga - FZBng (58)
is the Einstein curvature tensor and
‘E')Rab
Ergb.d —Ff,e,b +r2brgd —errfb +r:&f§d
= 1faf G- (59)

The semicolon denotes a covariant derivative where, for
example,

Fe =F?

viia v,a

+Feu ia*F:’ryrZa—F?’ﬂF:a
=F‘:{u,a +Fﬁu Za’ (60)

using (46) and the antisymmetry of F'%,. Equations (51) and
(52) arise from the symmetric and antisymmetric parts of the
original R, in (49), respectively. (53) arises from R,,; =0
and so forth. These field equations are completely covariant.
In addition to these equations, we must also satisfy the
Jacobi identities. Using (60) and the fact that I"S, = f7%,, we
see that field equation (52) is equivalent to Jacobi identity
(33). (50) implies that (36) is satisfied identically. Thus, we
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(49)

have only (34) and (35) remaining of the Jacobi identities.
If we choose to work in more conventional units, we can
rescale

F,—(16mx/c)*F}, (61)
and

Fj3,—(l6mx/c*)*F3,. (62)
We can manipulate (51) into the form
(E)R,;v — %g’uv (E)R _ %g,w (E")R ua — ( _ STTK/Cz)TMV, (63)
where the energy-momentum tensor is given by

- CZTMV = njiF{uSF‘f — };gpv"?jiF{zBFmB

+ gabFquFbvé - }sguvgabFaBSFbm’ (64)

and we let Q = 1 in (50). The other field equations remain

unchanged under this rescaling except for (57) which
becomes

¥Ry, — (A7K/CY8,e8baF 5 F ¥ = 0. (65)

We notice that “"'R ¢, plays the role of a cosmological con-
stant in {63). From (59) and (18}, we have

ERa, = 1g° /W = n/(4W), (66)

where 7 is the dimensionality of the group space. We see that
we can make 'R ¢, as small as we like by picking the scale
factor Win the group metric sufficiently large. If Wis taken
to be large, we see that (65) requires

gaegbdFeéﬂFdﬁs_’o' (67)

We end up with the set of equations (52)-~(56), (63), (64),
(67), and the Jacobi identities (34) and (35). If F,,, is set equal
to zero, we return to the equations of I and I1, which correct-
ly describe a spin-3/2 field F,, coupled to general relativity
in a rather unfamiliar representation. This spin-3/2 field
arises quite naturally from the Fermi part of the typical fiber.
If F¢, is not set equal to zero, the complete set of equations
describes a nonabelian gauge field correctly coupled to the
spin-2 graviton and spin-3/2 gravitino fields. The part of the
energy-momentum tensor (64) concerning the F;,, field is
correct,'® (52) [or (33)] correctly describes the gauge covar-
iance of the F'¢, , and (55) gives the correct field equation for
F¢, in the present sourceless case. Equation (67) is all right
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for these massless, sourceless nonabelian gauge fields and is
analogous to the statement F*°F,;=E* — B? = 0 for solu-
tions of the massless, sourceless Maxwell equations.

The only unexpected equation to turn up is (56) which
couples the gauge field to the gravitino field. In the U{1) case,
this would couple photons to spin-3/2 gravitinos in an unac-
ceptable way. We must also remember, however, that mass-
less spin-3/2 fields have not been observed in nature.
Through spontaneous symmetry breaking, this field pre-
sumably will grow a superheavy mass. Because of the small
range of such a massive gravitino, the effects of (56) will be
felt only at very high energies. Nonetheless, (56) may prove
important in future work, in which we must address sponta-
neous symmetry breaking and the renormalizability of the
theory. Spontaneous symmetry breaking may be a problem
in this self sourced theory since no scalar fields are now pre-
sent, and it is not at all clear where they can come from in a
natural way. If supersymmetry can somehow be accomodat-
ed in this theory, other work on supergravity and gauge
supersymmetry suggests that this theory should be more
renormalizable than general relativity. Otherwise, renorma-
lizabilty may be a problem also.

As in I and I, we can work out the Bianchi identities
and we find

(— 1R — 1g""R ), =0, (68)

where now this represents 8 + n equations (4 Bose + 4 Fer-
mi + n gauge indices). We can easily check that the number
of unknown field components minus the number of indepen-
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dent field equations gives the number of degrees of freedom
expected for the present case.

To conclude, we find that a semisimple Lie group can be
incorporated into our fiber bundle model of the gravitational
field with relatively little trouble. Thus the foundations for
an extended theory with a physically realistic particle con-
tent have been laid.
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A note on lattice random walks with an excluded point

George H. Weiss
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We derive some asymptotic results for the moments of displacement of a random walk on a lattice
with a single absorbing point. In one dimension we are able to find an asymptotic expression for
the probability distribution of random walks that have not been trapped.

PACS numbers: 0520.Gg, 02.50.Ey

Rubin' appears to have been the first to investigate ran-
dom walks on a lattice with the origin excluded, i. e., which
never return to their starting point. Although he derived an
expression for the generating function of such random walks
he presented results in detail only for the mean-square dis-
placement when the starting point of the random walk is
symmetrically located around the origin. Subsequently,
Montroll*? developed equation for a generalization of the
model to study statistics of the first passage time till trap-
ping. In this note we present more detailed resuits for the
moments and distribution of displacement in the Rubin~
Montroll model on an infinite lattice.

The random walk will be assumed to take place on a
translationally invariant homogeneous lattice. The single
step transition probabilities will be denoted by pl(j) with the
corresponding structure function

A(0) =3 i) exp (0] (1)

Let the excluded point be s, let U, (r) be the probability that
the random walker is at r at step » on the lattice with the
excluded point, and let P, (r) be the state probability on a
regular lattice, i.e., one without an excluded point. The U, {1)
satisfy the recursion relation
ZU p(r — 1) — U, (s)pls — 1), rs#s (2)

U, )=

U, ,1(s)= Y U,pls — ) + U,(s)[1 — p(0}].
1

Hence if we define the generating function

U(0;2) = Z > U, (rjz"explir-8), (3)

n=0r

we find, following Rubin' and Montroil, > that

) — 1 Pls;z) ( _ (1—2) 56
Ulbiz) = 1—2z4(8) + (1—2)1)(0;2)\1 1 — 24 (0) )e ’
(4)

where
) exp( — is- O) D 5
Plez= 27)0.[ J ST )

in D dimensions. Equatlon (2) implies the result
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& e e o\ — Do LIS 2P (r — 85 2)
HZOUH(I.)Z .——V(l‘, Z) —‘P(rv Z) P(O, Z) ’ l'#s,
Visz) =50 (6)

(1 —2)P(0; 2}

It is readily verified from these relations that since
EP r;2) =

it follows that the V'(r; z) satisfy the same relation. Equation
(6) now allows us to determine the asymptotic distribution of
the U, for nlarge. Let us first note thatif F,(s) is the probabil-
ity that the random walker reaches s for the first time at step
n, that

EF

s£0. (8)

When z = | we know that F(s;1}) = 1 for D = 1,2 and F{s;1)
<1 for D»3. Maradudin, et al* and Joyce *~* have deter-
mined the analytic form for F (s;z) when |z — 1} is small and

/(1 = 2z), (7)

s)z" = Fs; z) = P{s;z)/P(0; z),

Sript<oo, i=124D, (9)

and Lindenberg, et al.® provided similar results for D> 3. In
the present analysis we make the assumption of finite vari-
ance transitions as in Eq. (9), and also that in the absence of
traps, the average displacement in a single step is zero. Un-
der these hypotheses the contribution from the first term on
the right hand side of Eq. (4} is clearly the Gaussian distribu-
tion that appears in the theory of unrestricted random walks.
In order to determine the nature of the remaining contribu-
tion we must study the properties of F (s;z) as z—1.

In the case D = 1 it is straightforward to calculate mo-
ments of the distribution by using Eq. (4) as a generating
function. The probability that a random walk remains un-
trapped at step n, call it G, has the generating function

S G2 =1 = Fs;2)/(1 —2). (10)

The properties of this generating function have been estab-
lished by Lindenberg, et al.’ who showed that the asymptotic
formof G, is

~Isiv'2/(ojmn), {11
where o is the standard deviation of the single step transition
probabilities. One can easily verify from Eq. (4) that
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FIG. 1. Curves of the probability distribution of the end-to end distance of a
random walk on a 1 — D lattice with a trapping point at s == 4 and
n = 10,20, and 50. The random walker is initially at the origin.

i rVi(rz)=0. (12)

r= — o

This implies that the mean position of a random walker con-
ditional on its not having been trapped is

(rin)y, = —s(1 =G /G, ~ — olmn/2)%sgns.  (13)
That is to say, the mean position of untrapped walks reflects
the fact that they must move steadily away from the trapping

point in order to survive. A similar calculation shows that
the leading term of the conditional variance is

o? ~20n, (14)
which is independent of the trapping point. Lower order
terms do depend on s. The distribution of position of the
untrapped random walker at step 7 is easily calculated by
noticing that the joint generating function excluding the
point s is

U(6;2) — U,(0)" = [1 — Fis;2)e** 1/[1 — 24 (6)].

(15)

Hence the conditional probability is

rn=|P,n—YF, _s\Pr—s)|/ Y Fis) (16)
=o I=n41
as is otherwise obvious. An approximation to I, (r) valid for
large n can be obtained by using the continuum limits for P,
(r)and F,(r), 1.e.,

— r’/4no?)
)1/2

Is| — $/l4nc?)

P,(r)~ 03—(47,,)—3/26

, Fls)~
ol4mn

(17)
In Fig. 1 we show curves of I, (r) foro = 1,5 = 4, and
n = 10, 20, and 50. As » increases the maximum of the curve
shifts to the left (for fixed s5) as one would expect from Eq.
(13).
In dimensions greater than one we may use Eq. (10) to
show that
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_ 270,0,[P(0;1) — P(s;1))] (18)
Inn

so that in two dimensions, using the asymptotic form for
G, (s) derived by Lindenberg, et al,’

G

n

-silnn

270,0,[P(0; 1) — P(s; 1)]
Just as in one dimension the surviving random walks are
those that move away from the trap, but at a slower rate. In
D33 dimensions, since lim G, (s) = G (s) < 1 the untrapped
random walkers are influenced by the presence of the trap,
but their average position does not move off to « as n— 0.
The variances and covariances of position can also be calcu-
lated from Eq. (4). Since we have assumed symmetry in the
underlying transition probabilities, the generating function
of second order moments is

oo ., —PU §,07z[1 — F(s; 2)]
S (rlnympz = g
n=0 59/3‘91' 0=0 (1—2
In D>3 dimensions lim, ,, F(s,z) = F(s) < 1, which is the
probability of being trapped at s. Hence the elements of the
variance—covariance matrix are asymptotic to

(ri(n)r;(n)) ~8,07[1 — Fis)]n. (21)

This expression is valid for all random walks including those
trapped at s. If we consider only the untrapped random
walks, we find

(ri(n)ryn)), — (rin)), (r(n)), ~8,07n, (22)
so that to leading order the variance of position is unaffected
by the trapping point,and covariances are O (n). This result
agrees with Rubin’s more detailed calculation. The exten-
sion of these results to study the effects of a finite number of

excluded points is formally simple,” but the development
rapidly leads to tedious algebra.

(ri{n)) =

(19)

.(20)
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Lattice Green’s functions for a linear chain with next nearest neighbor

interactions
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The lattice Green’s functions for a linear chain with next nearest neighbor (NNN) interactions,

G,(t,A):i 7 ' coslx dx

TJo t-+ i€ — (cosx + Acos2x)
are studied for various values of 4, the ratio of NNN to nearest neighbor (NN) interactions. It is
shown that G, (1, —4 ) = ( — 1)'*'[G,( —t,4 ) ]*, thereby allowing attention to be restricted
to the positive range of 4 which further divides into the two cases, (a) 0<A4<1/4, with band edge
singularities, and, (b) 1/4 <4 < o, with an additional in-band singularity. Exact results are then

obtained for the imaginary parts of G, and for the real parts of G, and G,. Finally a recurrence

relation enables the real parts of G, for arbitrary / to be found from those for / = 0 and 1.

PACS numbers: 05.50. 4+ q, 71.20. + ¢, 63.10. +a

I. INTRODUCTION

It is well known that lattice Green’s functions (LGF)
play an important role in a broad range of phenomena in
solid state physics, and accordingly, their evaluation has
been the subject of extensive studies.’ The last decade has
seen substantial progress in the analytic treatment of those
for two- and three-dimensional lattice problems with nearest
neighbor (NN} interactions.” In the general case, character-
ized by longer ranged interactions, one has to resort to the
tedious and approximate numerical methods of multiple in-
tegration for which there are nowadays a number of quite
practical schemes.? The inclusion of next nearest neighbor
(NNN) interactions to the NN problem provides a simple
and physical way of overcoming® special features of the near-
est neighbor cases, e.g., the logarithmic singularities of the
NN BCC and FCC tight binding densities of states, and also
provides an enriched singularity structure to the LGF’s. It is
with these thoughts that the present authors studied the in-
clusion of NNN interactions in the linear chain and found
the unique opportunity for the exact solution of the LGF’s
for an arbitrary ratio of the NNN and NN interactions.

Section 2 presents some general characteristics of these
LGF’s including their critical points, associated van Hove
singularities,’ and a recursion relation which shows that one
need only evaluate the first two LGF’s in order to obtain all
others. Section 3 gives the derivation of the exact expressions
for the LGF’s and the conclusions are given in Sec. 4.

Il. GENERAL PROPERTIES OF LGF’S

The general form of the LGF for a one-dimensional
system with NNN interactions is

coslx dx (1)
t + ie — (cosx +Acos2x)’
where € is a positive infinitesimal and A is the ratio of NNN
to NN interactions. Although / may take any integral value,
we can derive the following recursion relation from Eq. (1) by
multiplying the integrand by ¢ — (cosx + Acos2x) and rear-

G,(t,A):—‘-f
0

T
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ranging with trigonometric identities:

b =1G, _%(Gl+l +G1_1)_%A (G2 +G, 1)

(2)

It then follows that we need only evaluate G, for/ = 0 and 1

since the remaining LGF’s can be obtained from these two

by successive application of Eq. (2) and the fact that

G _, = G,. Furthermore, we need only consider positive val-

ues of 4 since the LGF’s for negative 4 are related to those

for positive 4 by:

G(t,—A4)=(—1)""[G/(—14)]*, (3)

where * stands for complex conjugate. Equation (3) may be
easily obtained from Eq. (1) by making the substitution
x=m—y.

Before we derive expressions for G, we discuss briefly
the critical points of the dispersion function and the associat-
ed van Hove singularities.” The present dispersion function,

F(x) = cosx + Acos2x, (4)

has a qualitatively different behavior for 4 > 1/4 than for

A < 1/4 as shown in Fig. 1. Critical points are defined as
those points in the Brillouin Zone (BZ) where the group ve-
locity dF /dx vanishes. The resulting singularities in the
spectral functions are known as van Hove singularities. For
A <1/4, the dispersion function is monotonic with turning
points, maximum and minimum, at x = 0 and 7 respective-
ly. For 4 > 1/4, F (x) has maxima at x = 0 and 7 and a mini-
mum in between at x, = cos~ '( — 1/44 ). The values of F (x)
at the turning points are as follows:

FO)=1+4=1,

Flm=—1+4=1, (5)

Fix))= — (1 +84%)/84 =¢,.
For A = 1/4 it follows that x, = =, t, = t,, and at this point
F(x) has a point of inflexion. The band represented by F(x)
extends from ¢, to £, for 4<1/4 and from 7, to ¢, for 4 > 1/4.
The van Hove singularities for 4 < 1/4 are at the band edges

whereas for 4 > 1/4 there is an additional singularity within
the band at 7,.
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FIG. 1. Dispersion function F (x) = cosx + Acos2x for the linear chain with NNN interactions.

. EXACT EXPRESSIONS FOR LGF’'S

To derive expressions for the real and imaginary parts
of G,, we first rewrite the denominator in the integrand of
Eq. {1) as follows:

g(x) =1t — (cosx + Acos2x)

= — 24 (cosx —a_)(cosx —a_), (6)
where
a, ={—14[D{))'*}/44 (7
and
D()y=14+84(A+1)=84(—1,). (8)

We note that since D {t ) is negative for t < t,, a , arereal for
t>1, and a pair of complex conjugates for ¢ < ,. As we will
see, the variation of g , with#is crucial in understanding the
behavior of G,. Figure 2 shows this variation and we distin-
guish three types of behavior: (a) 0<4 < 1/4, (b)4 = 1/4and
(c) 4> 1/4. For (aj and (b},|a . |< ! within the band (¢, <t<¢,)
while for (c), |a_ | <1 throughout the band (¢,<1<¢,) and
|@ _|<1 within part of the band (£,<t<¢,).

(i) Imaginary part of G,
From Egq. (1), the imaginary part of G, is given by

ImG, (t,4) = —f dx coslx 6{g(x)}
0

coslx,,

= -3 9)
w18 (xa)]
where
g (x) =dg/dx
=24 (1 — cos®x)!?
565 J. Math. Phys., Voi.22, No. 3, March 1981

X [(cosx —a_,) + (cosx —a_)] (10)
and where x, are the roots of g(x) = 0. From Eq. (6) we see
that the two possible roots are given by cosx + =a, and,
since [cosx[<1, roots exist only for |a , |<1. Hence from
Fig. 2, we see that for 4<1/4, a, is the only root and occurs
within the band (¢, <#<t,) while for 4 > 1/4, the a, root ex-
ists throughout the band (1,<<t,) and the a _ root exists
within part of the band (#,<1<t,). Hence, using Egs. (9) and
(10} we obtain the following expressions for the imaginary
part of G,

Ix
AV/&ImG, (14) = — —— 2%y p (1)
D1/2(1 _aa )I/Z
Ix
A>1/4ImG,(t4) = — COSXs | 1<t<t, (12a)
D 1/2(1 —ai )1/2
_ coslx , coslx _
- D 1/2(1 —ai X - D 1/2(1 — & )1/2’

LIy {12b)

where cosx . =a , . Outside the band ImG, = 0. The be-
havior of ImG, within the band is shown in Fig. 3. For

A < 1/4, the only poles occur when |a, |—>1[(1 — a?, )"
—0] and we see from Fig. 2a that this occurs at t, and ¢,.
Near the pole, fort =1, + Sort=1,—§ (where & is small
and positive} the behavior is inverse square root, i.e., ImG,
~& ~''%_ For A > 1/4, the poles occur when (1—a% )"%or
D "2 goes to zero and the divergencies are also of the form
8 fort=1t,+8(D"*~52) t=¢,— 6

[(1 _ a2¥ )1/2~(Sl/2], and t = t, — S [(1 _ az* )l/2~(5”2].
Wenote that for 4 = 1/4, we haver, = ¢, and the divergence
around 7, is stronger than inverse square root as in this case
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D'V2.8"%and (1 —a? )'/?~8"*giving a § —*/* variation
for Im G,.

(ii) Real part of G,
From Egs. (1) and (6), the real part of G, is given by

ReG,(t,A)= — D ~'/?

X[ P f dx ( coslx  coslx )]’
7 Jo cosx —a, COSXx —a_
(13a)

where P stands for principal part. As mentioned in the pre-
vious section, a recursion relation [Eq. (2)] allows one to ob-
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FIG. 2. Variation of @, with ¢ [Eq. (7)].

tain all the LGF’s from those for / = 0 and 1. Hence, we only
evaluate the real part of G, for these two cases, i.e.

ReGyt,d)= — D 12

S R )
r Jo COSX —a@, COSX —d_

(13b)

and, with the help of cosx = (cosx —a ) +a, .
ReG(t,d)= —D /2

i)
T Jo COSX —a, COSX —a_ (13c)
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Thus we only need to evaluate integrals of the form

P (M dx
Tag) =—] —
@) r .L cosx —a (14

For t>1,, a is real and [ is a standard integral and has the
well-known form
Ila)=0for |a|<1

= —(@—-1)""fora>1

=@ —1)""fora< — 1. (15)
For 1 <1,, a is complex and the integral in Eq. (14) may be

evaluated by a contour integration method. Making the sub-
stitution y = tan (x/2) in Eq. (14) gives

_ 1 . dy
o= -2sg Lo Sl 1o
where

7 =(1—a)/(1 +a). (17)

We can rewrite Eq. (16) as a contour integral in the complex z
plane as follows:

1 dz
71 + a))? — ¥
where the contour C is shown in Fig. 4. The poles in the
integrand are at z = + y and the residues are + (2y)7 ' re-

spectively. For the contour chosen, we only pick up thez = y
pole and hence, using the residue theorem, we find

Ig)= —

(18)

Haj=——— @

—1 —l/2‘
i1+ ay ) (19)

Substituting the above into Eq. (13) gives the following ex-
pressions for the real part of G, (for / = 0 and 1 only):

t>t,: ReG, =D -”2[01+ (@, — n-e
+a_(@ —1)7'?] forl=0,1, (20)

4%

OL

FIG. 4. Contour for the integral in Eq. (18).
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1, <<t ReG, =D "% _(@®> — 1) forl=0,1, (21}

Lh<i<t;; ReG, =D"'"?[q' (g2 —q)~12

—a‘,* (a?,, = 1)—\/2]

for 4<1/4,1=0,1
=0ford>1/4,1=0,1, (22)

t<ty:ReG, =D ~'?[d' (a* —1)"'?
—a', (@’ —1)"*forI=0,1. (23)

We note that for # <t,, a , are complex conjugates, D '/ is
pure imaginary and hence the right-hand side of Eq. {23} is
real. The variation of ReG, is shown in Fig. 3 and again the
diverging singularities are inverse square root (5 ~'/2) except

for the special case of 4 = 1/4 where the divergence at ¢, is
S —3/4'

V. CONCLUSIONS

Equations (11), (12a) and (12b) give the imaginary parts
of all the LGF’s for the NNN linear chain, while Egs. (20)-
{23) give the real parts of the first two LGF’s (/ = 0 and 1)
which provide the input for the recurrence relation, Eq. (2),
from which higher orders can be obtained. We note that in
the limit A--0 we have D—1, a__ —¢ and both ¢, and
a_— — oo so that Eqs. (11) and {20}-(23) reduce to the NN
case. It is worth noting that in the NN case G, is purely
imaginary (and symmetric) inside the band.

The present results have applications to a range of stud-
ies concerned with the behavior of excitations in anisotropic
systems that have strong one-dimensional character from
either linear or layered components. The present authors are
applying these LGF’s to study the problem of two spin exci-
tations in the NNN chain for all possible pair wave vectors
and for the entire spectrum® as an extension of Majumdar’s
work’ which studied bound states at special wave vectors.
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Aesthetic field theory—Extended particles in four-dimensional space-time

M. Muraskin
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We continue our study of complex aesthetic field theory using a set of group theoretical data
introduced previously. Our more detailed study shows significant differences with the
corresponding real theory. We find that our theory allows for a four-dimensional particle system,
where the particle system is viewed as a bound state of a three-dimensional maximum and
minimum. The magnitude of the field is large in this “confluence” region. This property persists in
time. We can think of this as a form of nonattenuation. We never see a large magnitude “free”
maximum or minimum (confinement). A problem with the particle system is that the confluence
region extends to a greater degree in z for large |¢ | compared to the case at 1 = 0.

PACS numbers: 11.10.Cd, 11.10.5t

{. INTRODUCTION

This article is a direct continuation of the paper
“Aesthetic Field Theory: The Problem of Spatial Inver-
sions”.' A set of data I'§, was chosen there, with the
property of being invariant under three-dimensional
rotations. Another set of data can be obtained from this
set by means of a spatial inversion. Both sets of data
were then used together in a complex version of aes-
thetic field theory.

In our previous paper® we observed that maps at ¢=0,
z=0 showed results that do not look much different from
what we have seen before in a real theory.? We have
continued our study of this group theoretical data and
found the similarities with real theory that we observed
to be superficial. Further studies showed deep-seated
differences with respect to particle structure.

The equations and notation used in this paper will be
the same as in Ref. 1,

We shall review in the next section our previous work
with respect to particle solutions of the aesthetic field
theory.

ii. PARTICLE BEHAVIOR IN AESTHETIC FIELD
THEORY

In the past we have put forth considerable effort in
investigating what the aesthetic field equations imply.
The focus of attention has been in studying particle type
solutions of these equations.

We first obtained particle solutions in Ref. 2. Here
we saw a three-dimensional maximum and minimum.
At t=0 the maximum and minimum were well separated.
However, as time went on the maximum and the mini-
mum approached one another. As they grew closer to-
gether the magnitude of the maximum and the minimum
increased markedly. There was a small region at the
time (or is it time interval) of impact in which we could
no longer follow the motion because of this. This small
region of space in which the maximum and minimum
were essentially on top of each other we have since
called a-“confluence” region.® After the scattering the
maximum and minimum separated from one another
and the magnitude of the field fell off sharply.

Although it was still possible to follow the particles
around in time, nevertheless we can say that the parti-
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cles underwent “attenuation.”

We realize that in the world we live in particles like
the electron show an incredible stability. They do not
fade into the background as in the solution we found.
Zabusky and Kruskal? showed that such a thing as non-
attenuating particle solutions exist (solitons), arising
from nonlinear field equations.

The question then is whether the aesthetic field equa-
tions are capable of particle solutions for which atten-
uation is not a problem (at least for a reasonable dura-
tion of time). (In our computer work we can only talk
of nonattenuation for a reasonably long time interval.

In our subsequent discussions this is what we shall
mean when we talk of nonattenuation.)

We have found recently? that such stable particle so-
lutions exist in complex null aesthetic field theory. Our
particle system is a bound state of a maximum center
and a minimum center. Unlike Ref. 2 the confluence
region does not exist for a single time (or short dura-
tion), but instead moves along a path in time. The
fields become quite large in magnitude in the confluence
region. We say fields rather than field since all the

J"-k have large magnitudes in this region. From a prac-
tical point of view we have not been able to find exactly
how large the magnitudes become. The errors become
too big as the size of the numbers grow. When we say
“large” we mean (at least) several orders of magnitude
greater than the environment, with the possibility that
the numbers are many, many orders of magnitude
greater than the surroundings. For example, coming
into the confluence region with a 0.0003 grid, the com-
puter printed overflow, which means numbers in excess
of 10", Of course we cannot believe such numbers due
to large errors. For this reason in Fig. 3 we drew a
box around the confluence region. This procedure was
also done in Ref. 3. Nonattenuation, for us, does not
mean that the values of the field stays the same—it
shall mean instead that the numbers remain large.

The drawback with our results in Ref. 3 was that such
a particle system described above has only been found
in a three-dimensional theory.

In addition to bound systems of two particles we found
bound systems of 3 particles (particle refers to a max-
imum or minimum in the field) in Ref. 3. The two and
three particle system that make up the bound state do
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not separate in time the way they did in Ref. 2. We
shall call this effect “confinement.”

In our three-dimensional theory® we found that the
bound system moved, so far as we could tell, ona
straight line (in a course sense). From our maps in
Ref. 3 as well as in this paper we see many curved con-
tour lines. It is not as if all lines are straight.

What happened in the complex null theory described in
Ref. 3 when we tried to extend our work to four~dimen-
sions? We found that the confluence region extended in
z in such a way that we can find no end to the confluence
region in our computer work. Either we are dealing
with extremely large particles or particle interpretation
is not possible in four dimensions. The possibility of
the confluence region closing upon itself leading tc a
“topological” particle is intriguing. However, no evi-
dence has been presented supporting such a solution.

In this paper we shall study the consequences of the
group theoretical data presented previously [Egs. (1)
and (6) of Ref. 1] with respect to particle properties, in
four-dimensional space-time,

lil. DESCRIPTION OF THE SOLUTION

We have mapped Aj, for convenience, At the conflu-
ence all the components have large magnitudes. We
are dealing with a cooperative effect.

Figure 1 isa map of A}, at t=0, z= -4 (using 0.3
course grid). We see a planar maximum and a planar
minimum. They are clearly separated. The magnitude
of the maximum and minimum are not large (roughly
0.43 and 0.07, respectively). In Fig. 2 we have a map
at t=0, z=10 with a course 0.5 grid. Again the maxi-
mum and minimum are separated and the value of the
maximum and minimum are not great., However, we
find as we progress up in z, starting with z= -4, thatthe
planar maximum and the planar minimum become clos-
er and closer to one another. Eventually they are “es-
sentially” on top of each other. Here the magnitudes
are extremely great, We find this to be the case in the
region x= 3,64, y =~0.14, 2 =3.33. We call this region a
“confluence” region. In Fig. 3 we give a map of a “con-
fluence” region at §=~17.5. The grid used here was
0.001. (The confluence region looks similar at different
times so t=-17.5 was chosen for illustration.) In Ref. 3

FIG. 1. Map of A}l around the origin att=0, z =—4. The grid
was 0.3.
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FIG. 2. Map of A}l around the origin at¢ =0, z =10. The grid
was 0.5,

the confluence region extended in z without any end that
we could find. In the current situation there is no doubt
that the confluence region is bounded. There is a region
in z for which the field has large magnitudes. The re-
gion, as determined with a large grid of 0.5, has di~
mensions Az < 3.

Thus at =0 we have a bounded particle system con~
structed from a three~dimensional maximum and mini-
mum in close proximity. The question then is does this
particle system persist in time? In Ref, 2 the maximum
and minimum separated from one another and the mag-
nitude diminished. However,inthe present case we found
that the magnitudes remain large as time went on, We
found large magnitudes in the region around

t=-10 t=-117.5 t=-104.5
x=11.5 x=17.44 x=86.34
v=0.92 y=1.78 y=11.76
z=10 z=15 z="73.33

These points lie essentially on a four-dimensional
straight line. However, we should caution against as-
signing a straight line for a world line since the large
magnitudes extend in z as discussed previously. The
large magnitudes are always in a region where large
negative numbers are in close proximity to large posi-
tive numbers. We can think of our solution as a model

7,
(3
A8 150

o o2
8 N

(s}
>

%90

00
18

FIG. 3. Map of Ah around the confluence region att =~17.5,
z=15. The confluence region occurs within the box. The grid
was 0.001,
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for confinement. We have not seen a large magnitude
“free” maximum or minimum. (We have yet to see even
a small magnitude “free” maximum or minimum.) We
can say we have a model for nonattenuation in the sense
that the magnitude remains large at £=-104.5. Thus
our bound system appears stable although we cannot

say how long it will continue.

Are there any more particle systems like the one de-
scribed above? We have some evidence to this effect.
At t=-1"1.5 we notice again high positive numbers in
close proximity to high negative numbers in the region
of x=24, y=5, z=15. This region was uncovered with
a course grid of 0.5. As of now we have not confirmed
any more potential particle systems. Computer time is
a practical limitation in such a search.

There is a problem that should be noted. We find the
confluence region extended in z much more at higher
times than at t=0. At ¢=-~17.5 the confluence region
extended in z such that Az< 16 (a course determination).
We found the spread of the confluence region is ex-
tremely small in x and y for a particular z.

V. SUMMARY

The group theory data of this paper leads to a bound
state system in four dimensions. The particle can be
viewed as a bound state of a three-dimensional maxi-
mum and minimum. This picture persists in time.
There are large magnitudes in the confluence region
and only in the confluence region {where large negative
numbers come in close proximity to large positive num-
bers). Large magnitudes have been found for Af~100 in
our computer work. We shall call this effect nonattenu-
ation.

The model we found for a particle is very different
from, say, Ref. 4. There particles are not composite
systems. In nature, the quark picture suggests that
observed particles are composite, and the quark con-
stituents do not exist freely. Our particle system has
similarities to this quark picture. In Ref. 5 bound
“kink-antikink” systems have been discussed in one
spatial dimension.
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Some questions still unanswered are: Can aesthetic
field theory yield particle systems which are better
localized? The variable (in time) extension of the con-
fluence region could be a problem. Can the aesthetic
field theory describe a multitude of particles? One or
two is not yet a multitude. Are there curved trajecto-
ries in time? Can we find three particle bound states,
as we did in null theory, in the case that the dimension
of space-time is four?

The data (1) in Ref. 1 is invariant under three-dimen-
sional rotations. Under reflection we obtain, from (1),
the data (6), again found in Ref. 1. These two sets of
data cannot be reached from one another by means of a
continuous transformation. Thus, the question from a
conceptual point of view is which data, (1) or (6) should
be taken. There is no logical reason that favors one
set over the other. The answer we have suggested is to
take both sets, by allowing for the theory to be complex.
A complex theory is consistent with the requirement
that all derivatives as well as all tensors, be treated in
a uniform manner so far as change is concerned. We
have found that such hypotheses lead to an extended par-
ticle system in four dimensions.

Nole added in proof: We use the same f°; and % as
in Egs. (21) and (22) of Ref. 1. However, Eq. (21) there
should have read:

£° =0,44 £°=-0.16 £°,=0.39,
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N, Zabusky and M. Kruskal, Phys. Rev. Lett. 15, 240 (1965).
5p, Caudrey, J. C. Eilbeck and <. Gibbon, Nuovo Cimento

B 25, 497 (1975).

M. Muraskin 571



On the decoupling theorem in field theory

Edward B. Manoukian

Department of National Defence, Royal Military College of Canada, Kingston, Ontario K7L 2W3, Canada

(Received 15 July 1980; accepted for publication 22 August 1980)

An elementary proof of the decoupling theorem in field theory is given when all the masses in the
theory are allowed to go to infinity. The proof is given directly in momentum space with the
subtractions of the theory performed at the origin and containing nonzero mass particles. The
theorem states that, in Euclidean space, if the masses of the theory are scaled by A and 4 is allowed
to go to infinity then the corresponding Feynman amplitude vanishes not more slowly than A

ie., | #|<A ~'C, for A>1.

PACS numbers: 11.10.Gh, 11.10.Jj, 11.10Ef, 02.30. — f

Several useful applications have been carried out in the
literature (see e.g., Refs. 1,2) making use of the so-called de-
coupling theorem in field theory. When some of the masses
in a theory, with nonzero mass particles, become large the
proof of the theorem (in Euclidean space) is involved® due to
the complex nature of the subtractions of renormalization
and, to some extent, due to the complicated structure of the
Feynman rules involved with higher spins and derivative
couplings. An elementary and complete proof of this impor-
tant theorem is given in this paper by working directly in
momentum space with subtractions carried out at the origin
and with nonzero mass particles for the cases when all the
masses of the theory are allowed to go to infinity. The theo-
rem states that, in Euclidean space, when the masses of the
theory are scaled by a parameter A and the latter is allowed to
go to infinity, the renormalized Feynman amplitude vanish-
es. More precisely, the renormalized Feynman amplitude .«
does not vanish any moreslowly than4 ', i.e., | & |<A ~'C,
A>1, where Cis a constant independent of A. The simplicity
of the proof we hope justifies this work.

A renormalized Feynman amplitude may be written in
Euclidean space in the form:

(P M) =f “dkR(p. k, M),
— M= M,..M,),

p =P\ sk =k, k),

RpkM)= ‘(p,k,M)r[(Qf +M:7!,

Ea/z i E lpiEKj +Pj’

i=1 i=1
where M denotes the set of masses in the theory, P (p,k,M Jisa
polynomial in its argument and .¥” denotes the totality of all
lines participating in the denominator of R {p,k,M ).
We write

PpkM)=SpP kM),

M, >0, 3

a = (am,...,a3m) v

(2)
p=(p) ),
d,>a,;>0, j=1,..,m p=0,123.

Letpg,..., pjy, be (d,; + 1) distinct values for p/* . Let
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PT = lr(.. . 1pmt, ) (3)
where 0<tw <d,;, then Lagrange’s interpolating formula
states*” that we may find a constant C, (p*) depending on a

and the fixed values in p* such that
SC.(p¥P pr kM), (4)

where P and P, are defined in (1) and {2), respectively, and
the sums is overall 0<t,,<d,,; withj = 1,..,m; u = 0,1,2,3.
Let D{p,kM)=11, (Q + M?). An elementary and
useful inequality* is that
@ + M)A, K]+ M) ™'<(Q] + M)~ '4;,
(3)

P, (kM) =

where
A4, =14 |P|/M; + P}/M}. (6)
Using (4) and the right-hand side of the inequality (5),
we may find a positive G (p}¥*) depending on (p¥) such that

P, (kM) . Ppt.k,M)
) OkM)’ ZI Coler) DpriM)| 7

The inequality (7) states that the absolute convergence
of fdkP (p*k,M ) implies the absolute convergence of
JdkP, (k,M)D ~'(0,k,M ). This result is similar to the one in
Lemma 6 of Ref. 4 except in the latter an expansion is made
in powers of k rather than in p as we have done in (2}.

By writing AM = (AM,....AM ), we have
A p, AM) = (A S f dkR (%,k,M), (8)
R 4n
where d (G ) is the dimensionality of the graph G with which

the renormalized Feynamn amplitude .« is associated.
From the left-hand side of the inequality (5) and Eq. (7) we
have that fdkP, (k,M D ~'(p/A.k,M ) is also absolutely con-
vergent for all 4 > 0. By the Lebesgue dominated conver-
gence theorem we may take the limit of A--« inside the
integral in (8) and we obtain from (2}:

lim .7 (p, A, M)

Ao

— }ITOEM ]d(G)- \"‘p"
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XJ. dkP_(k, M\D ~'(p/A,k,M)
R‘n
— 1 /1 d(G)— |a] .«
Jim }a‘,( ) p
XJ- dkP, (k,M)D ~'(0,k.M). 9)
R‘"
Now, quite generally
(i)if d (G) <O, then 23>0,

(i)ifd (G )»0,thena>d (G) + 1,bydefinitionoftheover-
all subtraction over G, and hence in all cases

lim «(p, A,M) =0 (10)
A s

Equation (9) and the inequality in (5) then gives the fol-
lowing estimate that

| (p, ALM)|<A~'C, A1, (11)
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where
_ AL} P_> .
C_,g(H M, 2P
xf dk |P,(k, M )|D ~'(0,k, M), (12)

covering both cases d (G) <0 and d (G )>0.
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2E. C. Poggio, H. R. Quinn, and J. B. Zuber, Phys. Rev. D 15, 1630 (1977).
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*Y. Hahn and W. Zimmerman, Commun. Math. Phys. 10, 330 (1968).
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On quantum solitons and their classical relatives: Spin 1 approximation of the

sine-Gordon system
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If gradient terms in the linear Bose chain Hamiltonian couple nearest neighbors only, then in the
spin | approximation they reduce to the spin } x-y-z Hamiltonian. Hence, spin | approximation
reveals the Thirring model as the one, whose spectrum is completely included in the spectrum of
the underlying Bose chain. Relation to the Coleman’s equivalence is discussed.

PACS numbers: 11.10.Lm

1. INTRODUCTION

There are still missing points in the most recent studies
of the famous Thirring-sine-Gordon model equivalence in
1 +1 dimensions. One knows here that the spin § x-y-z Hei-
senberg chain provides an equivalent description of the mas-
sive Thirring model put on a linear (space direction) lattice.
A continuum limit of the latter can be used to recover spec-
tral properties of the quantum sine-Gordon system (Cole-
man’s equivalence), within the appropriate limitations on
the coupling constant values of the Bose model.'~

However no one has satisfactorily investigated the
question of a “classical limit” of the quantum sine-Gordon
field, with the special emphasis on the relation of classical
and quantum soliton fields. The only exception in this con-
text were the semiclassical quantization methods of Ref. 4,
and quite inconclusive Coleman’s remarks in last sections of
Ref. 1.

Second, suppose, we start from a classical sine-Gordon
field energy density®

Hxt) = %{(%’:—Y _ (g%)z 4 2m(1 — cos¢)}(x,t)
(L.1)

and approximate it on a linear lattice with spacing €. Then

J‘” H(x,t ) dx—H
= S [7 +2m(1 = cosb)] = (6. — 4,1 /€)

=S H AV, ) (12)
can be viewed to describe a linear chain of plane pendula
subject to harmonic interactions among nearest neighbors.®
The gradient terms {V,, ,},_0 , ... are here responsible
for the emergence of nontrivial configurations in the pendu-
lar chain. In the *“‘single site approximation” of Hby 2, H ,a
quantization of the chain is immediate through a simple re-
placement of each classical pendulum in the chain by a re-
spective quantum one. A corresponding Schrodinger prob-
lem,” involves a pair of variables {7 = — i#(d/d¢ ),¢ } which

“Permanent Address: Institute of Theoretical Physics, University of Wro-

claw, Cybulskiego 36, Poland.
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though infinitesimally canonical cannot be integrated to a
representation of the CCR (canonical commutation rela-
tions) algebra, in the sense of Ref. 8.

As a consequence, there is no straightforward way of
getting a quantum analog of gradient terms {V,, , | }, and
probably it was the main reason why the lattice analog (1,2)
of the classical sine-Gordon system, has never been explicit-
ly related to the spin | x-y-z Heisenberg chain. The latter can
in principle be considered as a lattice ancestor of the quan-
tum sine-Gordon system, and as such should somehow be
related to the quantization of the classical lattice problem
(1.2), which is a lattice descendant of the classical sine-Gor-
don system.

Our aim is to establish the underlying relation. Basic
result of the paper can be summarized as follows: Quantum
fields on a lattice are considered as functions of the single site
level raising-lowering operators. We prove that each linear
Bose chain, whose gradient term in the Hamiltonian couples
nearest neighbors only, in its spin | approximation, is equiv-
alent to the lattice Thirring model. Specification of its cou-
pling constant relies on the explicit form of the quantum
field entering the gradient term. (For a particular case of the
sine-Gordon field, each quantum soliton operator appears to
give rise to its own Thirring problem.®® A crucial point in
this investigation is an interaction of a quantum system with
a nonzero temperature reservoir, without which a spin | ap-
proximation makes no sense.'°

2. QUANTUM PENDULUM AND PENDULAR CHAIN

The quantum pendulum spectral problem is conven-
tionally expressed in terms of the Mathieu equation:

(2q c0s2z — d 2/dz*)Y(2) = ay(z), .1

with ¢ = m?, ¢ = 2z, ze[0,27], ¥ = Y(¢ J€.¥*(0,47) and @
playing the role of the eigenvalue, compare, e.g., Ref. 7.

The spectrum of the quantum pendulum in the cou-
pling constant range g€(0, « ) is nondegenerate, and both
eigenfunctions and eigenvalues exhibit a g-dependence. The
Mathieu (eigen)functions:

ce,,(z+ my=ce,,(2), se,, ,(Z+tm) =565, @),

cey, W2+ m)= —cey y (@
5€,, +1 (Z i‘ 7T) = - Se2n +1 (Z)) h= 071’29'") (22)
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27 27T
LJ ce,(2)ce,(2)dz =6, = 1 J se, (2)se,(2) dz,
T Jo T Jo
2
f ce,(2)se,(z)dz =10,
0

form a complete orthonormal system in # = .%°%(0,47) and
hence

(2.3)

he o h = & (BC0hD)=h“eh™. 2.4
n=0

n=2~0
In the limit g—0, Ey(g) falls down to its minimum £, while
E{—E —E (0),E(0)<E, ,, (0)for k> 0. In the opposite
limit ¢— oo, the spectrum {E, (g)}, _ 0. goes to that of the
doubly degenerate harmonic oscillator with the
identifications:

ES—ES, .\ —ES, ES —ES —EZ L,
foralln =0,1,--..

By introducing:
ey, = (1/\/77_)ce2,,, Con 1 = (1/\/7)ce2,,+1,
Cur s = (/T 151y Canys = (17 Js0r0ssr  (25)

we can define densely in /4 the pair of the raising and lowering
operators a*, a, for quantum pendulum

a* = i \/k+lek+, ®e,,

k=0

a= i ‘\/k—ek*x @ek,

k=1

(2.6)

which generate in 4 a Fock representation of the CCR
algebra

(aa*]l.=1=) e, ®e,, ae=0.

In terms of {e, } the quantum pendulum Hamiltonian be-
comes immediately diagonalized, which allows an expres-
sion of H in terms of the true (integrable) generators a*, a of
the CCR algebra

H= i E.e,®e, =) E,a}: exp(— a*a)a" = H (a*,a),
n=0 n
2.7
where we have exploited the fact that: exp( — a*a): is a pro-

jection on the ground state ¢, in 4.
On the other hand, one easily finds that the operators

. cos’(ma*a/2)

& '=a 3
(a*a + 1)

2.8)
__ cos’(ma*a/2)
- (a*a + 1)1/2
generate in 4 a reducible representation of CAR algebra

[&,&6].=1 =Ze,, ®e,,

©e,, =0, &, =€,,,,, Yn=01,-, 2.9)
©) =0=(&P

which becomes reduced on each two-dimensional sector

h <9 of h. In particular, if to denote P, a projection on 4 & in
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h, then:

&t = P& Py = a*:.exp( — a*a);,

(2.10)

&; = P& P, = :exp( — a*a)a,
are identities on % §, and the spin | operator S, with
S =6:,8 =65 ,5*= —1+ &5 &; , emerges at once.
Let us now consider a linear chain of elementary quantum
systems. It is characterized by a countable set
{a*a,},_o 41.. of the CCR algebra generators, which form
a reducible representation in the general tensor product
space

& =1 »), @11

where with each site of the chain, we associate a copy of the
quantum pendulum Hilbert space. An irreducible, Fock
component of this CCR algebra arises in the proper subspace
IDPS(2) of 7, where

2= Hg(eo)“ [a,.a}].- = 6.1,

5

2.12)
[a,,a,]-=0= [a*a*]., a,2=0Vs.

By comparison with (2.7) we find that a correctly quantized
form of the lattice sine-Gordon Hamiltonian, should be giv-
en as a nonlinear function of generators {e*a_}:

H—H = Hl(a*a)

= z Z Eka:k:exp( - a:‘as):af + Vs,s+ 1 (a*’a)];
s k

(2.13)
where, in principle, the gradient term should read
Vioin =Vierr @) = [(1/60@, ., =47
(2.14)

¢S = ¢S (a*’a)'
In Ref. 10, we have given a description of the quantum sine-
Gordon field in terms of (single-site) canonical generators
{a*a,},_, , . andshown that each single classical soliton
field ¢, after quantization should give rise to its associated
irreducibility sector IDPS(¢ ) of 5. On the other hand, in
Ref. 10, we have formulated a model independent descrip-
tion of criteria under which expectation values of observa-
bles associated with a finite part of the lattice Bose system,
can be made to converge to these of the associated Fermi (or
spin }) system. A leading idea behind, was that of a “spin }
approximation concept” for quantum Bose systems in ther-
mal bath. We have shown that if a projection

Po=1] P5 =[] {:exp( — a%a,): + a*:exp( — a*a,)a, }
2.15)

on the lowest two levels of each single lattice degree of free-
dom, happens to be a spectral projection for a Bose system

[ PoHy]-=0, (2.16)
then for a finite fraction of lattice sites, one has
PoHy(a%a) Py = H.(&,6) = H, (2.17)
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and a resolution of the spectral problem for the spin 4 lattice,
partly (within Po#” = 7 resolves a spectral problem for
Hy. In connection with the time development, notice that for
all vectors |a),|b YeP ¥ = 77, there holds

(a| exp(iHgt)|b ) = (a| exp(iH 1)|b ), (2.18)
see, e.g. Ref. 10. If |a)e#,, but |b Y9 the identity (18)
holds as well. Because in Ref. 8 we have established a connec-
tion between classical solitons and irreducibility domains for
the CCR algebra generated by {a¥*,a,},_, . ;.. quantum so-
litons can be specified by identifying the corresponding
IDPS-generating vectors. Hence, in the infinite volume lim-
it, the spectral problem for H, should indeed give rise to a
classification of quantum solitons.

In the present papers we are concentrated on the rela-
tion between the classical sine-Gordon equation and the
equivalent lattice approximations of the quantum sine-Gor-
don system: the spin { x-y-z and Thirring model.

Studies of the Fermi contents of quantum solitons will
not be studied here

3. SPIN § APPROXIMATION OF GRADIENTS IN THE
LINEAR BOSE CHAIN, AS SPIN ] x-y-z HEISENBERG
PROBLEM

(i) Take an elementary quantum system (single site
Schrodinger problem in the linear chain) in its two-level
(spin }) approximation. Within a Hilbert space / it means
that we preserve two lowest levels {e.e, ] of the general spec-
tral solution {e, |, _o.,... We characterize them by indicat-
ing an orientation of the spin § arrow: S %e, = (— L)e,,

S%, = (e, ore, = [0)=1,e, = |1)=1, for each fixed exci-
tation possibility.

The set of all mappings between the excitation levels of
the two-level problem can be described in terms of four ar-
row diagrams:

Let us now consider the two chain neighbors, both in
the spin 4 approximation. Then a propagation of excitations
along a linear chain can be completely given in terms of 16
arrow diagrams, describing elementary site-to-site energy
exchanges (5,1 | )e——(s + 1,11}

T 4l ool
aH—— O——
L tiol
Tl o T
@ Qe
G.D
Trodd A
S Ty T 6)_’—’
© [ ( I
T rrovl
N —— @) ——
L Lo

Each of these elementary transition diagrams can be de-

scribed in terms of Baxter’s vertices!’'%:

o, o<F o @<t
o ot o e
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(3.2)

provided, we adopt the Kadanoff-Wegner convention'?: the
right or upward arrow in the Baxter’s diagram corresponds
to the case when the two adjacent (with an arrow in between)
spins are parallel, while a leftward or downward arrow is
assigned to antiparallel spins.

We shall be composing transition diagrams in both
horizontal and vertical directions according to the rule.

i

0 s = - (33)

and basically interesting for us will be the transitions be-
tween spin-up-spin-down configurations of a linear chain of
the identical two-level systems, which can be described in
terms of so-called “transition matrices™:

T (|conf 1)) = |conf 2}, (3.4)

like e.g., the mapping
ss+1s4+25+3s+4s5+5

RURHAN

= D)[1)[1)[0)]0){0) -
R, 8€e,Be;Ve;®E;

(3.5)
o ss+ ls+2s+3s5+4s+5 e,®@e 06,8, 0e,®¢,

NEnEnEaes T O)[10)[1)]0) 1),

which in the language of Baxter’s diagrams reads

ot <

(if) One immediately finds that whenever the two con-
figurations of the infinitely long spin } chain differ in the
infinite number of single site entries, then the respective vec-
tors |conf 1), |conf 2) are orthogonal within the direct prod-
uct space &, = I1, “(hy),, (ho), = Po(h),, Py
=exp( —a¥a,): +a¥exp(—a¥a,):a, projecting on the linear
span of eg,e; in (h);.

These two vectors give thus rise to the two unitarily
inequivalent irreducibility sectors for the spin ! algebra

(3.6)

{ @s+ ’@.\‘4 }.\' =0,+ 1,
[@si ,@'i ]_ = O’ s#t’
[&7.8, 1. =P, 3.7

IDPS (|conf1,2)), respectively. If not orthogonal, the two
configurations are represented by product vectors within the
same irreducibility sector.

Suppose we have chosen some configuration, i.e.,
|conf), and hence IDPS (|conf)). Mappings between con-
figurations within IDPS (|conf)) influence at most a finite
(though arbitrary) number of spins } in the chain, and can be
represented by operators acting in IDPS (|conf)).

To investigate the structure of such configuration-to-
configuration mappings within any fixed IDPS (Jconf)), we
can exploit the original Baxter’s study of transfer matrices
for the eight-vertex model,'!'? vertex configurations being
Jjust the Baxter’s diagrams mentioned before.

(iii) To proceed along the Baxter’s lines, we must admit
a thermal coupling of the linear chain with the environment.
(See, e.g., for the notion of a “field-reservoir interaction” of
ours.') Then we must assign to the vertices, the appropriate
Boltzmann weights

w0, = w; =a =exp( — f€,), w;=0a,=exp(—Pe,),

(3.8)

Piotr Garbaczewski 576



w5 = wg = ¢ = exp( — B€;), w;=ws =d = exp(— Bey),

where energies €,,6,,€5,€,, we shall for a while leave unspeci-
fied, B being the inverse temperature of our open system,
Let us now form a related set of parameters:
w =Y e+d) w,=l—d)
3G9
=%(a“‘b)’ w4=%(a+b),
and notice that transitions between different configurations
of the N-particle segment of the linear chain, which are real-
ized in a sequence of N steps, can be represented by the
Baxter’s “transfer matrix,”'" ' on the Baxter's N X ¥,
eight-vertex lattice, provided the toroidal boundary condi-
tions are taken into account. One knows that an operator
representative 7 of the transfer matrix in IDPS (|conf) ) com-
mutes with the spin | x-y-z model Hamiltonian,'>'"'? so that
the most general Hamiltonian, responsible for quantum fluc-
tuations around a fixed configuration {conf) of the chain is
one of the form

x,vz: _EEJS s—H» (310)
where a = x,y,z.
An explicit form of the underlying #, , operator can be
deduced for its N-site version (¥ arbitrary)'!:
N
Hy, = ~ 60Ol S seee, ) e
s=1 a
with
01 0-— 10
o= o= =(70)e=(1)
10 i0 &= -1
J, =1 /7, = en(25)/dn(28), 3.12)
cn(2$) =J, /7,
and
Py = Yw, — w, — wy + w,)=p| = cn(2¢)/sn(2¢ ),
Py=i{ —w + w; — wy + w,=p; = dn(2¢)/sn(2¢),
=~ w — w, + wy + w,)=p; = 1/5n(2f), (3.13)
=4

Wy + wy + Wi + wy)=p
= (cn(24)

—

—dn(25) — 1)/sn(2¢),

sn{¥,/), cn{¥,1), dn(V1), being the elliptic functions of the mo-
dulus/

[ =A{(s3 — s5)(54 — 5,)/{s4 — 3,)(s;
X[ =TI —an]',

sn*(v,/} + en®(v,l) = 1,

1% sn*(v,]) + dn¥v,l) =1,

—s)1'”

(3.14)

where the particular value § of VeR" is chosen to be fixed by
sn(C.1) = [(s3 — 5:)/(54 — s]'"2. (3.15)
The four parameters {s,},_,,, are related to the initial
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Baxter's parameters {w; },_ .34 through formulas:

W= p(£—s,), (3.16)
where
E=EW) =[(55 — 51054 — 55(4 — 51) Snz(Uyl)]/
sy — 5, — (5, — 5,) sn’(v,/)] 3.17

and p is one more free parameter of the theory.

(iv) At {w; ] fixed, both p, and {s, ] exhibit the F-depen-
dence and the nonuniqueness of their choice can be removed
by assuming that we evaluate them as the initial /= 0 data
corresponding to {w;};_ | , 5, and at a fixed value of the
constant {. Thena connectxon (3.16) between {w; } and {5, ]
is unique.

Let us here emphasize an important Baxter’s observa-
tion'! that the two transfer operators T\, , T\, commute if
{s;} = [s/}. It implies that by varying a single parameter
ZeR- of the theory we have classified all noncommuting
transfer operators: 7,;: = T.

Commuting transfer operators are associated with the
same spin | x-y-z Hamiltonian, hence a related one-param-
eter family of Heisenberg Hamiltonians H, , ({ ) emerges,
each one determining its own spin | algebra irreducibility
sector IDPS({ ). Notice that by fixing £, we have fixed / and:

J, = cn’(28)/ dn(25),
J, =cn(25)/ dn?(2¢),
J, = en(2£)/dn(2¢),

(3.18)

= problem.

All this means that: If the Boltzmann weights a,b,c,d, of
the eight-vertex probiem, are once established and fixed,
there exists a one-parameter {€R* family of inequivalent spin
i x-y-z Heisenberg problems responsible for propagation of
excitations along a linear chain of spins } (or a linear Bose
chain in the spin | approximation)

i.e,, the coupling constants of the H.

s, =5(8)y=f(6w), j=1234, (3.19)
and {w; = w;(a,b.c,d)};_ 4 everthing at a fixed inverse
temperature 3 of the reservoir.

The nonuniqueness can be removed if {a,b,c,d.§ | arise
as a five-valued function of a single common parameter A:
a=all)b=blA)c=ch),d=dA),{=¢((A),asthen
s; = 5;(4 ) is uniquely determined by giving the value of 1, at
[ fixed.

4. DETERMINATION OF BOLTZMANN WEIGHTS

(i) Within the Kadanoff~-Wegner parametrization, the
set a,b,¢,d of Boltzmann factors can be deduced in terms of
Ising parameters &, = 4+ 1, according to the general
prescription:

exp(K '€, &, 144y +K-

1+\k@1\+1

+/i@j+l,k+l@j+ll\ hhk + 1 A) (41)
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where j enumerates neighboring transition diagrams (rows
of the Baxter’s square lattice), while k enumerates the neigh-
boring spins in the linear chain (columns of the Baxter’s lat-
tice). For each fixed (j,k )th transition diagram we have

—Pe, =K'+ K +4,

—~pBe, =4 —(K*+K"), 4.2)
—Pe;=K*—K + A4,

—Pes= — K" —K)—A4,

so that a complete partition function of the Baxter’s lattice
z H exp(K 'S

+/1@ @,+M+1 @j+l.k@j‘k+1)

Gk TKG, 4G

Tk +1

“.3

describes the two interpenetrating (crossed bonds) Ising lat-
tices with Ising variables €, , &, | , attached ateach (j,k )th
site, and an interaction between the lattices arising due to
each set of four nearest-neighbor spins, see e.g., Refs. 13, 16,
and 17. Notice that the (j,k )th diagram:

G+1k) | G+Lk+D)
Gky | Gkt

gives account of the crossed mappings between spin-up and
spin-down states of the two neighboring spins | in the linear
chain.

Depending on elementary exchange energies during
site-to-site interactions of the nearest chain neighbors, the
spin } approximation of the gradient terms occuring on the
Bose Hamiltonian, gives rise to:

(4.4)

(a) single Ising system if either K *£0,

K =1=0or K#0,K"'=4=0;

(b) two independently living Ising systems if
K*#0,K " #0, but A =0;

(c) the general spin } x-p-z Heisenberg system in the

either case.

It needs suitable limitations on the exchange energy values,
like, e.g.:

(@
€= — 622K =(B/2)e, — €),K =B /2)(€, + €,), i.e.,
we need eithere; =€, 0r €, = — €3;

(B)e, = — ¢, but 6, + €.

(ii) Notice that a two-particle Hilbert space (hg),
® (hy), . . is four-dimensional. With P, projecting on &, in &,
we find that VO | = PSPV, PyPy™ " actsin (hy),
® (hy), . invariantly and can immediately be diagonalized,
thus leading to the four real eigenvalues, which we identify
with the exchange energies €,,€,,€5,€,, respectively.

The particular assignments of energy values of the tran-
sition diagrams, according to (3.1), (3.2), (3.8) rely on the
form of respective eigenvectors. Let us denote:
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[1) =e @€y [2) =-—=(e;®¢, + e, ey),

(4.5)

[3) = \/_2. (ep@e, —e,®¢), |4)=e B¢,
Let {a} be a complex 4 X 4 matrix:

2 afaf =8y, Y dia; =8, (4.6)
and let the four orthot;ormal vectors

Mﬁ=24m (4.7)
be the eigenvectors of V9, ;:

Vosiilanh) =¢la,j). (4.8)

Then an expectation value

Ejz(a’le?,s+llavj> z—-k 1<kIV s+1|l> (49)

explicitly reveals which transition diagrams give a nonzero
counterpart to €;. An identification is here immediate:

(k |V, |l corresponds tothearrow diagram describing a
transition from a configuration associated with |k }, to this
associated with |/ ).

(iii) Notice that (k |V, | |I) makes use of the single
site basis for the elementary Schrédinger problem. If the ba-
sis exhibits any parametric dependence (which is the case for
examples of the anharmonic oscillator or quantum pendu-
Ium), then all (k {V'), ., {/)’s do exhibit also, and hence ¢,

= €;,(A )=>w; = w;(1 ) arises immediately (provided there is
a single parameter, like the coupling constant involved).
Compare, e.g., concluding remarks of the previous section.

Let us emphasize that to find Boltzmann weights, one
needs to have an explicit operator expression for V|, in
terms of the single site raising-lowering operators:

V= V(a*,a).

Remark: For the particular case of the ¢ 3

1 +1 dimensions:

theory in

_(¢j+l _¢j)2 ’
(4.10)

H= 2{ a¢1 T8l

with #eR', the spin { approximation arises in the single site
anharmonic oscillator basis, and due to the simplest possible
form of the gradient term

1
¢j+1 "¢j =—\'/—-£ [(074»
ie, ¢, = (1/v/2)(a} + a;) one gets an immediate expression
of P,HP, in terms of Fermi variables c*,c (which in turn are
associated with spin } variables via the Jordan-Wigner for-
mulas), according to Ref. 18:
N
PHP, = Y {ectc, +4 [1—(c—

i=1

1 +aj+1)‘—(af+aj)],

c)(]+1 +cj+l)]}’
@.11)
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where 4 = ¢|(1|¢ |0)| = c(0|¢ *|0), € = E, — E, and |0},
[1) are vectors of the single-site basis.

By comparing with Ref. 19, one immediately recog-
nizes that for large systems the gradient term
Al —(c* —c)c*  + ¢, )] uptoanirrelevant constant
4, coincides with the one-dimensional Ising term — JZj 55
57,1 provided 4 =J /4.

A dependence of J on coupling constants {7,c} of the
¢ 3 theory is here manifest, as entering J via the
{0|¢ %|0) = |{1|¢ |0)| factor in the expression for 4.

5. QUANTUM SINE-GORDON SYSTEM AS THE MASSIVE
THIRRING MODEL: COMMENTS ON COLEMAN’S
EQUIVALENCE

(i) Recall that by virtue of Sec. 4(ii), for the particular
case of the quantum sine-Gordon chain, the (m,8) parama-
trization enters the Heisenberg model coupling constants J
by evaluating at £ fixed, the explicit values of ¥, | eigen-
values {¢,];_,,,, The single site problem is quantum pen-
dulum here with m being the coupling constant, and hence
indeed J = J (m,3).

By rescaling the variables H,¢ of (1.2) according to

(.1

we arrive at the Coleman’s form,' of the sine-Gordon energy
density

$=Bcd’, H=BcH'

where ¢ = -1 in the Coleman’s case, and B is the Cole-
man’s coupling constant 3 of Ref. 1.

The single-site quantum pendulum problem arising in
connection with the rescaled pendulary chain, is related to
the previous one by

E;=E /B%Z, Yk=01,-, (5.3)
and just the E;, E | eigenvalues are used in the spin | ap-
proximation procedure of previous sections.

(ii) It has been proved by Luther,” that in case of a very

weak anisotropy of the x-y-z model

J=J,=sn(2{)-dn(2f) =1, (5.4)
one should make an identification
J, =BL/8m, (5.5)

with the restriction that 8 2<[0,87] as within this interval
only a continuum limit can be taken for the lattice problem,
and shown to lead to the quantum sine-Gordon system of the
form (5.2). A massive Thirring model appears here as a me-
diating step both on the lattice and continuous levels.

By assumingJ, = J,(m,) we have a unique connection
between the (m,3 ) sine-Gordon chain and the (J) Heisenberg
problem, compare, e.g., Sec. 3(iv). But then, we must have

z=Bt(mB) (5.6)
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and hence in the Coleman’s framework varying S means:
(a) varying 3 at m fixed, (b) varying m at f3 fixed, (c) varying
both m and 3 simultaneously.

In fact, the case (a) only was considered in Ref. 1, as
then one can “forget” about 8 = 1/kT.

(iii) Take B Z(m,B )R’ and assume that at m fixed,
BZ(m,3) grows monotonically when 70 (i.e., f— o0 ), and
decreases in the opposite extreme, of 7— o (i.e., §—0). In
terms of the Coulomb gas of charges + ¢,?® at thermal equi-
librium, B = (473)"*q,q = q(m) and there is a natural
critical temperature /3, corresponding to the Coleman’s
bound B % = 87. Namely for B -€[0,87) the Coulomb gas
lives in its plasma phase, while for 8 Z€[87, ) a dipole gas
occurs, and then the system must be kept on the lattice as
ultraviolet cutoff cannot be consistently removed from the
theory.

(iv) The very same Coulomb gas picture arises while
varying m at 3 fixed. In that case, there is a critical value of
m = my, i.e., g, = g{my) at which a transition from plasma
to dipoles occurs. A correct variability interval for the plas-
ma phase is here 1/me[0,1/m), while 1/me[l/m,, ») for
the dipole phase. In this connection let us recall an old Len-
ard’s result,” see, e.g., also Refs. 22 and 23 that in the zero-
space dimension quantum pendulum stands for an equiv-
alent of the Coulomb gas problem where the dipole and plas-
ma cases (no phase transition here!) appear at the opposite
extremes of m: m =0 and m = o, respectively.

(v) It suggest the way to understand the Coleman’s
equivalence in terms of the single-site (i.e., quantum pendu-
lum) data. Let us notice that for large m the quantum pendu-
tum spectral problem admits an equivalent description in
terms of the anharmonic oscillator, spectral problem which
we choose in the form of?*:

H, =1[p*+v(¢° — 2vy')], +—0. (5.7)

In the (weak) limit v—0, the corresponding spectral prob-
lem is doubly degenerate and gives

lmEY=lmEY*' =V2(j+ ) =e.

voQ 1 20

(5.8)

For quantum pendulum, the m— o limit gives
Eg—ES,  ,—(2n + De=(/V e,
5o—ES (@) +Ye=(/Ve, .,

(5.9)
where € is a fixed positive factor, insensitive to the m— oo
limit.>>-?
Whenever to rescale H according to Ref. 24, with an
appropriate redefinition of the original constants of Ref. 24:
H =H[B'l—-1)""=H BE,
{5.10)
g=m/B7, v=glg—-1)"" B '=B'(B)
then, the v—0 limit is just the same as m— oo limit at fixed 3.
Obviously the m— o limit does make sense for B Z itself, as

ﬁ/l/z
(m _33)1/2
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and it does exist for the rescaled Hamiltonian H !, = H, /B %.

Namely, if v—O0, then
M, =(E)) —(E?)<d4 exp(— Bg'?), (5.12)

where 4, B are fixed, g-independent constants. Then S %
= 87 would imply

m=myB)=pB"+p'/87), (5.13)
i.e., to each value of 5, provided £ is small enough [to insure
that mq( B ) is sufficiently large], we find its own correspond-
ing my(B).

The small B-large m( 4 ) limitation means that we need
a fixed upper bound M ?:

A exp( — Bg"H<M° <1, (5.14)

which induces an appropriate balance of 8 and m(3 ) values.

Let then, at 8% = 87, A exp( — Bg') = M2 «1. 1t
fixes the range of variability for 5’s at m fixed (or m’s at 3
fixed), within which the bound M ¢ is not passed by the ener-
gy interval value M.

(vi) By recalling the properties of quantum pendulum
when varying m at /3 fixed, we find that with the lowering of
m a separation between lowest two levels of quantum pendu-
lum 4 = E' — E°increases, while a separation
A' = E?* — E 'betweennextlowestdecreases. Henceabound
M ° can be consistently interpreted as this value of 4, begin-
ning from which a two-level approximation of the pendulary
chain fails, and a three-level one (at least) should be taken
into account.

Remark 1: In terms of the Coulomb gas in zero-space
dimension, the dipole gas appears when a spin 0 approxima-
tion is reliable (lowest eigenvalue contribution to the parti-
tion function is of interest). The plasma appears when a spin
I approximation becomes reliable (double degeneracy of the
lowest eigenvalue occurs).

While working in 1 +1 dimensions, the spin § approxi-
mation is the lowest one, exhibiting a nontrivial gradient
structure, and the nontrivial dipole one, is just the spin 1 (or
2,3,4,.-) approximation of the chain as then next eigenvalue
contributions to the partition function are taken into
account.

Remark 2: In connection with the form of gradient
terms in the spin 1 approximation of the linear chain, let us
notice that SU(3) is the largest symmetry group for the three-
level system [while SU(2) was for a two-level one], and hence
the most general form of the nearest neighbor gradient term
should be that of the current—current interaction type, with
the number eight of coupling constants involved. The struc-
ture of the gradient term may vary depending on the explicit

choice of the model. For example, a three-level approxima-
tion if applied to a system of coupled two-dimensional oscil-
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lators in the plane rotor approximation,’ involves gradient
terms of the form cos(¢ ; | | — ¢;). Their image in the spin 1
approximation is simply J(S7, ;S 4+ S7,,§%),i.e., the spin
I x-y model coupling

Remark 3: Coming back to the spin | approximation
framework, let us notice that the minimal form of gradient
terms of lattice Bose systems, which in the two-level approxi-
mation, give rise to the Heisenberg chain, has been derived in
Ref. 27.

Some other aspects of the two-level approximation
trick in connection with the Bose contents of spinor fields
can be found in Refs. 28 and 29. The whole program of my
investigations on the spin } approximation concept was initi-
ated in Ref. 30.
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We formulate an approximation method which can be used to compute the almost zero modes
and the generalized Green function in the background of an approximate instanton gas solution.
The main problem of choosing the starting point is solved by requiring that the zeroth-order
operator H, annihilates the original isolated single-instanton zero modes. The zeroth-order
approximation to H ;" ', on the other hand, is constructed from the free Green function with local

bumps provided by the one-instanton Green function.

PACS numbers: 11.10.Np

I. INTRODUCTION

Considerable progress has been made in constructing
Green functions and zero modes (ZM) in the background of
exact multiinstanton solutions."? In dilute gas calculations
one also uses background configurations that are “approxi-
mate solutions.”? These approximate solutions are typically
linear superpositions of instantons and anti-instantons of
various sizes and orientations located far from each other.
Since the configuration is only an approximate solution the
lowest energy modes are not zero modes but almost-zero
modes (AZM}, whose eigenvalues approach zero as the sepa-
rations of the instantons and anti-instantons increase. In this
paper we present approximation methods for constructing
Green functions and the almost-zero modes and their eigen-
values for the case when the background field configuration
is an approximate solution.

The difficulty in constructing a perturbative expansion
for the present problem is that it is not easy to choose a
known zeroth-order starting point. The parameter that de-
termines the convergence is the distance between the instan-
tons: In the limit of infinite separation the local instanton
determines the behavior of the Green function and the zero
mode completely in its neighborhood. However, this starting
point with infinite separations is not very convenient in prac-
tice and we will follow a different route.

In Sec. IT we will choose our zeroth-order operator H,
so that the single instanton zero modes {@!”} will stay as zero
modes of H,,. This means that the original operator H will
differ from H,, only in the subspace spanned by the zero
modes located around the various instantons and anti-in-
stantons. For this H, we then construct the modified Green
function G, defined by

H(x)Gy(x, p) = 8(x — y) — Pyix, y), (1.1)

“Present address: Department of Physical Sciences, University of Turku,
Turku, Finland.

"Present address: Physics Department, Princeton University, Princeton,
N. J. 08540.

581 J. Math Phys. 22(3), March 1981

022-2488/81/030581-04%$1.00

where P, is the projection operator to the space spanned by
the zero modes. The zeroth-order approximation to G, is
constructed from the free Green function G and the single
instanton Green functions G,

Gy=(1— Po>(GF + 316, —GF>)(1 — P+
(1.2)

The AZM ¢/* of H, and their eigenvalues A (' are then
computed in Sec. I11 starting from ¢ {* and using G, Finally
in Sec. IV we find the generalized inverse G of H,

H(x)G(x,y)=68x — y) = ¥ ") p), (1.3)
using the method of Sec. II and ¥/* and A ¥ from Sec. III.

The expansions that we obtain converge rapidly if the
gas is dilute. The speed of convergence depends for example
on how fast the tails of @ (%(x) and G, (x, y) — G(x, y) ap-
proach zero outside the & th instanton. For the kink gas the
relevant parameter that describes the convergence vanishes
exponentially as the average distance increases, while for
Yang-Mills instantons it vanishes like an inverse power.

Il. THE GREEN'S FUNCTION WITH OLD ZERO MODES
Let us assume that the operator, whose inverse and
AZM we want to calculate, can be written as
H=D+ Vi), 2.1)

where D contains derivative parts and is independent of the
background field configuration ¢ and where V(¢ (w0 )) = 0.
For example for the kink system defined by

sio1= [ aresr+ vien, (2.2a)
we get

D= —& +m? (2.2b)

Vig)=V"(g)—m, (2.2¢)

m>=V"(¢(w)). (2.2d)

For the fermionic operator in quantum chromodynamics we
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have?
H= — (19, (2.3)

where the division (2.1) is obvious. (Here we have suppressed
Dirac and group indices.) In the latter example the potential
is linear in the background field A,,, which will bring some
simplifications.

Fora single instanton or anti-instanton background the
zero modes @ ), Ve of H (¢¥) are assumed known,

[D+ V@ )lipkar =0, (2.4)

where K labels the instanton. It is possible to have several
ZM, labeled by a, for each instanton. .

Let us next take a background field configuration ¢ that
is a superposition of single instanton solutions. (In practice
we will only need the property that near the / th instanton
d~¢ ') We will now construct H, so that it will annihilate all
of the single instanton ZM’s ¢ {, Vk,, but is otherwise un-
changed. H,, will differ from H (¢ ) only in the potential. Let us
write

—igitA,),

Vig)=Vid)+ W(d), (2.5a)

Hy=D+ Vo), {2.5b)
then ¥, should be such that

Hyle,) =0, Vka. (2.6)

Let us denote by P and P° the projection operators to

the subspaces spanned by { @ O)Va} and {|@ L, ) Vk,a},
respectively. For P we have trivially
P = 2 I ) (@, (2.7a)

but we cannot write P, = =, P9, because the states |@ ',
are not necessarily orthogonal for different k. Rather let us
define

o (2.7b)

— EZ |¢7(0) ><¢(0) (0)

Then we have

=S P}
k

The P9’s have the useful property that they separate the zero
modes of different instantons when operating to the right,
i.e.

(2.7¢)

PRUe %) = 8ulp i) (2.7d)
The potential ¥, may now be written as
Vo= (1— P()]V(l - Pn)

+ S L1 = PV PS + PUV.(1 = Pyl]
k

+ 3 > PYVLPY, (2.8)
[

where the Vs should be determined so that (2.6) holds. We
find
V,=V,=V(d") (2.9)
~The re;mainder W involves terms like
3 P“_[’[ Vid)— Vi($*)]. This term vanishes as the instanton
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separations increase, because P2’s and Vs vanish far away
from instantons, and near a particular / th instanton d~o',
and therefore only tail effects remain.

We will also assume that the free Green function and
single instanton Green function are known {See Ref. 1 for Y-
M instantons and Ref. 4 for kinks). They are respectively
solutions of

D (x)Grlx, y) = (2.10a)

a(x - y)’
and
[D (x) + V{o*x)]Gilx, ») = PO(x,y). (2.10b)

Let G, be the generalized inverse of H,, i.e., the solution

S5x — y)—

of
Hy(x)Gyfx, y) = 8(x — y) — Pylx, ). (2.17)
To solve G, from this we write
Go =Gy + T, 2.12a)

Gy=(1— PO](GF + (G, — GF))(I — Py, (2.12b)

where T, also annihilates P,. (The O subscripts refer to the
ZM-space). The choice of G, comes from the observation
that the instantons only bring local corrections to the Green
function. Near the / th instanton G, — G,~0,Yk k #1 and
therefore G,~G,. Cross terms where x and y in Gylx, y) are
near different instantons are small because the instantons are
far apart. Substituting (2.12) to (2.11) gives

H,TT,=J,, (2.13)
where
Jo= — H()6(> +1— P()

== P)|3 V611G, = Vo[ G+ + 3 (G, ~ G|
k k
X(1 = Py). (2.14)

From (2.13) and (2.12) we get an integral equation for Gy

Gy =G, + Gy J,, (2.15)
so that

Go=Go+ S GoJ1. (2.16)

n=1

For the convergence this expression we need ||J,|| < 1.
But as the instanton separation increase we infact have
|75/l —0, as can be seen from (2.14): At a point far away from
all instantons we have ¥'~0, and near the/ th instanton both
terms in the curly brackets approach ¥ (¢ /)G, and cancel.

In this way we have constructed the inverse of our ze-
roth order { = “unperturbed”) operator H,,. The essential
feature was to keep at this stage the ZM’s intact, and modify
H,only in the subspace {¢'”}. Another approach could be to
find an H,, so that G, of (2.12b} is an exact (generalized) in-
verse of H,,. This would lead to a more complicated W in
{2.5a) but avoid a series expansion (2.16) at this stage.

HIl. THE ALMOST-ZERO MODES
To find the almost-zero modes we divide H as in Sec. II:
H=H,+ W, (3.1
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W= Xl - P)IVig) - Vi)
X B + PTV(E)— V8*11i1 - Pa)
+ S PYVIg) - Vs P (3.2)
K,

The degenerate eigenstates of H,, are the single instanton
ZM’s { @ ), Vk,a}. As the separations between instantons
increase, W—0 and the eigenstates |@ ), ) become exact.

According to usual results of degenerate perturbation
theory® the first order results are found by diagonalizing the
matrix ‘

(0) lW|¢(O)>_<¢(0) |HI¢(0) (3.3)

The dlagonal elements are the new eigenvalues. Since the
instantons are in arbitrary locations the degeneracy is usual-
ly broken completely already in first-order. Let us denote the
diagonalizing eigenvectors by 1;0 (If the original degeneracy
was two-fold, #° <@ + 99, R« — )

For the calculation of higher order terms we write the
AZM as

w{O) —_ ¢0 + 2 au
J#
where Pyy; = 0. To first order @; = O and y; = 0. Substitut-
ing this in the eigenvalue equation,

Hy, =E, (3.5)

gives

D+ Y (3.4)

= E 9 — Wy, (3.6)

Since the inverse of H,, only exits in the space orthogonal to
the old ZM’s we must project from the left with P,, which
gives the condition

(RE, — W) =0, Vki. (3.7)
For k =i we get
E =e + (W |y, (3.8)
and for k #i
20
Wiy,
@y = <¢’k' LY: >’ (39)
E —€,
where
1 __ (0 70
€; —(%‘Wld’,) (3'10)
This leaves
{Hy —E)y, =4,
4=~ = W (i + 3 ad) (.1
JFi

where we have also used the fact that
(1 — Pe)W(1 — Pg)=0. From (3.11) we can iterate for y,
and get

= 20 (E,Go\'God.,

Equations (3.8)—(3.10), (3.12) determine the eigenfunc-
tions and eigenvalues order by order. The first order results
were given above. To the next order

Y= — G, W),

(3.12)

(3.13a)
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E? =¢! — (R WGW 3D, (3.13b)
ald = — (3| WG, W |¢0) /(! — €b). (3.13¢)

To this order we may take G, instead of G,, since the differ-
ence is one order higher.

The convergence of the expansion (3.12) depends on the
eigenvalues of the almost-zero modes. But since they go to
zero as the instantons get separated, the expansion will al-
ways converge for large enough separation.

V. GREEN FUNCTION FOR THE FULL OPERATOR

In Sec. II we showed how the generalized Green func-
tion can be computed for the operator H,, with zero modes
{@ . For the full H we should now solve

SR ). (4.1)

Here {gl/‘-‘”} are the normalized almost-zero modes of H:

H (x)y%(x) = 2,40(x), (4.2)
where A,—0 as the instanton separations increase. Although
the ¥’s are not exact zero modes of H it is still necessary to
project that subspace out, because we want a well-behaved
inverse. Note that the norm of G is for most purposes
=~1/min, {|4,]}, and blows up for dilute gas unless the AZM
are projected out.

Let us denote by P the projection operator to the space
spanned by the AZM’s. Following the method of Sec. III we
may calculate the AZM’s and that way obtain P. One can
also use direct expansion methods for P, e.g.,

P= P, + PWG,+ G,W Py + -, (4.3)

Anyway, for the purposes of this section we may assume that
Pisknown. To calculate G we may again start with a similar
zeroth-order approximation as in Sec. I, namely

G=G+T,
G=(l— P)(GF + 3G, —-GF))(I ~ P

This differs from (2.12) only in that the projection operators
are different, e.g., T now annihilates #/"s rather than ¢ !, ’s.
Substituting (4.4) to (4.1} gives

HT =,

where
== P)| 3 V4G - ¥ |G, + 5B - Gl])

X(1— P)+(1— P} 3 PYL— P),
k

H(x)G (x,y) = 8(x — y) —

{4.4a)
{4.4b)

(4.5a)

(4.5b)

The result is again very similar to (2.14) except for the term
(1 — P)2,P%1 — P). This term does not vanish, for al-
though the spaces spanned by the original zero modes and
the almost-zero modes have the same dimension they are not
identical.

The terms in J are known, small, and annihilate P. The
Egs. (4.3) and (4.4) allow then for a iterative determination of
G from

G=G+GJ, (4.6)
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G=G+ 3 GJ" (4.7)
n=1
The result has the same form as in Sec. I, except that now all
operators have different subspace projected out. The conver-
gence properties are the same as before.

V. DISCUSSION

Calculations with dilute instanton gas are made subtle
in many places due to the existence of {almost) zero modes.
In this paper we have studied the problem of computing the
generalized inverse of an operator H in an instanton gas
background, assuming that the problem has been solved for
a single instanton background. There are two problems in
computing H ~': 1) The inverse is well-behaved only in a
certain (at the moment unknown) subspace perpendicular to
the AZM, 2) There is no simple way to isolate the “unper-
turbed” H,.

In this paper we have chosen H, so that it annihilates
the individual zero modes {@ ), Yk, a} of all instantons,
i.e., HoP, = 0, but is otherwise identical to H. In this way we
know the subspace where H ; ' exists. The zeroth-order ap-
proximation to H ; ' is obtained from the free Green func-
tion with bumps at the location of each instanton supplied by
the local exact Green function:

Ho'=(1= P|Gr+ 3 (G~ Gl = P+ To
k
(2.12))
T, is the small perturbation that was computed in Sec. IL
After H ;' is known it is straightforward to compute
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the AZM of H, this was done in Sec. I11. Once the AZM’s are
computed we also know the subspace where H ~' is well de-
fined, and then H ~' can be computed according to Sec. IV
starting with

H™'=(1=- P)}|G.+ S(G, — G|l - P)+T. (44)
k

Following the above method one can now compute the
needed almost-zero modes and Green functions in a dilute
gas background. The expansion method presented here and
its speed of convergence could be tested with exact multi-
instanton solutions, where the AZM’s and Green functions
are known in closed form.'?
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We show that in the Minkowski space, a self-dual gauge field can be linearly superposed with
either another self-dual gauge field or a non-self-dual gauge field to give a new solution of the
Yang-Mills equation. From these new solutions, Euclidean solutions are constructed. Some of
these new solutions are valid in any dimensions of space-time.

PACS numbers: 11.10.Np, 11.10.Qr
1. INTRODUCTION

Recently there has been much interest in searching for
new classical solutions of the Yang~Mills (YM) equations’
and their properties.” The technique involved is usually to
employ an ansatz for the gauge field 4 ;, and the most well-
known one is the Corrigan—Fairlie-’t Hooft-Wilczek
ansatz’

AAﬂ=g§AKﬂ=@meMﬂ, 0

where g is the gauge field coupling constant, ¢¥ = Je?*o,,
and in the Minkowski space, 0”° = i0’/2 whereas in the Eu-
clidean space o™ = ¢’/2. Here ¢ are the Pauli matrices.
With this ansatz, the SU(2) YM equations reduce to a non-
linear equation for the function ¢ (x),

O¢x)+4d°x) =0, )
and the self-anti-duality condition gives rise to

O¢(x)=0. 3)
Thus the single instanton solution* corresponds to

P(x)=4/Q+Ar), r=x,x*, ©)]
while a single meron® is given by

)=y, )

where A is a constant. In Ref. 6 the meron solution ts recov-
ered from the real part of a complex self-dual solution in the
Minkowski space and in Ref. 7, specific examples of self-dual
complex solutions in the Minkowski space are constructed
which can be summed up to yield the meron solution. These
results suggest that the superposition principle may be possi-
ble for classical nonabelian YM fields. In fact, in Ref. 8 it has
been pointed out that functions of the form ¢ (u), with
u=px+ep =p, p*=0,andebeinga constant, will lead
to self-dual gauge fields 4,, which can be linearly superposed
to produce other self-dual solutions. Of course trivial linear
superposition can always be achieved for the YM fields by
writing an ansatz of the form 4 ;; (x) = g° B,, (x). With g “ be-
ing a constant vector, one automatically gets rid of the non-
linear term in the field strength F;;, and reduces the nonabe-
lian equation to the linear field equation. Hence, solutions
with such an ansatz are linearly superposable. This type of
solutions has been discussed in Refs. 9 and 10.
In this paper we exhibit self-dual gauge field configura-

tions in the Minkowski space which can be linearly super-
posed with self-dual or non-self-dual fields to give nontrivial
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solutions to the YM equations. Some of these solutions so
obtained by superposition can be analytically continued to
the Euclidean space. In this way, we obtain a family of solu-
tions which can be made regular everywhere in the Euclid-
ean space and as a result, their topological charge, action, as
well as energy—-momentum densities vanish. These solutions,
however, possesses nonzero complex electric and magnetic
field strengths. Examples of complex zero-action solutions
in the Euclidean space have been considered before.® In Ref.
9, however, an ansatz of the form

A, =a, x) M, (6)

with M being a constant nilpotent matrix, is employed which
essentially linearizes the YM equations, and, consequently,
the resulting solutions are not truly non-Abelian. As is well
known, in the Euclidean space the self-dual solutions, e.g.
the instanton,* possess finite actions'* and it has been conjec-
tured that all finite action solutions of the YM equations
must be either self-dual or self-anti-dual.? Some of the solu-
tions obtained here in Sec. III seem to confirm the

conjecture.
In Sec. 11, linearly superimposable YM fields in the

Minkowski space are displayed and some of their properties
are given. In Sec. III we show that by making the constant in
the solutions in the Euclidean space~time to be complex,
nonsingular finite action solutions are derived. Some solu-
tions obtained in Secs. I and I1I are valid in any dimensional
space-time and the corresponding static ones are hence writ-
ten down in Sec. IV. These static solutions are complex and
singular along a straight line. They can be regarded as the
generalization of the cylindrical solutions given in Ref. 13.
The complex static gauge field solution can be understood by
converting it into an exact solution for the real static SU(2)
gauge field coupled minimally to the triplet Higgs field when
the self-interaction potential of the later vanishes.'* We end
in Sec. V with brief remarks.

Il. LINEARLY SUPERPOSABLE SOLUTIONS

The self-duality condition (3) admits any function of a
single variable u = px 4+ e, with p’ =p, p* = 0 and e being
a constant, as a solution in the Minkowski space—time. The
metricg,, is (— + 4 + ). Consider now two self-dual so-
lutions ¢ (x) = ¢,(u), u = px + e, and ¢ (x) = ¢,(v),
v=gx + f(¢° =0, f= constant). If we demand the prod-
uct ¢ (x) = ¢,(u) ¢,(v) be a solution of the YM equation (2),
then the function form of ¢, and ¢, is the square root of the
argument, i.e., ¢, = u”'> and ¢, = v"'"? with pg#0 in order
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for ¢ = ¢,0, be a solution of (2). Obviously, if pg = 0,

¢ = ¢4, is again a self-dual solution. Thus, starting from
two self-dual configurations, 4,, = io,,, 3" Ing, and 4,,
=io,, 0" Ing,, the linear sum 4,, = (io,, 3" Ing,

+ io,,, d"Ing,)is again a solution which may be self-dual or
non-self-dual depending on whether pg vanishes or not. Note
that
1= L=, 0, )

¢=¢ ,
u pPX+e

also leads to a self-dual solution if 2p” = — A. This solution
and its elliptic generalizations have been discussed in Ref. 8.

The non-self-dual solution

p=¢=)'"’, A= —ipg, p'=¢"=0, (8
can be generalized. One finds that

¢ =y’ E (), )
with w = A4 In(u/v), A = arbitrary constant, satisfies the

YM equation (2) provided the function E (w) is a solution of
the following differential equation,

E”?+aE*> + E" =¢, (10)
where E’ = dE /dw, c is a constant, and for the solution (9),
a= —1/(44%), b = — A /(247 pq). This means that £ (w)
can be any one of the 12 Jacobi elliptic functions.'* Note that
for solution (9) the constraint L = — pg/2 is not required.
The solution (8) has singularities on planes defined by u = 0
and v = 0. The generalized solution (9) will not introduce
additional singularities if we choose for E (w) the following
elliptic functions,

E, =dn(w,k), E,=nd(wk), 0<k«l. (1

The corresponding gauge fields can be written as

A =i_(.7iv_[(:){:k2AiM_n(_wl_ L)l_’:

“ E., dn(w) 2/ u
T2y sn(w) en(w) 11¢
[+k 4 dn(w) + 2] v}' (12)

The generalized solution (9) with E (w) given by (11) reduces
to the original solution (8) when the parameter & of the ellip-
tic functions vanishes. For k = 1, dn(w) = 1/coshw, and
nd(w) = coshw. All the above solutions are valid in any di-
mensions of space~time.

For the ansatz (1), the energy-momentum tensor is giv-
en by the expression

0,.(x) =4 /g°)[49,,69.6 — 243,0,¢
—glu,v(i¢ 4/2 +aa¢aa¢)]' (13]
One finds for the generalized solution (9), the energy density

|
2 2
o= S 242 (2 o) £d), (a4
g ww u v uv

where p,, is the time component of p,,, and the momentum
density is

A 4cd? (P i
B = g_z‘ = ("L_ g‘)("&" _q_g> (15)

uv u v u v
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The energy and momentum densities for solution (8) are also
respectively given by expressions (14) and (15) except one
must now put 8¢4 > = — 1. It is interesting to note that al-
though the solution ¢, and ¢, lead to self-dual gauge fields
with zero energy—-momentum tensor, ' the sum of these
gauge fields possesses nonvanishing real energy and momen-
tum densities. Furthermore, we have computed the field
strengths F,; and F; associated with solutions (8) and (9).
They are complex and singular and their spatial directions
are fixed. The singularities of the above solutions need the
presence of external sources to sustain themselves and can-
not be gauge-transformed away.

The self-dual solution ¢, can also be combined with the
non-self-dual meron solution to give another non-self-dual
solrtion. Translating the position of the meron from the ori-

gin to the position x, = — a, gives the solution,

¢ =[x+ a2, (16)
The product of expression (16) with the solution ¢, i.e.,

¢ =[u(x+a)’1"? p’=0, A= —pa, an

satisfies the nonlinear equation (2). Note that fora, = 0, the
resulting solution (17) is self-dual. Thus adding the self-dual
gauge field 4, = io,,, d" Ingd, to the single meron solution
results in a non-self-dual configuration or a self-dual con-
figuration depending on whether a,, is nonvanishing or not.
Unlike the previous case, the solution (17) is valid only in
four-dimensional space-time. One can again generalize solu-
tion (17) to

¢ =[uGx+ay1'"?Ew), p*=0, (13)
withw = 4 In[(x + a)*/u] and the E (w) is the Jacobi elliptic
functionwitha = —1/(44%),b = — A /(4pgA ?). Asbefore,
the generalized solution (18) will not give additional singu-
larities only if E (w) is given by the choice (11).

The energy and momentum densities associated with
generalized solution (18) are evaluated by Eq. (13) and one
obtains

00

A &Pc(@wa+vmwm»

g2 u(x + 0)2 u(x + a)Z
)23 2(x + a)é)
W (x+a)/’ (192)
and
6, = — i 84 % (Po(x +a); +p;(x + a),
" gZ u(x + 0)2 u(x + a)2
PP 2x+a)(x +a),
T i
2u2 (X +a)4 ( 9b)

For the solution {17}, the expressions for the energy and mo-
mentum densities are respectively the same as Egs. (19a,b),
except that 84 c = — 1. Although solution (17) and its gen-
eralization (18) give rise to complex gauge field and the field
strengths, their energy and momentum densities are real.

lil. EUCLIDEAN SOLUTIONS

The solutions discussed in Sec. II, other than the solu-
tion (7), are valid only in the Minkowski space-time as they
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become trivial in the Euclidean space-time due to the re-
quirement p?> = ¢* = 0.

The self-dual solutions (7), parametrized by the four-
vector p, and the constant e, are valid in the Euclidean
space-time and they have some interesting properties. One
can also directly obtain them from Eq. (2)by regarding ¢ asa
function of one variable u. They are singular on a plane de-
fined by

PuX, = —e.
If we now make the constant e complex and restrict p, and
the coordinates x,, to assume real values only, then solutions
(7) are regular everywhere. Their energy and momentum
densities vanish. The topological charge density for the an-
satz (1) can be written as'’

D@)= + %Dmm&, 20)

whilst the Lagrangian density is given by
L= +D(p)—31%"2g". 21

For solutions (7) with e being a complex constant, the topo-
logical charge density is found to be

3 p2)2
@)=+ ().
This leads to zero topological charge and zero action. Solu-
tions (7) are, however, not gauge-transform of a pure gauge
since the electric and magnetic fields are nonvanishing and

given by
E, =F, = —io, p*/u?,
and
B, =leyu F*= —lie,o p*/ut.

As the constant e is complex, these field strengths are neces-
sarily complex. Thus with e being a complex constant, we
have demonstrated a complex self-dual’® gauge field in the
real Euclidean space-time which is regular and possesses
zero energy, zero Pontryagin index, and zero action. This
type of solutions have been discussed in Ref. 9. Solutions (7)
are, however, different from the voidon of this reference
since the nonlinear term of F,,,, which is absent in Ref. 9, is
retained for solutions (7), and the F,, hereis not proportion-
al to a constant nilpotent matrix.

Although the solutions in Sec. II are trivial in the Eu-
clidean space-time, one can, by manipulations, derive from
the non-self-dual solution (8) the following expression,

$x)=@@*+px3)y'7?

@=(p.x'+e), pP=pp, (22)
which is a solution for Eq. (2) provided A = — p°. This solu-
tion holds in any dimensions of the Euclidean space—time

and by virtue of the ansatz (1), it leads to real gauge fields
A a

s

Oy pli + Oua Pi X4
g:*4+p?x? '
As long as the Euclidean time x, 50, the gauge field is regu-

lar everywhere. However, at x, = 0, 4,, is singular on the
plane defined by

4, =(=1 23)
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x;p= —e. (L))
It appears that this singularity of 4,, is caused by an external
source which is switched on only at the Euclidean time
x, = 0. One can shift the singularity occurring at x, = 0 to
x4 = f(const) by writing

) =[a*+p°xs— 1% A= —p> (29
which is also a solution of Eq. (2). Furthermore, in two-

dimensional space—time with coordinates (x,x,), expression
(22) takes the form

$=[x+e+x]"2 A= -1, (26)
which is regular everywhere except at a point.

As before, solution (22) can be generalized by incorpo-
rating the Jacobi elliptic functions. Thus we find that

P (x) = (@* + p°x3)'2E (w),

w = A tan™ (‘l—”—_‘i) ,
i

27

satisfies the non-self-dual equation (2) if we require E (w) to
be one of the elliptic functions with @ = 1/4 2 and
b= A /(4 *p ). Choosing E (w) be given by Eq. (11), the gen-
eralized solution (27) introduces no extra singularities.

For the generalized solution (27), one can evaluate the
Euclidean energy and momentum densities and one gets

g A CAYP T~
g (pm+ay
and

, (28)

g _ A %A’ i,

YU et ay
where the constant c is defined in Eq. (10). The energy and
momentum densities for solution (22) are also respectively
given by Eqgs. (28) and (29) with 2c4 2 = 1. For the solution
(22), D (¢ ) vanishes everywhere except possibly at the singu-
larity plane defined by Eq. (24). The action diverges due to
the singularity, but the total energy, as evaluated from

29)

£= f d’x84 (x,=0), (30)
is zero.
IV. STATIC SOLUTIONS

As pointed out earlier, the solutions in Sec. ITI and
some solutions in Sec. II are valid in any dimensions of
space-time. It is then straightforward to write down the stat-
ic solutions. For the ansatz (1) with the function ¢ (x;) being
time-independent, the static YM field equation is

Vi + A¢° =0. €3

Expressions (8) and (9) are respectively the solutions of Eq.
(31), provided we replace u by # = p,x' + e, v by
U=g¢;x'+f,wby @ =AIn(i/0),and A by A = —1p,q"
However, these solutions are meaningless because of the
constraints p,p’ = ¢,4' = 0. For expression (20), the corre-
sponding solutions of Eq. (31) which lead to complex static
gauge fields are either
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o= 1, 32)
u

or

¢=(@+pX3)'"% A= —p, (33)
where u = p,x* + e, p> = p,p*, and the index 4 runs from
1 to 2. Solution (32) and its elliptic generalization have been
obtained in Ref. 8 and can be regarded as leading to a static
gauge field due to the presence of a plane of sources. The
elliptic generalization of (33) can be deduced from expres-
sion (25) and one has

¢ =(a’+px3)'"? E@),

w = A tan™'( px,/). (34)
Solution (33) is regular everywhere except along a line on the
x'-x? plane defined by
x*=0. (35)
This line of singularity indicates the presence of external
sources as can be shown by using the method of Ref. 19. The
elliptic generalization provides no additional singularities if
E () is given by the choice (11).

The energy density associated with solution (33) is
negative,

Bor = — YA /QV G +PR3) 2, (36)
and it increases as x, increases. The momentum density 6,
for the static gauge field is zero as ¢ (x) here is time-indepen-
dent. For the electric and magnetic fields we find, after some
calculations,

E,= ’.1;2‘?5 2[¢ 2x3PA (x3 Pp0Oop — 0y3) — 0,4 ],

u =0,

37
E,= — ip?¢*xy(dpsOop + P X3003)s
and )
B, = é @ 4[;2)‘3 Palostl — x305p5),
(38)

i ~s -
B, = 7 ¢4P2“(X3PBO'B — Uoy) .

In Ref. 13, we have found that

¢=(—Axx"y'"?, (39)
in a static solution of the YM equation. By setting p, = 1,
p» = e = 0, solution (33) reduces to expression (39). Hence
we can regard (33) as a generalization of (39).

The complex static gauge field as derived from expres-
sion (33) can be converted into the real SU(2) static gauge
field coupled minimally to the triplet Higgs field @, when
the self-interaction potential of the later vanishes. This is
done by setting"*

gd | = €,,3" Ing,
gA § = sinhyd” Ing,
g ¢ = coshyd “ Ing,

where y is a real constant. Following ‘t Hooft,”® one can then
define the electromagnetic field ¥ ,,, . As for the solution
(39),'? the magnetic field, (1/2) €, % **, vanishes but not the
electric field %, as

588 J. Math. Phys., Vol.22, No. 3, March 1981

F o= “% (pp by, +P~2x353f) .
gla* + p’x3 7
Thus the singularity of (33) arises from external sources
which are “electric” in nature. In contrast with solutions
(33) and (39), static solutions known to us in the literature
lead to a nonvanishing magnetic field.

V. COMMENTS

We now make some brief remarks on the solutions ob-
tained in this paper.

(I) The linear superposition principle is, of course, in
general, not valid for the YM theory. However in Sec. II we
have constructed examples for which a self-dual gauge field
caii be linearly superposed with either a self-dual or a non-
self-dual gauge field to give new solutions. As these solutions
are obtained without linearizing the YM equation, they are
truly nonabelian. What characterizes these solutions to be
linearly superposable is not clear to us. We merely observe
that self-duality '"® may play a role here, since linear superpo-

sition of two non-self-dual gauge fields seems unlikely to

yield a solution, except in the case of the two-meron solution.

(IT) If the arbitrary constant e is allowed to be complex,
solution (7) leads to a Euclidean self-dual gauge field with
zero action, zero Pontryagin index, and zero total energy.
Complex solutions with zero action may play a role in the
semiclassical approximation of the Feynman functional
integral.

(IIT) Solutions (7), (8), and (20) are valid in any dimen-
sions of space—time. In Ref. 5, the single instanton and a pair
of merons in the six-dimensional coordinates, £, are respec-
tively written

¢p= QAVUELY, PP =1, (40)
and
p.q

¢:(ZA)7I/2 [______]I/z’ pl___‘q}:O'
(P,&")g, &%)

(41)

Apart from a factor *“i”, these expressions are respectively
the same as solutions (7) and (8). Does this mean that one
can interpret solutions (7) and (8) respectively as the six-
dimensional instanton and a pair of merons? One can answer
this question only if one can calculate their corresponding
Pontryagin index in the six-dimensional space—time. This we
have not done.

We note that in a recent preprint,”' Kovacs and Lo also
discuss the solution (7).
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A framework is proposed in which supersymmetries can be defined in the language of axiomatic
quantum field theory. This framework contains a nuclear *-algebra into which the Borchers’
algebra of a general supermultiplet is embedded through a map which, in some sense, generalizes
the concept of a superfield. The algebra of supersymmetry is represented on the constructed
nuclear *-algebra as an algebra of graded derivations. Since a graded derivation cannot be
integrated to a usual automorphism group (only to a formal group), it is assumed that conditions
at the Lie algebraic level are strong enough to produce supersymmetric behavior. Thus it is
conjectured that if a functional of the nuclear *-algebra is annihilated by the algebra of
supersymmetry, and if this functional is related to a state of the Borchers’ algebra through the
embedding map, this state through the GNS construction gives rise to a supersymmetric
Wightman theory. This supersymmetric condition produces an infinite number of correlations
among the n-point functions. The 2-point Wightman functions for a general supermultiplet are

completely analyzed and it is found that their behavior is similar to the perturbative results.
Finally it is proved that the free fields satisfy these supersymmetric conditions.

PACS numbers: 11.30.Pb, 11.10.Cd, 02.10. — v

1. INTRODUCTION

Supersymmetry has been introduced as a graded exten-
sion of the Lie-algebraic symmetries.! Accepting supersym-
metry as a symmetry one is expecting some sort of correla-
tions to manifest themselves at some level of the resulting
theory. But one is also facing the problem of explicitly deriv-
ing these correlations in a consistent framework. '

In theoretical physics a framework is provided by the
Lagrangian theories which through the superspace-super-
field constructions can lead to very concrete perturbative
results.! Unfortunately, the concepts introduced in these ap-
proaches, like Grassmann parameters, formal groups, and
indefinite metric spaces,>™ are very obscure and very far re-
moved from the usual understanding of symmetry. Formu-
lated in mathematically precise terms this understanding
takes the form of a duality: “mathematical regularities of the
framework «—— physical correlations.” The purpose of the
present work is to study the possibility for such a duality of
symmetries for the case of supersymmetries. The introduced
new mathematical structures can in turn be used for more
general dualities concerning new ideas of symmetry.

The safest, conceptually, domain of mathematical for-
mulations for the duality of symmetries, is the axiomatic
quantum field theory. The two formulations of AQFT the
C *-algebraic® and the Wightman theory®’ provide us with
important concepts which can point towards the proper gen-
eralizations needed for supersymmetry. Since Wightman
theory is more closely related to the conventional quantum
field theory, we state the problem as follows:

Can we specify conditions which must be satisfied by a
Wightman theory so that, if such a theory exists, it is super-
symmetric, namely, that the dynamical correlations (Wight-
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University of Patras, Panepistimiopolis, Patras, Greece.
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man functions) are characteristic of a supersymmetric the-
ory (supersymmetric in the conventional sense)?

We note here that there exists a work® where supersym-
metry is treated in a Wightman framework. The central issue
in this reference is whether a graded-Lie algebra can be
thought of as an extension of the usual Lie algebras of the
known symmetries and also what are the possible extensions.
But there exist no investigations about the dynamical impli-
cations of such a symmetry, that is studies concerning the
existence of supersymmetric theories. If such theories exist
the dynamical correlations are consequences of conditions of
symmetry.

Such conditions of symmetry are understood in a satis-
factory levelin the C *-algebraic frameworks. For this reason
we are going to use the Borchers’ algebra formulation of
Wightman theory and generalize to it “most naturally” the
results already established in the C *-algebraic frameworks.
In the latter and for usual symmetries (no grading) one has
the following situation:

The Lie algebra .#” acts on the C *-algebra % as an alge-
bra of derivations. These derivations may be bounded or un-
bounded. One can integrate .# into a group ¥ of automor-
phisms of U (for unbounded derivations certain conditions
should be satisfied first).® Then an invariant under ¥ state of
91, through the GNS construction, gives a covariant repre-
sentation of 2 on a Hilbert space. In the same time .#” anni-
hilates this state.

In order to obtain a Wightman theory in a direct way
one has to start from the Borchers’ algebra f ,whichisnota
C * but a nuclear *-algebra.” For . one can, possibly, ' gen-
eralize the theory of symmetries arising from usual Lie alge-
bras and it is expected that the only difficulties will come
from the more difficult topological structure of %, being a
nuclear space and not a Banach space. But even if one had a
complete theory for derivations on % it is not at all obvious
how to consider a graded-Lie algebra (supersymmetry) as an
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algebra of derivations acting on .. We want to enlarge % in
such a way so that this is possible.

We propose the following scheme:

(1) Construct a nuclear *-algebra, call it 74, on which
the algebra . of Supersymmetry acts as a graded-Lie alge-
bra of derivations.

(2) Construct a map .7 : —TAS from the Borchers’
algebra ., corresponding to a given supermultiplet, into
TAS, as a natural generalization of the superfield concept.

(3) Let (T4S)' and .’ be the topological dual spaces of

TASand . Let Fe(TAS )’ be such that there exists a Wight-
man state Wef so that

WD =FT D VRS m
If Qis any element of the graded-Lie algebra .7, let F satisfy
additionally the condition:

F(Q®)=0, VOeT4S. @

For a usual Lie algebra (2) would be one of the necessary
conditions for the integrability of .# to a group of automor-
phisms. Here we cannot integrate ., at least for algebraic
reasons. Then we have to make the following conjecture: If
W is a Wightman state arxsmg from an Fthrough (1) and this
F  satisfies (2) then W gives a Wightman theory (by the GNS
constructlon) with correlations characteristic of

supersymmetry.
In the present work we construct the algebraic skeleton

of the above scheme, without touching deep topological
problems, or questions of existence. Then we use (1) and (2)
to derive correlations for the 2-point Wightman functions,
where we use in a decisive way the ansatz that the 2-point
components of F have the structure of the Killen-Lehmann
representation (KL). We obtain correlations very similar to
those in the perturbative calculations.

For a general n-point function we need some sort of a
generalized KL representation, and thus we did not do any
calculations for #>3. But we were able to prove that for any
n the free fields satisfy (1) and (2) and thus we conclude that
they are supersymmetric in our sense. We consider it as sup-
porting the consistency of our framework.

We will omit nearly all details of the construction in
order not to overburden the reader with technicalities which
can be found in Ref. 11. We collect the necessary formulas
and technical points in the Appendix along with the conven-
tions and identities used in the work. The various proposi-
tions are stated without proofs since they are not difficult
and can also be found in Ref. 11.

Il. THE ALGEBRAIC AND TOPOLOGICAL STRUCTURES
OF THE THEORY

A. The Borchers’ algebra of a scalar superfield

The framework we are going to construct can be
thought of as a prototype for the treatment of any graded-Lie
algebra and in the case of supersymmetry any supermulti-
plet. Nevertheless for reasons of concreteness and simplicity
and also for comparison we are going to deal with the scalar
supermultiplet of Salam and Strathdee (general superfield).
Being interested only in a scalar supermultiplet, we consider
as the irreducible set of fields, which will generate our
Wightman theory, the set of independent fields appearing as
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coefficients in the §-parameter expansion of a classical scalar
superfield.

Now, taking as more primitive object the Borchers’ al-
gebra that generates a Wightman theory, the former must be
an algebra of test functions that incorporates the appropriate
representations of SL(2,C). This means that, when the
Borchers’ algebra is represented on a Hilbert space as an
algebra of generators, there is a well-defined prescription to
obtain fields with definite transformation properties under
SL(2,0).

This is achieved as follows. Start from a 4-dimensional
vector space V and consider its basis {6,,a = 1,...,4} tobea
Majorana representation of SL(2,C). Construct the Grass-
mann algebra A (V).'? Then the representation of SL(2,C)
can be uniquely extended to A (¥),'* and one can define co-
variants formed out of the Grassmann parameters {9, }. Let
us equip the vector space [A (¥')] with its Euclidean topology
and let .“(R*,[A (V)]) denote the space of C~ functions f(x)
from R* to [4 (¥)] such that for all pairs of polynomials P,Q
infour variables with complex coefficients P (x)Q (3 /9x)f (x)
remains in a bounded subset of [A (V)] as x varies over R*.
We equip .7’ (R*,[A (V)]) with the topology of uniform con-
vergence of the functions P (x)Q (d /dx)f (x) on the whole
space R* for all possible P and Q. Every element of
F(RY[A (V)]) is of the form

D (x,,0.) = A (X)) + 0,9.(x) + ... + 560)D (x). (3
It is straightforward to define the classical scalar super-

field as the elements (3), which satisfy
D(x,,0,)=PD(x,,0,),

for approprlate transformations x—x’, —6". Let

(E,.E,,....Ep)bevector spaces associated with the represen-

tations appearing in (3) and let {e!}, T = 4,%...,D, be the
corresponding basis. Consider the following definitions:

e

& T..r, = ET, ®""®ET"3
= Z & T...T,
T,

650 =%,8 S RY)=SR"%,)

(algebraic direct sum),

£r=Y e85, &5,=C (topological direct sum).
Equipping each E4, with its Euclidean topology, &s
becomes a nuclear topological vector space.'*!>'" The ele-
ments of " are terminating sequences of functions with
values in tensor products of finite dimensional vector spaces.

Let j;ef 7. We have

F= Unfirefyr)s oG, (4)
L= Yele.ee s i, (5)

TieeeTy,

where 7, is a tensor/spinor index corresponding to the repre-
sent. 7, and 7, means that this index transforms under the
represent. 7, which is the adjoint of 7, for the spinor and
coincides with 7, otherwise.

We want to turn & . into an algebra. The vector space
structure is introduced as in the usual Borchers’ Algebra."
The product and the star operations are introduced similar-
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ly. The precise definitions appear in the Appendix. We have
the following Proposition 1: The space &€ ¥ equipped with
the operations defined above is a nuclear ;-algebra.

For the topological dual (# %)’ we can prove easily that
its elements are of the form

W= (W Wi W]

where W, = { PY,,TT§ are finite sequences and

(infinite sequence),

7...T, . T,..T,
wivh= S e et Wil

TyeeeTy

with {2%"} basis of £% dual to {e;'} and "Wl Te S (R,
Then from the duality of the bases we have

wif)=3S z W (6)

with fe% .7, We(?f)’

Given a state W of & . we can construct a representa-
tionof €. ona Hilbert space #°,,, with a straightforward
extension of the procedure followed in the Borchers’ algebra
/. 11

It can be seen that the representation 7,

18 S =L (I ) defined by B

Twl(f)lg] = [£X8),
has the property

=3 2 TR, (7)

with "re.”’(R*",. (5 w)), the space of tensors of rank »
with components operator valued distributions acting on
H w. Also

(L&), mw( AR 1) = W(g*Xf xh). (®)

Finally we point out that the locality ideal,” must be
generalized to accommodate the locality concept for fer-
mions. See Ref. 11 for details.

B. An indexing algebra

As it has been stated in the Introduction the scheme we
propose contains a big algebra on which supersymmetry can
be represented as an algebra of graded derivations. At the
same time its elements must contain the necessary test func-
tions to reproduce the component fields of the theory. Thus
the elements must be hybrid consisting of test functions and
Grassmann elements. But as we are going to see shortly, they
must contain an extra bit of information, which is needed in
order to have the correct representation of supersymmetry,
on one hand, and appropriate generality and consistency on
the other. This third bit of information comes from the ele-
ments of an extra algebra, the indexing algebra, which with
the Grassmann algebra A (V') and the Borchers’ algebra & %
are fused to form the big algebra T4S. A typical element of
TAS is going to be of the form

M e.8M, 8aefi(x,..x,), C))

where M,eA (V), fhe& 7, and a is an element of the index-
ing algebra. We proceed ‘to motivate the introduction and
the structure of the latter.
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Let the product of n classical superfields with argu-
ment(x,,...,x, ). Its form is @ (x,...,x,,,8, ) for some function
&. Consider an infinitesimal supersymmetric
transformation

xi—xh + ey10,.. . xh—xti + ey, 6,—0, +€,.

If we expand @(x% + €*6,...,x!; + €y*0,8, + €,) in powers
of € we see that always appear thesum 27 _ , d/9x*. It will be
seen below, that from translation invariance, the symmetric
states of the big algebra T4.S will annihilate the terms involv-
ing this sum. But we want to have the representation of Q,, as

d a
C{!B%—_—l(}/)aﬁ [e] 5 e
or at least modify it without loosing the part containing the
derivations d/dx*. We can solve this problem if we define Q,,
in such a way that apart from the sum X7_  d /dx* all possi-
ble partial sums appear like

[P
a/0x*,

i=r, g+1
where 7, is defined by 7, + ... + r, = n, O<r <n, I<n.

But as it turns out we must have these sums associated
with the factors M, in (9) in a specific way. To produce this
appearance of the partial sums the action of Q, must be
guided by the element a in (9). @ must be associated with a
set of integers which are indexing the subset of the set of the
arguments (x,...,x, ) with respect to which the derivations
must be taken.

But due to the operations of product and conjugation
there happens that the various subsets of arguments inter-
mingle in a complicated way. If we want to have possible
some theorems on desired properties, we must take into ac-
count this fact and equip the elements of the indexing algebra
with this faculty as well. Some details of the construction of
the indexing algebra of order k, &%, can be found in the
Appendix. It is a *-algebra (assoaatlve)

C. A possible generalization of the Borchers’ algebra

In this paragraph we finally introduce the big algebra
TAS as a possible generalization of the algebra & L.
We define the vector space over C:

(TAS),. .o

= [@Ne..ela()l e [« ,Je S ®".
m“ Hoeen' o
(10)
Both A (V) and [.&*, | .] are finite dimensional vector
spaces. See the Appendix for the definition of .&/%, .. We
equip them with their Euclidean topology so that they are
Hausdorff and complete. Then we define the complete vec-

tor space

(TAS),. s
=R [A(V)]e..0[A Ve [,Q/:,_"”\ ] (11)
Let
hs= ¥ e(T4S). . (TAS)=c (12)
k= 0,12
N =12,
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(topological direct sum), k<n’,j = 1,...,N. The elements of

7_"A_S_‘ are terminating sequences

= [l(p()’d)lv'-"din’"'}}’ (13)
d; (@@, D0 (14)
P, = Do (15)

ke ',l;lw’l\ nt + . +nlV =N,

and @ %, | is linear combination of elements of the form
Me..eoM, gainle fI",

where M, and a{n} are basis elements of the vector spaces
[4 (V)]and [/, . ]correspondingly. The M, are covariant
monomials in A (V). The coefficient functions f™”! are in
.’(R*"), and transform under Lorentz transformation as ten-
sors of rank k. In the Appendix some explanation for the
notation can be found.

We define below the operations with @, U’e]_"A,g, AeC.
Sum and multiplication by scalar -

D+ AY = {({ D)+ A¥,,... P, + AY,,...}}, (16)

D, +AY, =[P, + AV, O + AV} (17)

Product

(@ XW), = {{@ X))@ XW)1], (18)

(@ x W), = zq) X, (19)
p=~kK

=SSOy ek,

p=kl«N<p 1uM<n—p

k<n’, N, k<m', t=1,..M,
m'+ .. +m"

X (20)

s=1,..
n' + .. +a"
(12 :'..,n\ X l[.{fn' o

=p, =n—p,

m

= (- 1y
[

XMN &..8e M,N, ®(ain}xXa'{m})e{f" xglm)
€2y

The explicit from is very lengthy. M is the product of
M,Nin A (V),a X a' the product of a,a’ in .«/* and f X g the
Borchers’ product. The above is a direct generalization of the
product in the algebras which are tensor products of two
graded algebras.'? In the Appendix the notation is explained
a little.

We define the star operation in T4S as follows:

di = {{(2 *)()’(2 *)1"*"(2 *)n [ } }’

(92*)0 = ‘éo (22)
(@%), = (@)@ )], (@ =(@4).  (23)
Let @ be of the form
=M e.0M, 0a3f (24)
We define
(@i)*=Mre.eMfoa*ef* (25)

We have propositions 2 and 3 as follows.
Proposition 2: The space TAS equipped with the oper-
ations defined above is a *-algebra (associative).
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Proposition 3: TAS is anuclear TVS. For the topological
dual one can easnly see that we have''

(TAS) = x5 o [(TAS). ], (26)
UTAS) ] = 'R [AV)* 8.0 (4 (V)%
B (27)

where [A (V)]* and [«7%, . ]* are the algebraic duals of
(4 (V)]and [«7% | .]respectively and *'(R*") the topologi-
cal dual of .#(R*").

The elements of (TAS )’ are infinite sequences,

F{{FoFyinE, )}, FeC (28)
F,={F),. F‘ S, (29)
and we have for <PeTAS

3 3 Fi@k)

n k=1

F(@)=YF,(®,)=
(a finite sum si:lce @ is a terminating sequence), where
Fres'R"[A(V)]*e...e [A(V)]*s [« ] (30)
Pre R [A(V)]e..o (A (V)] [k ) (31)
) It can be seen, using the dual bases in [A (V)}*,

[ir%, . 1% that

EL(@) =33l
where we.”'(R*"), and all the tensor indices can be easily
added.

Now we come to a crucial point. We want to map & .
into 74S in such a way that the images in T4S of the ele-
ments of & 5 are the most likely generallzatlons of the su-

perfield concept.
Let #* be the dual of &, and let
€4, =8 e [A(V)], €€ =2,08%7,, (32)

& € is a vector space over C. We turn it into an algebra by
deﬁmng the product:

%C_ginngém_)_g'%nﬁ-my
@ ®.08 eMT)X@E o..08% s N'®
e M!'TINISH, (33)

where { T}, {S'} are sets of tensor indices and MN is the
product of M,Nin A (V).
Let the element/€% ¢

j=elolee"®0, + ...+ 5

— pk ok
=ef, ®..0e%

® (662, (34)

and j"' = jXjX..j, n; factors. For every (n,k ) positive inte-
gers 1<k<n and a partition of n, n, + ... + n, = n, let the
map (see Appendix for the notation):

Tk, &S, —TAS)s (ie, N=1n'=n), (35

‘7‘(:](] (E ®. ®e ®fT JE 5 TR )

= 3 (-

Qlirsennrisl
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(n,n,k)
®‘a ® f[....7 (X ppeeesX )5 {36)

Py,
where Q (i},...,i,,) means summation over all the permuta-
tions of (1,...,n), and 77(Q ) = the number of times two spinor
representation are interchanged in order to obtain the con-
figuration {7 ,...,T; | from {T,..,T, {,
ry=r,=..=r,=1,and

el e e

etc. are defined as follows:
Since /" is a sum of terms of the form

r gy MY,
we define
(e“‘,"hr" Q- ® é’;m ® MTT)(e,,T,' ®® e::")
= 8787 867" M. (37)
Thus /" are maps &, —{A (V')].

Let P} be the number of partitions of # into k parts

n; + ..+ n, = nsuch that 0<n, <n, s = 1,...,k. We extent
the map (36) to & .7 with the definitions:
73 1 k
Tu== 2 T (38)
pk LTI
ny 4 =n
7= Lo Lo, (39)
n n
and the infinite sequence
T ={LT 1T ] {40)
This defines a linear map of graded modules:
78S TAS,
T = o ol fd] ), (41)
1
T alfy) = S AR (42)

lIl. REPRESENTATION OF SUPERSYMMETRY AS AN
ALGEBRA OF GRADED DERIVATIONS ON TAS.
PHYSICAL INTERPRETATION

A. Representation of supersymmetry
We need some definitions.

Definition 1: Let @ £ be an element of the form (24). We
call the number

WP ) =vM,\) + .. +v(M,), (43)
the degree of @ ; in TAS, where v(M,) = 0,1 is the degree of
M. inA(V).

According to this definition it can be easily seen that
TAS is a semigraded algebra. Let us recall two known defini-
tions from the theory of semigraded algebras. '

Definition 2: Let E = E, + E_be a semigraded algebra.
The map

JE—E, x-—-x',

is called the main involution of E and it is an involutive auto-
morphism of £ with the property

x=Xx.+x, xX'=x—x,
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J(xXy) =J ()X (). (44)

Definition 3: Let ¢ be an homomorphism of a semigrad-
ed algebra E into E'. A ¢-derivation of E into E ' is a linear
mapping D:E—FE ', homogeneous of some given degree v,
satisfying for every x,yeF

D(xy)=Dx) () + ¢ (J " &xND(p), (45)
where
J" =J, v odd,
=1, even.

If E = E' then D is called a graded derivation.

Now we want to construct a representation of the spin-
orial charges Q, in such a way that they act as derivations on
TAS. It will turn out that they will act as graded derivations,
while the rest of the generators of supersymmetry will act as
usual derivations.

Every element of ./ * is a linear combination of k-tuples
of symbols. Let us write compactly for a k-tuple

‘a(nk ), aln k)., a(nk )

Let ‘a(n,k ) represent the symbol {#,1}|m,,...,m, }. For ev-
ery s let us define the map ind, from the set of basis elements
to (Z 'y

ind,(a{n}) = ind,Ca(nk N={m,,...m,}. (46)

Let .2 (7 (R*")) denote the vector space of the linear
operators on .# (R*"). We define the linear maps

D& L (SR, n=n'+ .. +n",
ainp—D,(ajn}), s=1,...k p=0123,

(D @{n DI ) xye0%,) = (2 ﬁ;f)(x,,...,x
t #0. 47)

afn} = {

reind, (a{n}),

Let {a{n}}and { £ {n}) be the bases of [«% +]and
[« ]* respectively, n =n'+ ... + n "~ We deﬁne the
linear maps
QM (TAS ), —~(TAS);, a=1234,

QU@
= Y |[Cullie..0l,9D,81,
acf{a(ni} sth position
g=ar
el e@d)el]
i Uy ® @I, 8O, 81, @
®l, @)D, )](d)‘) (48)

where D, = 3/36,, and I, and I, are the identity maps in
[A ()], and Z(R*).

g OUTAS s —(TAS)Y, 5= 1,...k,
grOM, e oM, @alnief!")

= (=) o M, oaln) 8T,
where v(M,) is the degree of M, in A (V). We define

(n/\) Zggnk)oQ(nk)s (49)

s=1

Let
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0 = 1Q4",.Qu )

Q:a ={{@\...Q" 1) infinite sequence).  (50)
Then é“ acts on TA4S as follows:

0.(®) = ({0.0V®,,...Q P, }), (51)

QrY, = {Q(n,l)(pl Q(n,n)¢n} (52)

Q. is defined everywhere so that its domain D(g,,) is all of
TAS We have, therefore, Proposition 4.

Proposztzon 4: @, acts on 745 as a graded derivation of
odd degree.

We want to examine the star properties of Q. In a star
algebra a derivation & is called symmetric if
S(A™ =(5(4))*, AeD(5) = thedomainofdand*denot-
ing the star operation.

Due to the graded behavior of Q, we must generalize this
definition and for that purpose we introduce the following
concept.

Definition 4: Let E be a semigraded *-algebra and J its
main involution. A graded derivation & on E is called grad-
ed-symmetric of degree v when it satisfies the property

8(x*) = (~J)-(6(x))*, xeD (). - (53)

Considering a usual *-algebra as trivially graded, a
symmetric derivation is a graded-symmetric with even de-
gree. We can prove Proposition 5.

Proposition 5: Q is a graded-symmetric derivation on
TAS with odd degre%.

"7 Thelast two properties are by-products of the complex-
ity of the definition of @, but this very complexity is neces-
sary for the validity of the main proposition of this work
which is Proposition 6.

Proposition 6: The derivations @, satisfy the supersym-
metric algebra, i.e., -

{ Q=r1 ’Q=ﬁ } = 2('}’“‘(:)11/3'1.0“ ’ (54)
where
Dﬁ“qiz {{,{,Dﬂgﬁ,}}], (55)

and

(D 'j/")(xl» Xy )‘- (Zla—; f)(xh X, )

B. Supersymmetric conditions : Physical interpretation

What we have established up to this point is that there
exists a *-algebra, 74S, on which supersymmetry can be
represented as an algebra of graded derivations, and such
that the spinorial charges are symmetric in some generalized
sense. Also we have a map .7, from the algebra & 7 of test
functions for a given number of fields to 745, with the prop-
erty that the images in 745 of the elements of & % are the
most likely generalizations of the classical superfields. That
is, we have implemented the steps (1) and (2) of the proposed
scheme in the Introduction. o

From this point, there are two possible routes that one
could follow. The first is to study the representaions of 748
on indefinite metric spaces, find the Hilbert subspaces and
try to interpret the physical meaning of the action of the
representations of supersymmetry on these subspcaes.
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The second route is to implement the step (3) of the
scheme. Here we follow this alternative. We make the fol-
lowing definitions.

Definition 5: FE(TAS))' is called a relative state if W,
defined by N

W()=F(T f) (56)
isastatein &7

Definition 6: We say that an element Fe(TAS)' satisfies
Q-conditions if

F(Q.®)=0, a=1234, YPeT4S. (57

(TAS ), denotes the set of all such elements. FE(TAS ) satis-
fies nth order Q-conditions if

F(Q.9)=0, V(DGTAS‘ a=1,2,34. (58)

Definition 7: We call a state Wof & # aninherited state
if it comes from at least one relative state of TAS,i.e., ifthere
exists a relative state F such that:

W(=F(T[), VS (59

We call a state We(& %)’ Q-invariant if it is an inherited
state and at least on of its relative states is in (TAS),,.

Now we can restate the conjecture made in the step (3)
of the scheme

Conjecture: A Q-invariant Wightman state gives a
Wightman theory and a representation of supersymmetry in
this theory in such a way that the field operators transform
covariantly under supersymmery.

If this conjecture is true then the Eq. (2) gives correla-
tions of the structure functions appearing in the form of F,
while Eq. (1) transfers these correlations to the structure
functions appearing in the form of W. These last functions
are the Wightman functions of the tl=1eory generated by W.

Thus we need the structure of F’s which are relative
states and satisfy Q-conditions. For that purpose one must
investigate the topological structure of (T4S)' in general and
try to establish representations of its elements in the form of
generalized Kéllen~Lehmann representation. Here we will
not touch this general problem but we shall restrict ourselves
to the 2-point functions and try to show that at this level the
proposed framework does indeed point to the right direction
(i.e., the correlations are of the type of the perturbative re-
sults). As we will see below, for the free fields we can have
general results.

IV. APPLICATION AND CONSISTENCY OF THE
FRAMEWORK

A. Two-point functions for a general scalar
supermultiplet

For the 2-point functions for a general field theory one
can derive the Killen-Lehmann representatlon (KL),16
which for our scalar supermultiplet is, for x° > »°

W y) =i T o)A ),
X = AF.G.D, (60)
— (@ ITLI,)
= ifwdm2 fw{(m®) + w)(m?iv*d, ) s
XA?* x — y;m?).

Wiix —y)
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Y=qy. (61)
£2,,is the vacuum for the functional W and 7 means adjoint
spinor

WA x— ) = f dm? {01 (m?)g,., + 02(m)3,3,

X4 x — y;m?). (62)
We have
o*(m*>0, X =A4,F,G,D, (63a)
w;(m?)>0,
(63b)

2mw)(m*)> [w(m?) — mw!(m?)]>0.

Motivated by the KL representation we make the fol-
lowing ansatz:

The functional Fe(TAS )" which is a relative state and
satisfies Q-conditions is such that its ¥ component has the
form

FA z Zz ® .. ®Z ®é—(ZZk}

1 m % [3 3Jimma

Jdm ip (m ai)A“”(x~ym) (64)

where { | denotes the appropriate summations over parti-
tions as is explained in the Appendix, and {Z 7} is the dual
basis to {M[}.

From this ansatz we can derive correlations between
the structure functions p,T, TTA‘ using the Q-conditions [Eq.
(2)]. Then, through Eq. (1}, we can transfer these correla-
tions to the weight functions appearing in the KL represen-
tation of the 2-point functions. We consider these correla-
tions as the predictions of the theory. If we had at our
disposal integral representations for n-point functions and
an analogous ansatz, we could make predictions for such
functions. (See comments below.)

We have
W)= 3 *WInrin),
T, T,
where

WD x —y)y = (@R, ()20,
Now, from the Eq. (1) for # = 2, we obtain a set of relations
of the form

o' =4[p"" +p*},
of =%ip” +1p™ +4p" +4p7 ],
etc.,

and constrains like
pe 1P +1p" ~

etc.,

L2
$p2" =0,

where

paﬁ =L Y‘Saﬁ +P2 (Vs)al?
+p3 Y(ly )aﬁav +p4 (iyvys)aﬂav'
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Y=y

We also obtain expressions for the mixed functions W 7' "> in
terms of the p’s.

Now we exploit Eq. (2) for # = 2, and we obtain a set of
equations involving the functions p. Using these equations
we can eliminate most of the structure functions from the
expressions above for the weight functions and the W ’s. In
this way we get the following relations among the weight
functions of the supermultiplet:"' For m#0

2t - G :
o' =mwy, o'=0"= LpP+ W,
A
v = 1 40 14 A, ’
=Gt W, o= — (I/m*w?,
wy =0, wl=(1/muw,
¥

W"D:[fmd”f( 1 )pDA(+1 2
o 2% 32 x =y,

; A 1
Wi = I.[) dm? (E)pba“/’"d e — pym?). (65)

Since w{ = 0, (63b) does not hold for y and we must
conclude that y does not represent physical degrees of free-
dom. Then the transitions to the field ¢ through ¢%% must
vanish, i.e.,

Wi =0,

and hence W*” = 0, and also, in all other 2-point functions,
p® will not contribution. Thus we have the independent
fields 4,F,G,D,A, and .

For free fields and mass M 0 for the fermion field ¢ we
must have

wi(m?) = M8(m* — M?), wi(m®)=5(m*—M?),

p?=0. (66)
Then we get
i 2
y\ (x y) 7 - g;u' - Xl—i a;t av]
XA (x — y;M?), 7

which cannot give the propagator of a free vector field. Thus
A, does not provide a physical degree either.
Let us define the following fields

b, =MA, ¢,=V2F, ¢,=V2G, ¢,=4mD.
Then (68)
o =% =% =0 = w!l = 8(m, — M,). (69)

Thus in the case of free fields we have three scalar fields
&1, ¢,, ¢4, One pseudoscalar ¢, and one spinor field ¢/, all
with equal mass M. We may state the above results as
follows.

Proposition 7: If the Wightman state for free fields is an
inherited state then there exists one relative state which satis-
fies the second-order Q-conditions.

In Sec. V we indicate not only that the free fields with
equal mass come necessarily from an inherited state, but that
this state is Q-invariant (i.e., satisfies, Q-conditions of all
orders).
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B. Free fields and Q-conditions

This part of the work is completely technical and we
omit all details. We simply indicate the main points.

Definition 8:Let {T,,...,T, } be an ordered n-tuple of
representations where T, = 4,3...,D and let it contain N (S,)
representations of S, type and suppose that there exist only
m types where m<min(rn,7) and the spinor representations
are counted together with their adjoints. We say that the
configuration { T',...,T, | is properly paired if all N (S,),
i =1,...,n are even numbers. Then # is even.

A Wightman state W°%€(% %) that gives a field theory
for free field has the following structure:

= (LOWS, .. . WS}, (70)
wi= 3 °‘wi (71)
T...T,,
P O

where {T,...,T,, | ,, means that “W 17! contains only prop-
erly paired configurations.

Since W ¢ describes free fields W 7! can be written as a
product of 2 -point functions. Then by interchanging the fac-
tors and taking into account the various minus signs com-
ming from the fermions we can bring °W ! into a form
which motivates the construction of an approprlate relative
state for free fields. Having at hand this appropriate state it is
straightforward to prove.

Proposition 8: W is an inherited state.

Proposition 9: W° is Q-invariant.

V. DISCUSSION

We proposed a framework in which a Wightman theory
can be embedded in such a way that one is able to give crite-
ria for a supersymmetric theory, without having either to
mix the Minkowski coordinates and the fields with unphysi-
cal Grassmann parameters or to answer the question of the
integrability of the supersymmetric algebra.

Also the possibility of the appearance of indefinite met-
ric Hilbert spaces, in this framework, is elevated to the ques-
tion of the existence of continuous functionals satisfying cer-
tain properties (positivity, locality, etc.).

Nevertheless the whole approach relies on a conjecture,
the justification of which is still open. Of course the conjec-
ture was motivated by the state of things in the case of C *-
algebras and of usual symmetries and is meant to give a natu-
ral extention for the case of nuclear *-algebras and graded-
Lie algebras.

The justification of the procedure could be made only at
the level of 2-point Wightman functions and under the as-
sumption that the conventional field theoretic results point
to the right direction. If we had a generalization of the Kl-
len—-Lehmann representation for #-point functions we could
study the implications of the framework for this level. Thus
we have not proved that our characterization of a2 supersym-
metric Wightman theory is either complete or totally equiv-
alent to the conventional conception of supersymmetry. But
the scheme does include the case of free fields.

There are many open problems which have to be solved
before the proposed framework is fully axiomatic. One cate-
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gory of problems contains purely mathematical questions
and concerns the generalizations to the case of nuclear *-
algebras and graded Lie-algebras of the results proved al-
ready for C *-algebras and usual Lie algebras.

Another category of problems concerns the proof of a
universality property for 74S; namely that T4S is either
unique or minimal, and that the map: & —»TAS i$ a natu-
ral extension of the superfield concept.

Finally one could study the possibility of generalized
KL representations using the topological properties of the
dual of & %, and then use these representations to study the
n-point Wightman functions of a supersymmetric theory (in
our sense).

Concluding this work we should point out that, al-
though our framework is not fully developed, it could be
taken as a prototype for the study of any graded-Lie algebras
which are thought to generated a symmetry of a field theory.
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APPENDIX

Conventions and identities

g‘u‘,:(l,—l,—l,—l), i}’“,?’V}=2g‘“',
= (1/2) [y;z ’yv ]y
Ys =VoViVo¥s Ve =Bv.B

~ % =C",C C'=C"!, C~=—-C, Cy=y5C
Crs =vsC, ¥=4B.
For a Majorana representation we have
=t o= -0t = g,
o =grgnor, of =i = —y,,
s 7) =g"vsr, (s = — ggy o™,
B= by()’ C= Yo
b=1 c¢= —1.

More properties of this representation may be found in L.
Gorwin et al. (Ref. 2). We collect some useful identities used
in this work:

d
En 0, =64,
939 =4{ - (7’0)6) 66 + {7s )ﬁyey56 + (Vs 7’())ﬁy91 0 B
9 06.=26,(y,)ps, 6,00 =00,
a6,
a 0y o A
3—0— 690 %{6)’566 + (7/5 )rﬁena + (WVVS )7,591),”,,59 }’
(e}
969 = 1(99 )2(7/())yﬁ)
a
55; 9 9 20 L (Yo¥'s )/3}/’

6,6,.6 = 808, (vs Juss
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d 9 ;
W i, =2(7’0l7’v7/5)ﬂ797"

s 6 0 = 9‘967 (Yovsiv, Yoha

aZB (00 = 4066, (y,)s,. 0,(80) =

066,,6 = 6,060 =0, 666, , 0 = 6i,, 608 =0,
9y5091 0= Gzyy 96 0=0,

6,,60,.6 =66, b, ., 00i, . 6=(08)g,,.

The Borchers’ algebra £

Sum and multiplication by scalar:

L+ Ag = fo + Agof; + A1 fy + AL} (A1)
Product:
(f=><£)n Z f;Xgnfk’
k=1
(f_‘k Xgn~k)(xl,"-’xn)) xi€R4$
=3 Yel @---@efj@eﬁ; @@ *
1T ST "
) (XX ) X THGETT Moty X, ) (A2)
Star operation:
L*:{ f(’)k; _’lk"" __:‘9"'}’ (f*) :f fg‘:f:),
LHxy,nx,) = D [e,TI'® ®e,"®"f 7z ]*(xl, WX s
1Ty7) ! !
T, RpTienT,
= ;TZ;eT" g@®el® "fP%(x,,..x), xeR (A3)
The indexing algebras .«

In the text some motivations were presented for the
need and the complexity of the indexing algebra. We repeat
here that the elements of this algebra guide the action of the
operator Q, on the elements of 74S. This action must in-
volve the operation of taking the ‘partial derivatives with re-
spect to subsets of the set of arguments (x,,...,x,,). This set of
arguments can appear either as a part of a bigger set, the
latter formed after multiplication of two elements of TA4S, or
as composite set formed by the multiplication of two or more
elements. Various inversions of order of the parts of subsets
or of the subsets themselves due to the star operation, must
be taken into account, in order to guarantee the desired
properties of @, under conjugation.

The elements of the indexing can be thought of as sym-
bols which contain the information associated to the way a
given set of arguments is formed from its subsets (permuta-
tions of arguments, inversion of order, permutation of sub-
sets, combination of subsets, etc.). The elements of the index-
ing algebra of order k, & *, are k-tuples of symbols. We
indicate how a general k-tuple is constructed.

Let the following partitions for k<I<n:

4+ =n 0<ri<n, i=1,.,L
ny+on =1 0l j=1,.k
R =ri+..4r_,, R =0,
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R, =0+ ..+n_,, El = 0.
Note the possibility of vanishing #,, n,. We introduce
the following indexed ordered sets of integers:
@ ={nl|R, +1,.,R, +r}, r+#0,
= {nl|0}, r =0,
a0
={nlln—R, +r)+1,..n
= [mI|0}, r=0.
We define the composition
aitlo gl = (nl|R, + 1,.
R+
Let the permutation (1,...,/ }—(iy,...,
composite symbol

— (R, +D+1}, r#0,

R; +r1:R1' + ls

i;). We introduce the

s bk — "l o..0 tn.7)
a[’,""f’](n\) K 41 iR, 41 R+ "\ar"'*_\ + "\’ s 9&0,
Gty j 7
={nl]0}, n,=0.

These symbols have the structure: {n,/|m,,....m,].
We define a composition rule:

(n,0k) (7, Lk
@ Oai

= {n+ﬁ1+r‘m1! 1mp’n+n_'ll, ,n+n_1 }
This rule guarantees the property of Q. as a derivation on
TAS. We introduce the k-tuples of symbols

(k) (n,0,k)
&g = L@l

and a composition rule

(n,L,k)
’ a[ -1(ng) }’

in,Lk) k)
ayy i, ,Xa[,, ST

= [ a([ri,l-f]zn\) X a'[';,l k])n)! -} (Ad4)

Let for given k and N pairs of integers n', I, j = 1,...,N,
such that, k<l’<n;, &}...,» be the set of k-tuples of symbols

that can be constructed by composmg the k-tuples a[(” ll ¢ k))

..........

Let [ &% ~]bethe vec{or sbace overC generated by the set

J;{,;n"_")\ . Let

gt = (AS)

< Z & [‘g:‘...n“ ]
N.oa'..n®
k<nt
We define a product .« in such a way that on every
[«% .~ ] coincides with the defined above composition of
k- tuples A star operation can easily be introduced in & k
using the elements ,& (t"”) and /¥ becomes an associative *-
algebra.''
The algebra TAS
We only explain here the notation in the formulas ap-
pearing in the text. We simplified the expressions with the
conventions:

T ag af Vi AL feedoe B ( ST
MT,-=M:"M Ml’a[ S = @l ST
_ftn.ﬂ
—Jir):

s )
s=1 k<i<n® 0<n,<1 2
Fit ey =t g=1.
ocrantt=1,..1" npt ‘“‘k"’
fpudy, over all perm. of (L,..., )
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Also

A= v{N)[VIM,) + ... + vIM,)]
+ YN VM) + .. + VM, )]
w4 YN, _ M)
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Upper bound on the spin-flip cross section from unitarity, total cross section

and the forward slope
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For the spin O-spin } particle scattering we give a method to construct an upper bound on the spin-
flip cross section with the variational calculus using as constraints the total cross section, the

forward slope and the full unitarity.

PACS numbers: 11.80.Cr, 11.80.Et

1. INTRODUCTION

Since the 1964 paper of Mac Dowell and Martin' much
work®™'? has been done in the application of the variational
techniques for finding bounds in particle physics problems,
so that the topic has become almost a field in itself. Among
the many advances made one could cite the systematic treat-
ment of the inequality constraints,>* such as the unitarity,
and the generalization of the method to the cases with
spin.”® However, the field has its limitations. There are not
many observables which lend themselves to this kind of ap-
proach. A number of papers are devoted to the derivative or
second derivative of the imaginary part of the amplitude in
the forward direction. The method requires a certain consis-
tency in the forms of the quantity to be maximized and the
constraints. Otherwise mathematics becomes too complicat-
ed. Even so some of the cases investigated require numerical
calculations. But the work has been fruitful so that today
there exists several rigorous bounds which are based solely
on such solid theoretical grounds as the unitarity and such
well-known experimental quantities as o’ and o',

To our knowledge the inequality constraints in their full
form have not been used before in problems involving spin.
In this paper we are applying the variational technique to a
spin O—spin } scattering problem to find a bound on the spin-
flip cross section when the total cross section and the for-
ward slope are known and the full content of the unitarity is
used. For this we follow the elegant treatment of inequality
constraints by Einhorn and Blankenbecler.® Since we are
dealing with the spin case there are two sets of partial wave
amplitudes. The variational equations mix those amplitudes
and the unitarity imposed in the form of inequality con-
straints assigns to the amplitudes characteristics such that
they can be divided into different classes. The analysis of
these classes with the purpose of choosing the Lagrange mul-
tipliers for maximizing the spin-slip cross section leads to the
solution of the problem.

In Sec. II we set up the equations, write the auxiliary
function of Lagrange and differentiating it with respect to
the variables we obtain four basic equations. We define the
four classes determined by the unitarity equations. Taking
second derivatives of the function of Lagrange we find next
the maximum conditions.

40n leave from the Applied Mathematics Department, University of West-
ern Ontario, London, Ontario, Canada.

"Research supported in part by the National Research Council of Canada.

“Equipe de Recherche Associée au C.N.R.S.
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In Sec. III we analyze the forms of the partial wave
amplitudes in the four classes defined before. By imposing
the unitarity as well as the maximum condition, the forms of
the partial waves are determined. Also the conditions to be
satisfied by Lagrange multipliers are found. Subject to these
conditions fitting of the total cross section and the forward
slope with those parameters and the / values determined by
the parameters gives us the values of the multipliers. Spin-
flip cross section is then found in terms of 0" and the
foreward slope.

In the Discussion and Conclusion we summarize and
discuss our results.

Il. FORMALISM

To simplify the formulas we define G, 4, and .S in terms
of ogp o' and dA /dt |, _, as follows:

-3 B —a P, —n PLW
A, = f—;o"= S [+ e, +la,_ ], 2)
S:4k3%%’j— = BN N e, ]

(3)

Here o is the spin-flip cross section, o7 the total cross sec-
tion, 4 the imaginary part of the scattering amplitude
dA /dt |, _ , the forward slope, k the c.m. momentum, ¢, , ,
a,_,r,,,r;  theimaginary and real parts of the partial
waves.

In addition to the equality constraints (2) and (3) we also
have the inequality constraints of unitarity:

uI:aI+ _a%+ —V%Jr }O, (4)
v=a,_ —a_ —r_>0 (5)

We want to maximize G at a fixed energy subject to the
constraints (2)—(5).

The auxiliary function of Lagrange is written in the
form

L=G+ad,+B5+ 2(1+1M/“1+ ZI/MUI- (6)
Here 4,>0, u,>0 from the theory of inequality constraints.

The factors (/ + 1) and / in front of A, and y, are arbitrarily
chosen by changing the definition of these multipliers to
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make the resulting equations simpler. To further simplify
the formulas we shall show the following, frequently appear-
ing combinations of / by B and D:

B=21/21+ 1), D=2(+ 1)/(2] + 1} (7
Next we differentiate L with respect to the four types of
variables:

AL /da,, =0 gives (B—A,)a,, —Ba,_

+ila+1l+ 1B +4,]=0, {8)
L /da,_ =0 givesDa,, — (D —pu)a,_

—tla+ 1+ 1B+u]=0, (9)
AL /or,, =0 givestB—A,)r,, —Br,_ =0, (10)
AL /3r,_ =0 givesDr,, —(D—u,)r,  =0. (11)
We now define the following four classes:
11~ = {1|u1>0’vz>0}/11 =0, u,=0, (12)
I*B- ={l|u;>0p,=0}4, =0, u,>0, (13)
I-B* ={llu,=0p,>0}4,20, u, =0, (14)
B+*B - ={l|lu, =0, =0}4,50, u,>0. (15)

It is the definition of these classes which generalizes the for-
malism to the spin case and also makes it possible to study
even higher spin cases. For the case of spin 0-spin ] scatter-
ing there are only two types of partial wave amplitudes and a
pairf;, ,f,_ defined by a fixed value of / belongs to one and
only one of these four classes.

To find the maximum conditions we take the second
derivatives of L,

3L /3a,, da,, =21+ 1)(B—4,), (16)
3L /3a, da, = —BD(2l + 1), (17)
PL /3r,, 3r,, =21+ 1)B—-A,), (18)
8L /dr,, r,_ = —BD (2] + 1), (19)
L /3a,_da,  =2(D—u,), (20)
PL/3r,_dr,_ =21(D —pu,). (21)

All other derivatives vanish. Negative definiteness of the sec-
ond variation for the maximum gives the conditions

A,>B, (22)
u,>D. (23)

Ill. FOUR CLASSES OF THE PARTIAL WAVES

ClassI *I ~:Sincein thisclass A4, = 0,4, = 0 the basic
Eqgs. (8) and (9) become:
Bla,, —a;_)+ila+I1{+1B]1=0, (24)
D@, —a,_)—}la+I(+1B]=0. (25)
These two equations are incompatible except when
a + /({4 1)8 = 0. But a and S are /-independent and can
satisfy this only when they are zero. This would mean no
constraints and therefore are not acceptable. Thus the class
I I ~ must be empty.

Class I * B ~:Inthis class A, = 0, u4, >0. The four Egs.
(8)<11) become:

Ba,, —Ba, +ila+I(I+1)B]=0, {26)
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Da;, ~D—pa;_ —%[a+1(l+l)ﬁ+,u,]=0, (27)
Br,. —Br,_ =0, (28)
Dr,, — [D—w]r_ =0. (29)

Equation (28) gives #,, = r,_ . Equation (29) gives
w7, =0, forr,_#0,u,=0.In this case Eq. (27) becomes

D, —a,_)—}la+1(l+1)B]=0.
But as we saw before this is not compatible with Eq. (26).
Hence we must have

r,_ =0.
In this case also

r,. =0
Because in this class A, = 0, we have v, =a;,  —a;_ =0.
Hence

!

a- =L

1)Ifa,_ =1, Egs. (26) and (27) give

a, =1— [a+1{/+1)B1/2B (30)
and

= la+1l+ 181021+ 1)/1. (31)

We now impose the unitarity condition 0<a,, <! on Eq.
(30) and the maximum condition u, >D on Eq. (31} and
obtain
O<a+ {1+ 1)8<4l /(21 + 1), (32)
a+ {4+ =201+ 1)/20 + 1) (33)
The contributions of ¢, . = 1and a, as given by Eq. (46) to

A, and S are obtained as before by summing the series.
addition formulas for powers of integers except one term in

A, The results are
Ay=(L,+ 1P =L} —la [(L,+ 2 — (L, + 1)°]
~ta S =B (L + L + 2
X(3L2 + 7L, +3)—Ly(L,+ 1)3L} + L, - 1)],
(34)
S=4 [LyLy, + 1Ly +2) ~ (L, — WLF(L, 4+ 1)]
— 4 [(Lo+ )Ly 4+ 2)3L3 + 7L, + 3)
—L(L,+1)3L}+L,-1)] - 7B [LoL, + 1)
X(Ly 4+ 202L, + 102L, + 3)(5L, + 1)
~ Ly = OLy(Ly + 1)2L, — 1)2L, + 1)(5L, + 6)].(35)

Hence L, and L, give the lower and upper ends of the range
of / values which satisfy the inequalities (32) and(33] for given
values of a and .

2)Ifa,_ =0, Egs. (26) and (27) give

a, = —la+1(I+181/B (36)
and

w=—la+i{l+ 18120+ 1)/1 (37)

In this case both unitarity and g, >0 show that
[a + [{! + 1)8] mustbe negative. Againimposing the unitar-
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ity condition 0<a, , <1on Eq.{36)and the maximum condi-
tion £, >D on Eq. (37) we find

4]

0< —[a+ 1+ 1B (38)
2/ +1
B 200+ 1)
le+1{+ 181> rSTR (39)

Contributionsof @, _ =0anda,, asgiven by Eq. (36)to 4,
and S are:

Ag= — Ja [(Ly+ 27 — (L, + 11 —safs_‘,—;—
1B Lo+ VLo +2BL2 + 7Ly +3)
_LyL, + 1B3L? + L, — 1)), (40)

S= —fa [(L;+ 1)L, +2)3L3 + 7L, +3)

—Ly{L+ 1)3LT + L, ~ 1)}

— L LA + WL+ D0L; + 2L + 3)5La + 1

—(Ly— DLL, + D@L, — V2L, + DSL, +6).  (41)
Class I — B * :Inthis class ;, = 0, 4,<0. The four Eqs.

(8)-{11} become:

(B—Ada,, —Ba,_ +}[a+I(+18+4]=0, (42)

Da;, —Da,_ —}[a+I{{+1)8]=0, (43)

(B—A)r, —Br,_ =0, (44)

Dr,, —Dr,_ =0, (45)

Equation (45) gives r,, = r,_ . Equation (44) gives
A,;r,, =0.Forr,, #0A, =0.In this case Eq. (42) becomes

B, —a_)+ila+il+1B8]=0.
But we saw before that this is not compatible with the Eq.
{43). Hence we must have

r,, =0.
In this case also

r,_ =0
Because in this class 4, = O we havey, =a,, —a;, =0.
Hence

1

a. :\O'

1)Ifa,, =1, Eqs. (42) and (43) give

a,_ =1—[la+I{l+1B]/2D (46)
and

A, = la+ 1+ 1812+ 1)/U+1) (47)

Imposing the unitarity condition 0<a,_ <1 on Eq. (46) and
the maximum condition 4,>B on Eq. (47), we find

O<a + {1+ 1)B<4(l + 1)/21 + 1) (48)
and

o+ 1+ 1)8>20 {1 + 1)/(21 + 1. (49)
The contributionsofa, = l1anda, asgivenby Eq. (30)to

A, and S can be explicitly calculated by using the well-known
addition formulas for powers of integers except one term in

A,. The results are
L 1
A=+ 1P -L}—ja LI~ =] -la 3oy
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— 48 [Lz(Lz + 1)3L3 + 5L, + 1)
~ (L= 1L,3L7 - L, - 1)),

S=4 [LoL, + 1L +2) — (L, — DL L, + 1)]

— 4 [Lo(Ly + 1)Y3L 5 + 5L, + 1)

—(Ly = OL,3L7 — L, ~1)]

— L Lt 0L+ 2002, + 3L+

X(SLy — 1) — (L, — WL,(L, + 2L, + 1)

X (2L, — 1)(5L, — 6)]. (51)
Again L, and L, are determined for given a and S by in-
equalities (48) and (49).

2)Ifa;, =0 Egs.{42)and (43) give

a_ =— la+l{l+18]/2D

( (50)

{52)

Ay= — la+ {1+ 1812+ 1)/ + 1) (53)

Again both unitarity and the positiviness of the inequality
multipliers require that [a + /(/ + 1)3] be negative. As be-
fore we impose the unitarity condition 0<a, _ <1 on Eq. (52)
and the maximum condition 4,>B on Eq. (53) and find:

0K —[a+ I+ 1814l + 1)/21+ 1) (54)
and

—la+I(+ 181221+ 1)/Q20+ 1)~ (55)
Contributions of g, . = 0anda,_ asgivenby Eq. (52)to 4,
and S are: . :
A= —la[L34+ (L, —1V]-1a} —

0 Fi [ 2 (L, ) ] 4 < It 1
— 3B [LolLy + 1)3L3 + 5L, + 1)
— (L, = HL,BLT —- L, - 1}],

S=ta[L,(L,+ 1)3L3 4 5L, + 1)

—(Ly—=1L,3LY — L, —1)]

— L+ L+ 2L, + 310L, + 1

X{(5L, — 1)] — (L) — Ly(L, + 1)

X(2L, + 1)2L, — (5L, — 6)]. (57)

Class B * B ~ :In this class neither A, nor , is zero. We
thus have to solve the four Eqs. (8) -(11) fora,, ,a,_, 7,
andr, _ . We note that the determinant of the Eqs. (8) and (9)
is equal to determinant of the homogeneous equations (10)
and (11). Thus when the determinant does not vanish Egs.
(10) and (11) have trivial solutions

r,, =0andr,_ =0.
This leads to

1

1
a, =\Oanda,_ =<

0

We now consider these four possibilities:
1) Whena,, =a,_ =0,

a+I(l+1)84+4,=0, a+I(l+1)B+u, =0.
Hence

A= — la+ 11+ 1)B1>0,

u = — la+1(I+ 18150

(58)
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This case does not contribute to G, 4, or S.
2) Whena,, =0,a,_ =1, Eqgs. (8)and (9) give

A, =2B— [a+1{l+1)B]>0 {59)
and
W, =2D+ la+ 1+ 1)B81>0. (60)

We shall look later at the inequalities which determine the
range of / for given @ and . Here we want to mention that
y = a + /(I + 1)Brepresents a parabola in the variable / with
its extremum at / = — 4. Whether this extremum is a maxi-
mum (downward looking parabola) or minimum (upward
looking parabola) depends on the sign of 5. In the first case
(maximum) /3 is negative, in the second case (minimum) S is
positive.

One can see now from the inequality (59) that only if
B> 0can the range of / be limited. Together with (60} this will
determine a range for /. On the other hand inequality (60)
shows that the range of / given by it can only be finite if 5 < 0
and together with (59) this will give the range of /. Since both
inequalities must be satisfied simultaneously it is sufficient
that the range of / is restricted by one of them only.

Inequalities of the type (59) and (60) are best studied by
plotting say here 2B =41 /(2] + 1), 2D = 4(/ + 1}/(2] + 1)
and y = a + /(/ + 1)B against the variable /.

3)Whena,, =1,a,_ =0, Egs. (8) and (9) give

Ay =2B+ [a+1{I+1)B1>0, (61
#; =2D— [a+1{l+1)8]>0. (62)
4) Finally whena,, =1,a,_ =1, Egs. (8)and (9) give
Ay=p,=a+1{l+1)5>0 (63)

It is to be noted that this case does not contribute to G even
though it contributes to 4, and S. Thus one would not want
to use this set to maximize G which in turn indicates that

a + /(I + 1)8 should be taken negative. When the determi-

nant of the Egs. (10) and (11) vanishes we have another possi-
ble solution. This is obtained when the other determinants of
the inhomogeneous set (8) and (9) also vanish. In this case we
have

B — 4, B a+I{l+ 1B+ 4, (64)
D D—yp, a+l(l+18+pu,
Onesolution isa + /(/ + 1) = 0 which leads toa =8 =0,
that is, no constraints at all.
The other solution is
Ay=p =2 (65)

In this case Egs. (8) and (9) become identical. Also Egs. (10)
and (11) become equal. We thus have, together with the uni-
tarity equations the following set to solve:

Da,, +Ba,_ —\ila+!I{I+1)+2]1=0, (66)
Dr,, +Br,_ =0, (67)
a,, -alz+ _r%+ =0, (68)
a,_ —a_ —ri_ =0 (69)

The solutions of these equations are:

g = totli+ 1842
T 4 (a+Ill+1)8]1D

l[a+I(l+1)8+D—B1,(70)
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_la+li+1B+2 0B+ B D1
a,_ 4[a+l(l+1)ﬁ]B[a+”l+ B + 1,(71)

2 1 a+ll+1)8+2
i+ =T 2p2
16 [a+1(I+1)3]°D

[a+1(!{+18+D—B]

X[B—(a+1(1+1)8—D)), (72)

_ 1 a+li+18+2 I V4 B D
r v [a+l(1+1)ﬁlsz[a+” + 1B+ ]
X[D*—(a+I1{+1)B—B)], (73)

The contributions these amplitudes to 4, and S will be

Aoz%i[a+l(l+l)ﬁ+2](21+l)

a+2

(Lo + 17— L]

o+

+ % [LofLy + 1Ly +2) — (L — DLAL, + 1)],
(74)

§= la+1{I+1D)B+2) {1+ 121+ 1)

=3 2 [LoLy + VAL, +2) = (L — DLy(Ly + 1)]

+ —f; [L3(Ly + 1P(L, + 27 — (L, — IPLA(L, + 17).
(75)

In their contribution to G there is an ambiguity in the sign of
the square roots of the real parts. But in order to maximize G
one has tochose the signs of ,, andr, _ opposite. With this,
the contribution to G becomes:

+ S

R &=

G=—;-L2{4— la+ 1+ 1)]2H2+ 1)

[(L2+1)2—L%]—%

X [LoLy + 1Ly +2) = (Ly = DLyL, + 1)]

_4-a

2
- % [L3(Lo+ VAL, +2) — (L, — 1L I(L, + 1)
(76)
For this case the maximum conditions are automatically sat-
isfied since A, = y, = 2. Unitarity imposed on Egs. (70) and
{(71) in the form
0<a,, ,a,_ <l

gives two possible domains which are common to both
amplitudes,

2/21+ N)<a + 1{1+ 1)B<2 (77)

or
—2<a + 1l + 1)B< = 2/(21 4+ 1). (78)

This completes the analysis of the four classes. We obtained
the forms of the partial waves in all classes. Also the unitar-
ity and the maximum conditions gave relations in form of
inequalities between ¢, 8 and /.

Now the bound on G is found in principle as follows: a
and 3 determine the lower and upper limits L,, L, of /. Thus

L, and L, are functions of a, 8. When we express 4, and S'in
terms of all contributing amplitudes, they become functions
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of ¢ and 3 only. Hence @ and 8 can be found in terms of A,
and S. Once a and 3 are found, the limits L, L, for all
contributing classes can be found and G calculated.

In order not to clutter expressions we used the same
symbols L, L, for each class. But is in understood that they
will in general be different for each class. Also Aj and S were
used for each classe’s contribution. To find the total 4,and S
those have to be added.

The signs of & and S8 are related to the rate of change of
G with 4, and S. Thus (see for example Ref. 3)

0G /04, = —a
and
G /S = —B.

Thus if physically one expects G to grow with 4, a should be
negative. Similarly if G increases with incrasing d4 /dt, B
should be negative.

When «a and S are negative (77) is not valid. Thus (78)
gives the upper and lower limits of /. They are obtained by
equatinga + /{/ + 1)8to — 2and — 2/(2/ + 1). In the first
case the equation is quadratic and one choses the positive
root. In the second case the equation is cubic with only one
real root which is positive. All /’s between these two values
will contribute to A, S and G in the forms (74), (75), and (76).

Going backwards we next proceed to case 4) ot
B * B ~.Itis obvious that with @ and § negative (63) will not
be satisfied and this case will not contribute.

In case 3) solving the equality (61) will give the lower
and upper values of / for this set. Then (62) is automatically
satisfied.

In case 2) solving the equality (60) we find the range of /
for this set. Then (59) is automatically satisified.

Inclass I ~ B * for the amplitudes of type {52) solving
{54) and (55) determines L, and L, of this case.

When the amplitude has the form (46), inequality (49)
can not be satisfied with a and S negative. Thus this set does
not contribute.

In class I * B ~ for the amplitudes of type {36) solving
(38) and (39) with equalities determines L, and L, of this case.

When the amplitude has the form (30), inequality (33)
can not be satisfied with @ and £ negative.

Thus we have covered all cases which will contribute to
Ay, S and G when a and 3 are negative. Other cases can be
studies in a similar way.

IV. DISCUSSION AND CONCLUSION

We extended the method of variational calculus with
inequality constraints to a spin case. Even though the paper
deals only with spin O-spin } particle scattering the tech-
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nique is general and can be applied to arbitrary spins. The
basic idea is the definition of classes such that a set of partial
wave amplitudes with the same / value belongs to one and
only one of these classes. The values of the inequality multi-
pliers in those classes together with unitarity and the maxi-
mum condition obtained from second variation determine
the form of the partial waves. They also impose conditions
on Lagrange multipliers.

Since a and S are global multipliers, not depending on /,
one has to find compatible solutions of these conditions,
which appear in form of inequalities for given a and 5. These
solutions determine the range of values which contribute to
A,, S, and G for the type of partial waves in a particular class
or subset of a class. 4, and S are expressed in terms of a,
and L, (a, #) and L,(a,f ) where these last are the lower and
upper limits of the contributing / values for each set. Solving
for a and B in terms of A, and S gives the values of the
Lagrange multipliers which in turn determine L, and L, for
each type of amplitude. Finally, @, Band L ’sand L,’s deter-
mine G.

The results of this paper can be applied to cases like [1V
or KN scattering. However the determination of the multi-
pliers has to be made numerically, since some of the equa-
tions which determine the limits of / are cubic and quartic

[e.g. (55)].
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Since its start nuclear theory has lived with the dichotomy of viewing the nucleus microscopically,
as a system of nucleons, or describing it macroscopically in terms of collective coordinates. In the
last decade though, a point transformation has been introduced in which single particle
coordinates can be expressed in terms of collective ones plus others, opening the possibility of
deriving a microscopic collective model. In the present paper we confront the macroscopic and
microscopic collective models, first in a space of two dimensions, in which we find explicitly the
unitary representation in quantum mechanics of the canonical transformation that relates them.
We then show how to extend every step of the analysis to the three-dimensional problem, though
there some of the states required are not yet available in analytic form. One of the fundamental
problems in collective models of the nucleus is that of shape. We indicate what are the operators
whose expectation values give a reasonable description of the shape in the macroscopic and
microscopic collective models and confront them critically.

PACS numbers: 21.60.Ev

1. INTRODUCTION

Almost from the initial steps of nuclear theory, after the
discovery of the neutron in 1932, there has been a dichotomy
in its attitude toward its subject of study. On the one hand,
the nucleus has been viewed microscopically as a system of
nucleons, first through the shell model*? and later through
amore realistic Hamiltonian in which shell modet states pro-
vided the initial approximations.* On the other, a collective
view prevailed, first in the liquid drop model of Niels Bohr®
and later in its extension in the work of Bohr and Mottelson,®
continuing up to the present time in such work as that on
transitional nuclei by the Frankfurt group’ or—in a concep-
tually different, but mathematical similar, formulation®-the
interacting boson approximation.®

One of the authors of the present paper (M. M.) has
recently confronted® different collective models, such as
those mentioned at the end of the previous paragraph, to
show the similarity of their group theoretical background.
Another (V. V.) has discussed'® the group theory underlying
the Hamiltonian of 4 particles, in an appropriate system of
coordinates,'" that brings out their collective behavior. Thus
it seemed to the authors that the time is ripe for confronting
the collective models derived from macroscopic and micro-
scopic views of the nucleus.

At the start it became clear that a full understanding of
the conceptual structure of the problems was required, be-
fore getting involved in their mathematical complexities.
Thus the main part of the present paper is concerned with
the situation in an hypothetical two-rather than the real
three-dimensional space. We shall discuss in Sec. II this two-
dimensional case of the Bohr~Mottelson collective model
and its different generalizations, with particular emphasis on

*Member of the Instituto Nacional de Investigaciones Nucleares and El
Colegio Nacional.
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the problem of shape of the nuclei. Then in Sec. III we turn
our attention to the microscopic picture of 4 particles inter-
acting through harmonic oscillator forces, to derive from it
the Hamiltonian for the collective part. Once this is available
we discuss its solutions, symmetries and again the problem
of shape. In Sec. IV, we then confront the macroscopic and
microscopic collective Hamiltonian of the previous sections
and derive the canonical transformation that relates them.

In the final Sec. V, we then turn our attention to the
three-dimensional case and show how step by step we can
implement the program developed fully for two dimensions.
However, there are analytic expressions for states in two
dimensions, whose counterpart we have not yet determined
explicitly in three dimensions, but we plan to do this in later
publications. The outline in Sec. V leads from a system of 4
particles interacting through harmonic oscillator potentials,
to the collective part of this Hamiltonian using appropriate
coordinate transformations, then through a canonical trans-
formation to the oscillator Hamiltonian of the s-d interact-
ing boson model, of which the Bohr—Mottelson oscillator
collective Hamiltonian is a particular case. Through all of
this analysis, we take particular interest in the shape of the
states, which is a very central problem in the collective
model.

1l. THE MACROSCOPIC COLLECTIVE MODELS

In this section we start from a two-dimensional Bohr-
Mottelson model'? and then generalize it to situations in
which we can deal both with the vibrational and rotational
limits, as well as with states in the transitional region be-
tween the two.

A. The Bohr-Mottelson (BM) model

In two dimensions in which the polar coordinates will
be denoted by (p, y ), the “liquid drop” instead of being
bound by a surface’? will be bound by a line'?

© 1981 American Institute of Physics 605



P =poll + a, cos2y + a,sin2y ]
=poll +(1/V2)@*e®™ —a~e~ 2], (2.1)
where we limit ourselves to quadrupole vibrations character-
ized by the two coordinates a,, @, or equivalently

(2.2)
corresponding to the five™'® a,, of the three-dimensional
problem. For small vibrations we get for the Hamiltonian
the usual two-dimensional oscillator in a,, a,."

Passing to the coordinate system fixed in the body we
can write

@, = F(1/v2exp( £ 128 ), (2.3)

where &, [ are, respectively, the sole Euler angle and defor-
mation parameter. In units'>'* in which#=B,=C, =1,
the Bohr~Mottelson vibrational Hamiltonian becomes

( L 9 p 0 L & +B2), (2.4)

a, =(F)/V2a, tie)a* = —a_,

6,13

1

0= 3

BB 4B 37
and its eigenstates are given by'*

b, (B, 0) =fI"(B)2m) ~ texpli2md), (2.5a)
with'*
LB = 260/ (7 + |m| + )]
- B
e 2 /))ﬁm[L \m‘“(ﬂ:’.)’ (2.5b)

and L ™! being an associated Laguerre polynomial.'> The
corresponding eigenvalue E , is

E =2+ |m+1 (2.6)
Note that exp(i2m< ) appears in (2.5a) with m integer as the
eigenstates must be invariant under the transfromation'?
d—¢ + 7 which leaves unchanged the defining equation
{2.3).

In the frame of reference fixed in the body the line de-
limiting the boundary of the “liquid drop” becomes

p=poll+pcos2y'l, ¥ =y—= (2.7)
The two principal axis whose length we denote by p;, p}
correspond thento y' =0, 7/2 i.e,,

pi =pll +B), p:=pll—FB) (2.8)
and a good measure of the deformation is given by
7t \2 2 e2y2
(L) =t = 29
1 +p 16p5

The prime notation is used for p{, p; to distinguish them
from p, p. that appear later for the microscopic problem.
Thus the deformation of the vibrational states that are eigen-
functions of the Hamiltonian (2.4) can be estimated from the
expectation values'

f v* (BB Y, B, 3B dBdY =2, + |m| + 1.
4] (4]

(2.10)
Note that in the units we are using the expectation value of 5 *
must be multiplied by some dimensionless function of #, B,
C, and thus (2.10) allows us only to compare the deforma-

tions of different states rather than give us an absolute mea-
sure of them. This implies that we could equally well have
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used as a measure of the deformation 16p¢3° = (p|° — p33)°,
where p,, is the fixed radius of the nondeformed nucleus. As
we shall see later (p}*> — p3?)” allows a more direct confronta-
tion with results of the microscopic collective model.

Itis not possible to compare {2.10) with the deformation
in rotational states as they can only be introduced in a Bohr—
Mottelson model in an ad hoc fashion.'* However, we shall
see in the next subsections that the BM Hamiltonian can be
generalized in several ways so as to include the latter. Thus,
we will be able to compare the deformation of vibrational,
transitional, and rotational states.

B. Higher-degree terms in the collective Hamiltonian

The BM Hamiltonian (2.4) comes from considering
small vibrations of the liquid drop. Had we considered high-
er-order terms, we would have Hamiltonians H{a LT ),
(wherer , = — id/da* )subject only to the restriction that
H is invariant under rotations and reflections, the latter in
space and time. If the higher-order terms are static,’ i.e. de-
pendent only on a | , the invariance under rotation implies
that they give rise to a potential dependent only on

B?*= —2a_ a_.Thus the most general higher-order static
Hamiltonian can be written as
H=H,+V(B?, (2.11)

where ¥ (3?) is some function of the argument. In the three-
dimensional case,” where ¥ is function of both 22 and
B *cos3y, its form is determined from energy levels and tran-
sition probabilities of the nucleus being studied.” In the hy-
pothetical two-dimensional case we shall select

Vg =s72/B? (2.12)
with.# being an arbitrary constant and show that by varying
# we can reach the vibrational and rotational limits as well
as the transitional situation in between. For H of (2.11) and
{2.12) the eigenstates can still be written in the form (2.5), if
we retain m in the angular part but replace it in the radial
part by"*

(I + m? (2.13)
The corresponding energy levels are then given' by
E,=2.4+F"+m)+12,+ 7 +1
+ (m*/2.7),
(2.14)

where the right-hand side holds only if # »m. In this case for
each value of . we have a rotational band as in the two-
dimensional case m is the quantum number associated with
the angular momentum. Thus the rotational limit is
achieved when .# »m while the vibrational one is reached
when # —0 and we also have the transitional situation in
between.

The deformation of the eigenstates of H is again mea-
sured by the expectation value of B2 with respect to them.
But, as shown in Ref. 14, this expectation value remains
equal to that of the Hamiltonian and therefore given by
(2.14). Thus we see that for the lowest state . = m = Qinthe
vibrational limit, when .# = 0, the expectation value of 8 * is
1, while in the rotational limit the expectation value of 8 * for
the corresponding state is .# + 13 1. Thus the deformation
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of the lowest states increases considerably when we pass
from a vibrational to a rotational limit.

We proceed now to discuss the group theory behind the
two-dimensional BM model and show that it can be general-
ized in a way that allows for a different procedure for includ-
ing both vibrational and rotational Hamiltonians. This gen-
eralization, which is the two-dimensional counterpart of the
interacting boson approximation, will be the one that even-
tually we connect with the microscopic collective model.

C. Group theory and the -5 boson collective
Hamiltonian

Associated with the coordinates & | in the BM model,
we can introduce creation and annihilation operators

n. =(1/V2a, —d/dat),

£* =(1/V2a* +3/0a ), (2.15)
which we could call § bosons as they correspond to the val-
ues + 2 of the angular momentum in this two-dimensional

space. From these bosons we can construct the generators of
an SU(2) algebra

N=(-1/V2y.§~, To=in.&" —1-§7)
T_,=(1/v2m_£7, (2.16)
with the properties
[T T 1= +%T,,, [T, T_|1=—T,
2.17)
Together with the number operator for 5-bosons,
ns =L £+ € =Hy—1, (2.18)

the T, 7= 1, 0, — 1 constitute the generators of a U(2)
group which is obviously the symmetry group of the two-
dimensional BM Hamiltonian as [T’,, »5] = 0.

We can now attempt to include rotational states, not
through special dependence on 3 as in the previous subsec-
tions, but by adding to the -bosons a o boson associated
with a scalar coordinate we denote by @. This would be a
procedure similar to the one followed'® in extending the
three-dimensional BM oscillator model to the s-d interacting
boson approximation. The creation and annihilation opera-
tors associated with the o boson then have the form

F=(1/V2@—-3/0@), &=(1/v2)a@+3d/da),

(2.19)
and with their help we can extend the U(2) group (2.16)~
(2.18) of the BM model to the U(3) group whose nine gener-
ators are

Tivr To nsr 1.6 7, L. (2.20)
This group will be the equivalent of U(6) in the interacting
boson model.

The U(3) of (2.20) has not only as a subgroup SU(2) of
(2.16), which characterizes the BM vibrational limit, but also
another subgroup SU’'(2)~0(3) whose generators

0=, E+767) Q1= E+7E™),

Lo=m & —n_§ ) =2T,

{2.21)

satisfy the commutation relations
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[L0Q@ii]l=20.1 [Q1LQ)]= -5 (222)

The eigenstates of the number operator

N=n.§*+n g~ +7E 2:23)
of the U(3) group can now be characterized by different
chains of subgroups. If we consider U{3)DSU(2)D 0 (2) of

(2.16), the states will be labeled by the eigenvalues of the
operators

N, T?= —(T\T_,+T_,T)+ T2
= (res/2)[(ns/2) + 1] and 2T, (2.24)

where the last one is the angular momentum in two-dimen-
sional space. Denoting the eigenvalues, respectively, by &N
(total number of bosons), v (number of & bosons) and m (an-
gular momentum), the eigenket clearly corresponds to a
state of the three-dimensional oscillator in cylindrical co-
ordinates {3, 22, &)

(Nvm) =4, (B, & )y _ . (@), (2.25)

where ¢, is givenby (2.5)and ¢ _ (@) is a one-dimensional
oscillator function of N — v quanta. For these states the ex-
pectation value of 8% continues to be that of (2.10)i.e., v + 1,
which is also the energy of the state if the Hamiltonian is
taken as 5 of the vibrational limit.

If on the other hand we consider the chain of groups
U{(3) DSU’(2)=0(3) D0(2) of (2.21), the states will be deter-
mined by the eigenvalues of the operators

N, =~ (QlQ—l +Q_.,01)+ 320’ fo——- 27,
(2.26)

which we could denote, respectively, by N, A (4 + 1), m with
A=NN-2, ..lorOandm=A4,4A—~1,.. —A Ifwe
introduce the coordinates

R*=a +p?% tan@=B/a), &=249, (2.27)
we immediately see that .2 appearing in (2.26) is the square
of the vector . = — j{R X V) and thus the eigenstates will

be those of the three-dimensional oscillator in spherical co-
ordinates i.e.,

27+ |m|=v,

[NAm) = F4(R)Y,,. (@, D), {2.28a)
where Y, is a spherical harmonic and'*
FHR)={2[(N= A2/ N+ 4 +3)/2)P

Xe RVRALAFL (R, {2.28b)
with L being a Laguerre polynomial.

The kets (2.28) are eigenstates of the operator

Q2=Q]Q_1+Q_1Ql=f§—f2, (2.29)
with eigenvalues

m>—A A+ 1), (2.30)

and thus for each value of 4 we have a rotational band whose
energy levels are associated with the permissible values of
the square of the angular momentum m?. The operator 32
characterizing the deformation is

B?*=R%in*@, (2.31)
and thus its expectation value with respect to the states (2.28)
is given by
(NAm|B?|Nim)
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=(N+} {%[HH}%]].

From (2.30) we see that the lowest state corresponds to
m =0, A = N and thus, if N> 1, the expectation value of the
deformation for it is J{NV + 3), much larger than the value 1
we get for the lowest state v = 0 in the vibrational limit. In
fact this strong deformation holds for all states (2.28) as the
curly bracket in (2.32} is always of the order of 1. We note
furthermore that for large N, A the curly bracket in (2.32)
goes from § to 1 when |m| goes from 0 to 4, which indicates
|

(2.32)

—m+2A—m+ YA +m+2JA+m+

that there is a stretching effect on the shape as the angular
momentum increases.

So far we have shown how to get the vibrational and
rotational limits in the o-6 boson picture. A transitional situ-
ation will obviously appear if we take as Hamiltonian

= (1 —x}s +x07 O<x<1. {2.33)
To solve it we consider the complete set of states |[NAm)
which are eigenstates of N, .%, that commute with the Ha-

miltonian H. The Q ? is diagonal in this basis as indicated in
(2.29) and thus we need only the matrix elements

(N/ltmlna |N/1m)= - [(N“/l)(N+/l+3)M

(24 + 1)24 + 3)%24 + 5)
[3m* — A4 +1)]

+ l%N“L(%NJr 1 24 — 1)24 + 3)

1) 1¢
)]51'/1+2

h%

[(N A+2QN+A+ 1A —md — m—1)(,1+m)(/1+m—1)]
— 1A+ 1) ram

(24 —3)21

which follows immediately from the facts that .

=N — }(p! + 7°) + |, and p? has the same matrix elements®

with respect to the states (2.28) as z° and the latter can be

written as z° = R %cos’® = 1R *[(167/5)'2Y,(@, @) + 1].
The eigenstates / of H corresponding to definite N, m

can be expressed as a linear combination of |NAm)

|iNm) = 3 a,,(Nm)|NAm), (2.35)

where the coefficient a;; are obtained by the diagonalization
of the finite matrix || (NA 'm|H |NAm})||. The deformation of
the states |[{Nm) is then given by the expectation value

z{a .(Nm)a,, (Nm)
X[ — (NA'm|R *cos’® |[NAim)]

(iNm\B?|iNm) =

+ N+ 3814}, {2.36)
where, from the above discussion, we have that
(NA 'm|R *cos’@ |NAm) = (N + )6, .,
— (NA'm|ns ]Nzlm),
(2.37)

with the last right-hand term given by (2.34).

We have extended the Bohr-Mottelson macroscopic
collective model in two different ways, one through a poten-
tial energy depending on 82 in a more complex way than an
oscillator and the other through a 0-8 interacting boson
model. In both cases we can describe the transitional situa-
tion, as well as the vibrational and rotational limits, and we
have also been able to discuss the shape of nuclei in all of
these cases. In the next section we turn to the microscopic
problem of 4 nucleons interacting through harmonic oscilla-
tor forces, to derive from it a collective Hamiltonian which
we later compare with the macroscopic one.

lil. THE MICROSCOPIC COLLECTIVE MODEL

The macroscopic BM collective model discussed in the
previous section starts from the oscillator Hamiltonian (2.4)
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(2.34)

r
associated with small vibrations of a liquid drop. In the mi-
croscopic case we shall also start with an oscillator Hamil-
tonian, but now of 4 particles interacting through harmonic
oscillator forces.

A. Many-body oscillator Hamiltonian

We shall consider a system of 4 particles of mass M in a
two-dimensional space, interacting through oscillator forces
of frequency wA ~ % We designate by 7, the Hamiltonian
just defined from which the kinetic energy of the center of
mass has been subtracted. Thus we have

— M) S S+ (M /24

s=li=1
I A DX A R Y
s>t=1=1 i=1
where we denote by x°, p/*, i = 1, 2, the coordinates and
momenta of particles = 1,2, ..., 4 in standard units, while p/
is the center-of-mass momentum defined by

A
)Y (3.2

== 1

Introducing now the dimensionless Jacobi coordinates

*'3‘:2):;'—5)(;”‘ . (3.3)

1=1

= (Mw/A)[s(s + 1)]

and their corresponding momenta p; = — id/dx;, weimme-
diately see that the Hamiltonian (3.1) in units of fiw
becomes'’

H() = (%o/ﬁw 2 z [(P ) + {x (3.4)

s=1i=1
The H, will be the basic Hamiltonian of the following
discussion as H,, of (2.4) was for the macroscopic problem. It
will be worthwhile though to consider an H with arbitrary
two-body interaction which, in the present two-dimensional
case, can be restricted to a central one 2, V' (|x* — x*|),
where x*, x stand for two-dimensional vectors and
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|x* — x| is the magnitude of the difference. Adding and
subtracting an oscillator interaction we see that H, in units of
#iw, can then be written as

H=H,+ (o) 'Y [V(|x* —x"])
— [(Mo*/24 )(x* — x "]
(3.5)
Before proceeding to derive from H,, (and later from H ),
its collective part, it is useful to discuss the unitary symmetry
group of H,, and subgroups of it, that will be relevant later.
Denoting by

;= (W2 — i), &7 =[1/VI)x +ipl);
i=1,2 s=1,2,.,4-1, (3.6)

the creation and annihilation operators associated with the
Jacobi coordinates, we see from

& mi] =5,6" 37)
that the operators'®
Ci=ni&);, Lj=12% st=12.,4-1, (3.8)

satisfy the commutation relations of the generators of a uni-
tary group of 24 — 2 dimension U(24 — 2). These operators
clearly commute® with
A—1 2
Hy='S Spii+d—1),
s=1i=1
and thus U(24 — 2) is the symmetry group of the Hamilton-

ian. Furthermore we can contract with respect to particle or
component indices to get'®

A—1 2
¢,="3C C'= Y

s=1 i=1

(3.9)

(3.102)(3.10b)

which are the generators of an % (2) X U(4 — 1) subgroup of
U(2A —2)as [€;, C*] = 0. Finally, we can consider the
chain of subgroups

%(2)DS w(2) D) (3.11a)
[hyt2y) FeMng — hy) m
Ud—1)D0(4 — 1)DD - 11s,), (3.11b)

il (#tares) i £l

where & (2), O (A — 1) are orthogonal groups of the dimen-
sions indicated and D ' ~ " ')(S, ) is the representation asso-
ciated with the partition [4 — 1, 1] of the symmetric group
S,. Underneath each group we have given the numbers char-
acterizing its irreducible representations (irreps). For % (2)
we have a two rowed partition [4,4,], where A, + b, = A~
the total number of quanta and 4(h, — h,) = j characterizes
the irrep of the unitary unimodular group S% (2), while the
total angular momentum m corresponds to the irrep of 7 (2).
Turning to the group U (4 — 1)its irrep’® is the same as that
of % (2), while that of O (4 — 1) can have also at most two
rows'® (i ,u1,) and the symmetric group S, is characterized'®
by the partition {/} = [f] f3-f, } of 4, while its row is given
by the Yamanouchi'® symbol r = (r 7, _, --r,r,). Thus the
eigenstates of H,, can be characterized by

NI 2 (oY) =|Am{f} (), (3.12)
where {2 corresponds to the set of indices required to distin-
guish between repeated irreps {(u u,) of O (4 — 1} appearing
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in a given irrep [#,4,] of U {4 — 1), while & does the same for
repeated irreps {f} of S, appearing in a given irrep (1) of
O (4 — 1). We shall also use for these states the short hand
notation at the right-hand side of (3.12), where A stands then
for 402 (u ).

The states (3.12) which, even in three dimensions,”® can
be derived in a systematic though laborious fashion, are a
convenient complete basis as m, {f}, (#) will remain good
quantum numbers for the general Hamiltonian H of (3.5).
Thus the matrix of H will respect to the states (3.12) has
elements of the form

(A'm{f}(r)|H |Am{f}(r))
S A= 1,0n + (414 — D21A mif )P
XV [(2#/pof|x'] — 4 (xR Am{f} (). (3.13)

The eigenstates |[Im{f}(r)) of H enumerated by the index
I=1,2,13..,are then linear combinations

Im{f}(r)) = 3 ars (m{f}()Am{f}(r), (3.14)

where the coefficients @;, come from the diagonalization of
the matrix {3.13).

B. The collective coordinates

The derivation of the collective part of the oscillator
Hamiltonian H,, of (3.4) or, more generally, of H of (3.5), can
be implemented if we pass from the Jacobi coordinates to
those introduced by Dzublik et al. and by Zickendraht.'' In
the notation of one of us'® this transformation can be written
as

2
x=SpDLEID, s ) k=12

k=1

s=1,2,..,4 — 1,(3.15)

where,'” as we shall also show later, p?, p? are connected
with the principal moments of inertia of the 4 body system, ¢
is the Euler angle taking us to the frame of reference fixed in
the body, and we have 24 — 5 coordinates « that parame-
trize the O(4 — 1) group mentioned in the previous subsec-
tion. In (3.15)

sind
cost? I’
is a 2’ X 2 matrix defining the irrep characterized by 1 (which
is the reason of the upper index) of the #7(2) group. We have a
similar interpretation for ||D |, («)|| only that now the group
is O{4 — 1) and, as we do not need the full matrix of the
representation but just the rows r = A4 — 3 + k, we have
only'” 24-5 of the @’s rather than the full complement of
[(4 — 1)(4 — 2)/2]. Furthermore, in (3.15), we shall fre-
quently substitute p,, p, for

P1=pCOsy, p,=psiny, (3.17a)
which implies that we pass from the 24 — 2 coordinates x! to

p, ¥, U and the 24 — 5 variables a’s.
We now see that in the Hamiltonian H,, of (3.4) we have

A—1
s __ 2
E X; =P
ls=1

D)= DL =] 7 (3.16)

— sind

(3.17b)

I MN

i
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where we take advantage of the orthogonal character of the
matrices ||D ;,(#)|| and ||D . (@)||- The situation for the mo-
menta-dependent part 27_ , 27 _,'(p})? is more complex, but
explicit expressions for it have been derived'®'" and thus H,,
can be written in terms of p, ¥, 4, — i8/8p, — id/dy,

— id/0F as well as in the a’s and their derivatives.

It is possible to show'® that p, ¢ and essentially 7, are
invariant under permutations of the particles, while the a’s
are strongly affected by them. Thus, because of the interpre-
tation mentioned above for p,, p,, 4, and their invariant
character under permutation, we can think of them as collec-
tive coordinates. On the other hand, the a’s are more closely
connected with individual particle motion as they are affect-
ed by the permutations. Thus if we project H, to the sub-
space of the full Hilbert space of the x},i=1,2;s=1, ...

A — 1, in which the momenta associated with the a coordi-
nates are zero, we get the collective part of the oscillator
Hamiltonian. This collective Hamiltonian is not essentially
sensitive to the number 4 of particles in H,, from which we
project it, so long as'®!! this number is larger than the di-
mension of our space. As the latter is 2 in our case, we shall
derive explicitly in Sec. 4D the collective Hamiltonian for
A = 3, but before doing this we discuss the problem of shape
of a many-body system. This will allow us later to compare
the operators describing the shape in the macroscopic and
microscopic collective models.

C. Shape of many-body systems

If we have a system of 4 particles of mass M, its inertial
tensor with respect to a given frame of reference is

A

2 A
1,=M[ 35 3 Gixi)e, — S|
s=1

s=1k=1

= (ﬁ/w)[ ’*21 22: (xrx3 )8, — :‘g:xixj]

s=1lk=1
2
+ [ S (xixi )8 —-xj’xf”,
4

where on the right-hand side we substituted the dimension-
less Jacobi vectors of {3.3) and x{ which is 4 '/? times the
center-of-mass coordinate. If now the frame of reference is
fixed at the center of massi.e., x! = 0 and we make use of the
expression (3.17b) for p* we obtain

(3.18)

A—1
4= > Xix; =p°8; — (w/A);.
s=1
If we pass to a frame of reference in which the two-
dimensional matrix q = ||g,| is diagonal, we see from (3.19)
that its eigenvalues are related with the principal moments of
inertia. Furthermore we note that x} are given by {3.15) and,
from the orthogonal character of the matrix ||D (a)||, we
immediately see that

(3.19)

2
q; = Y piD 3D i(3), (3.20)
k=1
which in matrix form becomes
-~ 20
q= D‘(z?)(pl 2)D‘(z9 ) (3.21)
0 p;

where D'(¢}) is given by (3.16) and D'(¢#) is its transposed.

Thus, we immediately conclude that ¢ is the angle of
rotation that takes g, and therefore I = ||7,||, to diagonal
form. As p® = p} + p3, we conclude from (3.19) that the ei-
genvalues p7, p3 of q are then the principal moments of iner-
tia, and besides p,, p, give a measure of the deformation of
the A body system along the principal axis.

If we are dealing with specific states of H or H,, such as
(3.12) or (3.14), the expectation values of p, p, with respect to
them provide a measure of the deformation. But as p,, p, are
not polynomial functions of x; it is better to take a function of
P1» P2 that has this property. We note from (3.21) that

trq=pi +p; =p’, detq=pip; = p*sin®2y)/4, (3.22)
and
(trq)* — 4detq = (o} — p3)* = (p? cos2y)’, (3.23)

where the right-hand side is a good measure of the deforma-
tion and besides is a polynomial function of the ¢;; and thus
of the x:. In the following discussion, we shall use the expec-
tation value of p*cos?2y as a measure of the deformation in
the microscopic collective model.

D. The three-body system

As indicated at the end of Sec. 3B, we can derive the
collective part of the oscillator Hamiltonian (3.4) even if we
restrict ourselves to three particles. In this case 4 = 3,

24 — 5 = 1,5 = 1, 2 and thus in the transformation (3.15)
there is only one « and the D} (c) has the same form as
D} () of (3.16). Introducing in this subsection the short
hand notation

b = cosdd, ¥ =sind; ¢ = cosa, s = sina;
(3.24)

d = cosy, t =siny, o = secly,
we see from (3.15) that we can write
xl=y, = pldbc + trs), x}=y, =p( —dbs + trc), (3.25a,b)
x) =y, = pl — drc + tbs), x3=y, = p(drs + thc). (3.25c, d)
Furthermore we shall also use the notation

p=yi, Y=y;, 7=y}, a=yi, (3.26)

in which case the matrix ||dy,/dy,. ||, m=n=1,2,3,4
becomes

_J
n
m 1 2 3 4
13y, /3, || = 1 (dbc + trs) { — dbs + tre) ( — drc + tbs) (drs + tbc) (3.27)

2 | pl — tbc + drs) pltbs + drc) pltrc + dbs) pl — trs + dbc)
3 | p( —drc + tbs) pldrs + tbe) pl — dbc — trs) pldbs — trc)
4 | pl —dbs + trc) pl—dbc— trs) pldrs + tbc) pldre — tbs)
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Inverting this matrix we obtain

n
m 1 2 3 4
1 bdc + rts ~Y — btc + rds N —rde — btsjo p~ ' — rtc — bdsio
18y, /3y, || = (bde +ris) o bt ot (3.28)
2 VL (—bds+rtc)  p~'(bts + rdc) p " rds — btc)o p~ rts — bdc)o
3 | (—rdc+bts) plrtc+bds) pT'(—bdc+rsio pT'(— btc + rdsjo
4 (rds + btc)  p~'(—rts+bdc)  p~lbds + riclo p~Hbts + rdco
as can be easily checked by direct multiplication, and from it the contravariant metric tensor becomes
ay,. 3
g 3 BV n=1,2,3, 4 (3.29)
=1 3)’1 a,VI
The Lap]acxan in the Hamiltonian H;, of {3.4), in which 4 = 3, is then
& d
g 12 g _gmgl2 2 (3.30)
12] (9)’, ;‘l ay;

—1

where g~ ' = det||g”"|| and thus we obtain

2 2 2
an—l-{_ 19 9 1[ L9 ospy 1 (9,2 )+ Zindy 9 ] s } (3.31)
2 c?p c?p p.lcos2y dy dy | cos2y\d¥?  da? cos’2y ddda

Itis not enough to have only H, in the coordinates p, 7, 9, a. We need also to consider the generators of the S % (2) group
¢ ; of (3.10a) in these coordinates and momenta, as we shall project this group onto the Hilbert space associated with the
collective variables, thus getting integrals of motion of the collective Hamiltonian. It will be enough for our purpose to discuss
these generators in classical mechanics as the corresponding quantum mechanical operators shall be obtained directly in Sec.
E, when we transform the collective part of H, into the Hamiltonian of the pseudo-coulomb problem.'*

We note from (3.10a), (3.6), and (3.7) that we can write

1

Ci=7 2 (xix +p?p,)+— Z (xip; — xp;)- (3.32)
s = s=1

Thus if we use for x} the notation y,, n = 1, 2, 3, 4 as in (3.25) and denote by p, the corresponding momenta of the latter,i.e.,
= ;s PZE[]%’ p3Ep§, P4EP§, (333)

we can define
Ki=N% 1 — Cn) =i +¥5 —yi =23+ 4ot + P53 — 3 —pi), (3.34a)
Ky=— Y€+ Ca)= —yws +ypa+pips + poba), (3.34b)
Kssg(‘fn— C )= —§0ps — yby + Yaps — o), (3.34c)

where the K ’s satisfy the Poisson bracket relation {K,, K,} = K and its cyclic permutations.

The coordinates y, are given in terms of y;, through (3.25) and (3.26). Furhtermore denoting by p/, the canonicaily
conjugate variable to y, we know that

4 a;
Pn=3 jp;,m=1,2,3,4, (3.35)

n=1

where the matrix (|dy; /dy,, || is given in (3.28). Thus we can immediately write K ,, K, K, in terms of y°., p .. and we give them
below where, for clarity sake, we replaces y; andp,, n = 1,2, 3,4 by p, , 9, a and PpsPys Pos Pa

K| = lcos2ycos2d [,o +p,+ —1~[ ~ Py + sec’2y( — p; +P§)]]

— —217[sin27cos2ﬁpppy szﬁ(Pl?Pp + sm27/pppa)] - i#sinzﬁpypa, (3.36a)
K, = Jcos2ysin2d [p2 +p + ﬁ%[ — Pl + sec’2y( — p} +Pi)])

— 3}1—0—[sin2ysin219pppy — cos2dsec2y(p,p, + sin2yp,p,)] + 2’% c0S23p, D o s (3.36b)
Ky= —1p,. (3.36¢)
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We notice the K s do not depend on @ though they doon
P« This we could have predicted from the fact that ¥, of
{3.10a) commutes with C * of (3.10b). As the generator of the
0O(2) group associated with the variable o is C '* — C?', it
commutes with ¢, and thus the latter is an invariant of O(2)
and cannot change its form when a—a + @, i.e., it must be
independent of . This property is of interest because then
K;, H, {(when the latter is considered as a classical observ-
able) will continue to satisfy the Poisson bracket relations”'

{K]y Kz} = K3
and cyclically,
{K,, Hy} =01=1,2,3, {3.37)

even when p, = 0 as can be seen from the fact that, for
example,

{Kn Ho}= i

n=1

(31(, oH, K, é)HO)
ay, dp, dp;, 9y,

(8K1 oH, K, 8H0)
da dp, I, O/

and as the K, H, are independent of &, the final bracket on
the right-hand side will always be zero.

As a last point in our analysis of the three-body prob-
lem, we would like to derive explicitly the states (3.12) for
this case, in terms of polynomials in the creation operators 7;
acting in the ground state [0). We first notice the behavior of
the Jacobi coordinates under permutation. As any permuta-
tion can be constructed from the transposition (1, 2) and the
cyclic permutation of all the particles,'® we need only to ap-
ply (1,2),(1,2,3)tox, s =1,2,"ie,

1) = (5" G
(LLMCD=(,233 %€X§)

The same property holds for the creation operator n’, s = 1,
2, of (3.6), and thus if we define'”

(3.38)

(3.39)

NE=(1/V2Fm +v9), (3.40)
12()=0 o)
(1,2,3)(:‘;)2 e/(;T eio331 (:1]":) (3.41)

It is furthermore convenient to consider the vector n = notin
Cartesian coordinates 7~ , i = 1, 2, but in the form
ni =(/V2(— i +75),
7 =(/V2Un* +750),
and similar relations for £ = in terms of the § ;. The gener-
ators € ; of % (2) and C* of U (2) appearing in (3.10) can be
transformed then into
%4 4+ 55\7, (g+ry %774—

(3.42)

and

crr,co, (3.43)
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Clearly the generators ¢ (2) and O (2) in (3.11) instead of
€ 2 — %4, and C'? — C?' will now be given by
€. —%__andC*t* —-C~".

The normalized state of highest weight'® associated
with the partition [A,k,] = [(V/2) +J, (#/2) — j], where j
is integer or semi-integer according to whether .#"is even or
odd, is then given by'®

tlS

(2 + IHI772) +j + 1INF72) =710

Pt nz —nn3)20), (3.44)

as the action of ¥, _, C * ~ on it gives zero. Applying then
the operator '®

Gtml Voo (iom
<j~m)!(2j)!]((g‘*) [

A Mo—vy-n (345
per G

to (3.44), we get the normalized states |.#jmu) correspond-
ing to 4" quanta and characterized by the irreps j, m, u of
S%(2), £(2), O(2), respectively, in the form

A jmuy = (2 + VLA 72+ + 1A 72) — 11
XL+ mlj — mMj + ) — ppl
Xmin~ —qpini)'/2
X = m = ISl m s e =]

XY= " T Y T T7H0), (3.46)

To get now thestates |+ jm, ut| f }(r)), corresponding to
{3.12} for A = 3 we need to apply the permutations (1, 2) and
{1, 2, 3) to the states (3.46). From (3.41) we then easily obtain
that

(1, 2, 3)|Ajmp) = [exp( — i2m/3))*| A jmu), (3.47a)

(1, 2 Jmp)y = (— 172~ N jm —p).  (3.4Tb)
Thus we immediately see that
. {3} (111}
AImp (321)>
— (VA £ (= 1) A\ A Gm — )],
(3.48a)

when 2u=0mod 3 but u #0, where the symmetric (antisym-
metric)states correspond to + ( — ) sign on the right-hand
side. For ¢z = 0 we have

{[ I jmOYif( 1 /2)—j even

\1,, o 13 (111)>*
My el T gmoyiFe 72— odd
(3.48b)
Finally, when 2u==1, 2 mod 3 we have
. 211 -
’/Mm,u{ZIE((lZl»=(1/\/2)[l/ij#>]
+ (= 1) A=A jm — ), (3.48¢)
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with Yamanouchi symbols (211) and (121) corresponding,
respectively to the +, — signs on the right-hand side.

As the last point we wish to find the number A of states
|4 jmu) of total number of quanta./”, as well as the number
of states d of fixed .#" but with = 0, such that these states
are symmetric under interchange of all particles which, from
{3.48b), imply {#"/2) — jis even. For the former, when .4 is
even, we see that the number is given by??

L #/2) )
A=Y (+1)

j=o

¥ /2) k72
NN e (3.49)

ji=1 i=1

= (L/6)(N" + A"+ 214" + 3),

and the same result holds for .#" odd. Clearly 4 represents
the degeneracy of the basis for the single rowed irreducible
representation [.#7] of U(4).

For the number d we note that if z = 0 then j must be
integer and thus .#" is even as we remarked before that
(#72) — j is always integer. We then require

¥/2)

d="3"0j+1),

J
where ' implies that j is taken over values such that
(#/2) — jis also even. Assuming that (_#"/4)is an integer we
then get

(3.50)

d="3"R1r72) - 21 + 1}

k=0

k=0

(3.51)
and the same result holds when (.#"/4) is half-integer, Thus
the total number 4 of symmetric states i.e., {f] = {3} with
# = 0, corresponding to a given even number of quanta.# is
the same as the degeneracy of the basis for the single rowed
irrep [.#7/2] of a three-dimensional unitary group. As we
show in the next subsection that the symmetric states with
4 = 0 are the solutions of the microscopic collective Hamil-
tonian, they are then characterized by an irrep of U {(3).

E. The microscopic collective Hamiltonian

In this subsection we proceed to project out from the
three-body oscillator Hamiltonian (3.31} its collective part
and discuss the relevant integrals of motion of the latter. To
achieve this purpose we first analyze the behavior of the co-
ordinates p, 7, ¢, a introduced in (3.15), (3.24), and (3.25)
under the permutations of the three particle system. We
could use (3.25) to express p, 7, ¥, @ in terms of the x! and,
from the transformation properties (3.39) of the latter under
permutation, we obtain

(1, 2)o =p, (1,2,3)p=p;
(L2} =49, (1,2 3)0 =2,
(L2ly= -7 (L,3y=1yp

(L2a=7—a, (1,2, 3)a=a-—27/3. (3.52)

Inversely, if we assume (3.52) we easily check that x* trans-
from as Jacobi vectors i.e., in the form (3.39).
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We note that p, ¢ are invariant under arbitrary permu-
tations as these can be constructed from products of (1, 2)
and (1, 2, 3). The y variable is not completely invariant under
permutations as the transposition (1, 2) affects its sign. On
the other hand, the « variable is strongly affected by the
permutation. From these properties, together with the fact
discussed in (3.21) that p} = p*cos’y, p3 = p°sin’y, give the
principal moments of inertia of the three-particle system and
1} provides the rotation that diagonalizes the inertia tensor,
we conclude that the collective part of the Hamiltonian
{3.31}is the one that isindependent of p, = — id/da[i.e., its
eigenstates are scalars of O(2)] and designating it as H . we
have

P
p*dp p p

19 3 1 a2 ] 2]
X —— COS2y — + pt.
[cosZy dy cossy dy + cos?2y 992 p
(3.53)

We note furthermore that we are only interested in eigen-
states of this Hamiltonian that would be invarignt '° under
permutations of the particles. As only y is affected, and this
by the the transportation (1, 2) y = — ¥, we conclude that
the only collective solutions of H. are those that remain
invariant under the operation that takes y— — 7.

The eigenstates of (3.53) with the above property are
trivial to obtain as the Hamiltonian is separable. We shall
prefer though to carry the point transformation

r=p/2, 6=2y+(n/2), @=29, (3.54)
as this reduces the Hamiltonian to the well-known pseudo-
Coulomb problem'*

He =1 — V24 1), (3.55)
where V7 is the Laplacian in the spherical coordinates.

One set of eigenstates of (3.55) is well known

|nlm) = Z,,(1)Y,,,(6, @), (3.56a)
where the Y’s are spherical harmonics and the normalized
R, {r) are given by
Ry = (=122 02n — 1)/ L (n+1+2)]""

X Fe LY+ 2p), {3.56b)
where L is an associated Laguerre polynomial. The eigenval-
ue'® of H.. corresponding to the eigenstate (3.56) is 2 + 1),
n=0,1,2,3,...

Note that the eigenstates (3.56) must be restricted by the
fact that they are invariant under the operation y— — 7, i.e.

6— — 6. (3.57)
From the properties of the associated Legendre polynomials

(p. 1015 of Ref. 15) we conclude that the spherical harmonics
Y,.(6, @) transform under the operation (3.57) as

Y6 @)= 1) "Y,,00, p), (3.58)

Thus the only allowed collective solutions (3.56) are those in
which ! — m is even.

There are though other solutions of (3.53) or equivalent-
ly (3.55), that are more interesting. As (3.53)is obtained from
(3.31) when p,, = 0, clearly the solutions of the latter with

1{ 19 .4 1
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u# = 0 and invariant under permutations, i.e., the upper row
of (3.48b) are solutions of (3.53). They are characterized by aj
quantum number associated with the irrep of the S% (2) sym-
metry group {3.10a). For these states the m takes all the val-
uesm =j,j— 1, ..., —jand not as is in (3.56) only those in
which / — m is even. Unfortunately the states |4 jmu) of
(3.46}, of which the upper line of (3.48b) is a particular case,
are expressed as creation operators acting on the ground
state and not as functions of p, 7, ¥ or equivalently 7, 8, p. We
shall proceed to show that, with the help of the generators of
the symmetry group O(4) of the pseudo-Coulomb problem,**
itis possible to express the solutions |.#jm0) when .4 = 2n,
n — jeven in terms of those of the pseudo-Coulomb problem
in parabolic coordinates or the ones of (3.56) when [ — m is
even.

We recall that the pseudo-Coulomb Hamiltonian
{3.55), besides the integrals of motion that are components of
the angular momentum

23,24

L=rXp, (3.59)
has the components of the Runge-Lenz vector®**
A =JLXp—pXxL)+irp*+ 1), (3.60)

where r is the vector characterized in spherical coordinates
by (r, 8, @) and, in the operator case, p= — iV is the corre-
sponding momentum. The commutation rules are then?*-**
[He,L]1=[H:, Al =0, (3.61a)
LxL=iL, LXA=iA, AXA=IL. {3.61b)
The kets |nlm) of (3.56) are then eigenstates of H., L 7,

L. Another set of eigenstates is obtained when we consider
the vector operators™

M={L+ A}, N=4L-A] (3.62)
which from (3.61) satisfy the commutation relations
MxM=/M, NXN=iN, [M,N]=0 (3.63)

Furthermore from (3.59) and (3.60) L-A = 0 and thus
M?=N2
From {3.55), {3.60), and (3.62) we also conclude that™
2 =44N 4+ 1)=4(4M* + 1). (3.64)

Thus the eigenstates of H can be characterized by the eigen-
valuess(s + 1)of M * = N * [wherefrom(3.64)s = (n/2)], o of
M, and 7 of N, as these are commuting operators. Denoting
the corresponding ket by |{n/2)or) we review in the Appen-
dix its connection with the solution in terms of parabolic
coordinates. As from (3.62)

L=M+N, (3.65)
we immediately conclude that****
Inim) = 3| (n/2)o7){(n/2)o, (n/2)7|Im), (3.66)

where the bracket is a standard Clebsch—Gordan coefficient.
From the orthonormal properties of these coefficients we
have furthermore that

/207y = 3 }'; \nlm){(n/2), (n/2)7)Imy. (3.67)

- 0m

The invariance we must require of the collective states
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when y— — ¥ or, equivalently, 60— — 6, reflects itself in
the fact that for |[n/m), ! — mis even. For |(n/2)or) we show
in the Appendix that the states that have this invariance
property are

(/[ (n/2ory + (= 1)~ "|(n/2ro)].  (3.68)

Itis easy to check, from the symmetry properties of Clebsch~
Gordan coefficients,?® that if we multiply (3.68) by ((n/2)o,
(n/2)7|Im) and sum over o, 7 we get the states |n/m) with the
selection rule / — m even.

While the eigenkets |nlm}), |(n/2)or) of the pseudo-
Coulomb problem (3.55) are well known,”*-** neither pro-
vides the type of solution associated with |4 jm0),

(#7/2) — j even, discussed in the previous section. The rea-
son is that we do not take into account ad initio in the vectors
L, A of {3.59) and (3.60} the condition of invariance under the
operation 8—1 — 6. To find then how to avoid this problem,
we start by noticing that the components (x,, x,, x;) of the
vector r

x, = rsinfcos@p. x, = rsinfsing, Xx; = rcosf, (3.69)
transform under the operation 8—m — @ as
X=Xy, XXy  Xz—> — Xi. (3.70)
This implies for the momentum vector p = — iV that the
corresponding components (p,, p,, p,) transform as
PPy PPy Py — Ps (3.71)
Turning then to L, A of {3.59) and {3.60) we have that
L——L, Ly—»—L, Li—Lj (3.72a)
A —A,, Ay—A, Ay~ — A, (3.72b)

Thus of the six generators L, A of the symmetry group O({4)
of the pseudo-Coulomb problem, only three 4,, 4,, L, are
invariant under the transformation -7 — 6.

From the commutation relations (3.61b) the invariant
operators satisfy the commutation relations
(4,,4,] =iL,, [L;, 4,1 =id,, [A4, L;]=i4,, (3.73)
and therefore they are generators of an S % (2) group. Thus
we could also characterize the eigenstates of the H. of (3.55)
with eigenvalue 2(n + 1) by the irreps of this S%(2) group
and of its /7{2) subgroup i.e., as eigenkets |njm) of

Jl=A2 + A2+ L3, Jy=L,,
with eigenvalues j(j + 1) and m.

We shall now proceed to show that J, = 4,,J, = 4,,
J, = L; considered as classical observables are identical to
the K|, K,, K, of (3.36) if we take in the latter p, = 0. For this
purpose we notice that classically

A = (Lxp) + irp* + 1) = (r-plp — ir{p” — 1).
Introducing now the spherical coordinates , 8, ¢, and their
corresponding momentap,, py, p,., we get for the three com-

ponents (x,, X,, x3) of r the expression (3.69) while for the
corresponding momenta we have

ar a8 dp

(3.74}

(3.75)

’:—- r+—— +—_ Y i:ly253s (3’76)
b= e Py, P T P
from which it follows that
(rp)=rp,, p>=pl+rpl +(rsind) pl. (3.77
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Thus we obtain

1 1
J, = in@ co { rf——z ——-2]
\ = } sin@ cospir + rp r(p9+ sin20p,p)

+ cos# cosgp,ps — (sing/sinb Jp, p,,, (3.78a)
1 1
J. = 1 sinf si 2 A2 b 2 }
, =}sin smtp{r + rp? ; {ps + oy Py
+ cosé singp,p, + (cosp/sind ip,p,,, (3.78b)
Jy=—p,. (3.78¢)

We can also express J,, J,, J; in terms of p, ¥, 7 by
writing 7, 8, @ in terms of the former using (3.54) and p,, py,
P, intermsp,, p,, py, again using (3.54),

Pr=p " "Pps Po=P,/2 Py =ps/2 (3.79)
It is immediate then to see that J; coincides with K, 1 = 1,2,
3 of (3.36) when p, = 0.

The S%(2) group of the three or, for that matter, 4
particle problem, whose generators are K|, K, K3, can be
projected into the subspace p, = 0, still maintaining the
Poisson bracket relations { K, K,} = K, and cyclically, as
shown in (3.38). These projected generators K, i = 1,2, 3 of
S% (2) are then integrals of motion of the collective Hamil-
tonian and, as we just showed, can be identified with the J,,
i=1,23.

In the Appendix we show that the eigenstates {njm) of
the operators H -, J %, J; can be written down immediately in
terms of the |(n/2)o7), of the parabolic coordinate solution
through the relation,

Injm) = 3(— Y= 7*"((n/2o, (n/2ym — oljm)
l((,n/2)am — o). (3.80)

But from the discussion at the end of the previous subsection
we see that |.#jmO) of (3.48b), where .#"and (#"/2) — j are
even,isaneigenstate K> = K? + K3 + K% and K, whenthe
eigenvalue i of p,, is taken as 0. Thus we have

| jmO) = |njm}, A" =2n,

and the only values of j of interest to our problem are

(3.81)

n —jeven,

j=nn-2,.,1o0r0 (3.82)

For a fixed n the number of states (3.80) with the restric-
tion (3.82) is then clearly (1/2)(n + 1)(r 4 2) and thus, as the
spectrum of the Hamiltonian (H /2 is equally spaced, we
could map the states {3.80) on those of a three-dimensional
oscillator with definite angular momentum j and projection
m. This will be done in Sec. IV to obtain the quantum me-
chanical representation of the canonical transformation that
takes us from the macroscopic to the microscopic collective
model.

In the final subsection of this section, we shall analyze
the general collective Hamiltonian and the problem of shape
for its states.

F. The general microscopic collective Hamiltonian and
the shape problem

In the previous subsection, we took the three-particle
oscillator Hamiltonian and projected out the part with p_,
= 0 to get the corresponding microscopic collective
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Hamiltonian.

We could have started with an arbitrary particle Hamil-
tonian H of the type (3.5) and projected out from it'° the
general collective microscopic Hamiltonian. Because the ei-
genstates of H are characterized by theirreps {f} of the sym-
metric group S, , the part H — H,, of (3.5) can be replaced by

(4 (4 — )2 (i)~ 'V [(2#/ Mw)?|x"|] — 4 ~'(x'/},
(3.83a)

as discussed in (3.13), where |x'| is the magnitude of the first
Jacobi vector. We can then project the collective parts'® of
V{(2%i/Mw)'?)x' |}, (x')?, by replacing x' by its value (3.15)in
terms of p, ¥, ¥, @, and averaging over the 2A-5 internal
coordinates a.

We shall implement this program for V of the Gaussian
type i.e.,

V= Veexpl — (x'V/b?], {3.83b)
where b2 = (Mw/2#)a?, with a being the range in normal
units of the Gaussian potential. From (3.25) and the above
discussion we see that the collective part of the potential V.

iSZG

Ve = Vo2m) ™!

217
Xf exp[ — (0?/b })(cos’y cos’a + sin’ysin’a)lda

o]

= Vo(2m) ™ 'exp( — p*/2b7)
27

Xf exp[ — (p*/2b ?)cos2y cos2a)da
(¢]

= Vaexpl — p2/2b ), [ (0%/2b Ycos2y ), (3.83c)

where [, is a Bessel function (p. 958 of Ref. 15). Note that this
formula is valid only within certain restrictions for its do-
main as discussed by Katkevicius and Vanagas.**

Similarly the collective part of (x')? is (¢*/2b ?) and thus
for A = 3 and Gaussian potentials the collective Hamilton-
ian takes the form

Hge = He + 3{(Vy/fw)exp( — r/b?)

X 1o\rsind /b?) — (r/Ab?)}, (3.84)

where H is given by (3.55) and we prefer using the coordi-
nates #, 6, @ related to p, y, ¢ by the point transformation
(3.54). The projection from an 4A-partcle problem gives a
similar result.’®

The Hamiltonian H . still commutes with the angular
momentum, which for this two-dimensional problem is
Jy =Ly = — id/dg, and thus we can factor exp(img ) from
its eigenstates, but it is no longer separable in r, 8. We can
though calculate, with the techniques discussed in the Ap-
pendix, the matrix of elements

(nj'm|Hgc |njm), (3.85)
where |[njm) is given by (3.80) and, restricting ourselves to a
maximum number of quanta 0<n <N, from the diagonaliza-
tion of this finite matrix obtain the eigenstates |im),i = 1,2,
oy of He as

lim) =% a;(m)|njm).

Y
n — jeven

(3.86)
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We now turn our attention to the problem of shape of
states of this generalized collective Hamiltonian. The discus-
sion following (3.23) indicates that the shape would be given
by the expectation value with respect to the states |im) of

p’ cos®2y = 4r% sin%@ (3.87)
Thus from (3.86), we require the matrix elements of
{n'j'm|r* sin8 |njm), (3.88)

which can be evaluated in parabolic coordinates by the pro-

cedure indicated in the Appendix. We also note that from
)

(n'j'm| P sin’@ |njm) =
=01=0

[ =l =1y
><§[(n+l+1)!(n + 14 1)

XYW+ +3+e[eln -1 — 1)’ —

21—{-1)4
21"+ 1

_"2 s {A,w(n'm)A,-l(nm)%[é,», -
]Q( S — T QM — 1+ 2!

1'—z)z(1'-n+2+t)!(1—n'+2+z)z]—‘],

{3.80) and (3.67) we can write
njm) = S Ay(nm)|nim), (3.89)
I=0
where

Ay (nm) = z{ WA=+ m((n/2)0, (n/2)m — oljm)

XA{(n/2)o, (n/2)m — o|lm)}. (3.90)

Since the matrix element {(n'/'m|r* sin’6 |nim) can be deter-
mined directly,'** we can finally write

(Im, 20(1"'m) {10, 20\1’0)]

(3.91)

where we made use of the volume element (A2) of the Appendix and of the generating functions'® of the Laguerre polynomials.

IV. CANONICAL TRANSFORMATIONS RELATING THE
MACROSCOPIC AND MICROSCOPIC COLLECTIVE
MODELS

In Sec. I, we saw that the two-dimensional Bohr—Mot-
telson model can be generalized to a 0-8 interacting boson
model that contains the Hamiltonians of both the vibrational
and rotational limits. This model is associated with the U(3)
symmetry of the three-dimensional oscillator and the states
correspond to the irrep NV of this group. They can be further
characterized by the irrep A of the O (3) subgroup of U{(3)
which gives the different rotational bands. Finally the irreps
m of the subgroup O (2) of O (3), are associated with the angu-
lar momentum in our two-dimensional space. Thus, we get
the states (R|NAm) of (2.28), where we indicate explicitly
the coordinate R (of spherical components R, @, @ ) on which
they depend. They are eigenstates of N F?, F,in (2.26)
with eigenvalues N, A {4 + 1}, m, respecnvely

We turn now to the Hamiltonian of a system of particles
interacting through harmonic oscillator forces. The states
then are characterized by the total number of quanta.#”, the
irreps j and m, respectively, of an S% (2) group and its sub-
group (2}, as well as on irreps of other subgroups as indicat-
edin (3.12). With the help of the collective coordinates intro-
duced by Dzublik e /.'* and by Zickendraht,'! we extracted
the collective part of these states, which turns out to depend
only on even ./” = 2n, integer J, such that n —j even and
m =j,j—1,..., —j. Thesestates, givenin (3.80)or(3.89), are
denoted by (r|njm), where we explicitly indicate the coordi-
nate r (of spherical components r, 8, ¢ ). They are eigenstates
of the pseudo-Coulomb Hamiltonian (H./2) of (3.55), as
wellas of J %, J5, 0f (3.74), with eigenvalues n + 1,(j + 1)and
m, respectively.

As both (R{NAm) and (r|{njm) are a complete set of
states, with the same range of values for the quantum num-
bers appearing in them, we could define a unitary transfor-
mation from one of these sets of states to the other by
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(R|Ufr) = ) 2 S (Rinjm) (njmr),

m= —j

4.1
n—jeven j mtegral

where we took N = n, A =j and (njm|r) as the complex
conjugate of {rinjm).

This unitary transformation is a representation of a ca-
nonical transformation. 27 It guarantees, among others, that
the classical observables H,, .Z2, .#, of (2.26), which are
functions of R, P, transform into (H-/2),J %, J; of (3.55) and
{3.74) which are functions of r, p, where P, p are, respective-
ly, the canonically conjugate variables to R, r. The explicit
form of this canonical transformation i.e., R, P as function of
r, p or vice versa®’ will be discussed elsewhere by Moshinsky
and Seligman. For our present purposes all we need is the
unitary representation (4.1) as given any operator Fin R,

P = — iV, wecantransform it into the corresponding oper-
atorfinr, p= — iV _or vice versa. This transformation is
most easily achieved if, for example, we calculate the matrix
elements of F with respect to the states |[VAm ) of (2.28). Then
from (4.1) the matrix elements of f with respect to the states
[njm) of (3.80) or (3.89) must have the same value when

n =N, A =j. Asin quantum mechanics we can either work
in the operator or matrix representation, the possibility of
mapping the latter on each other in the macroscopic and
microscopic collective models, provides then the correspon-
dence between them that we are searching for.

As an example we note that the general Hamiltonian H
of (2.33) of the macroscopic collective model, can be translat-
ed into the microscopic collective model. We note that
Q=75 -7 appearing in (2.33) actually becomes
J3 — J2 =A? + A? with the 4 s given by (3.60). For the »
of (2.33) we have its matrix element (2.34) and if we replace
N = n, A = we have the corresponding matrix elements
with respect to |njm). Thus we can write in the microscopic
collective model the matrix associated with the combination
(1 —Xx)res + x0Q7 0<x<1, which includes the vibrational
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and rotational limits as well as the transitional region in
between.

More interestingly we could start with a realistic two-
body interaction in the Hamiltonian of an 4-body system
and project out its microscopic collective part Hc, as we
illustrated in (3.84) for the 4 = 3 case with a Gaussian inter-
action. Then we can calculate the matrix elements of H;c
with respect to the states {njm) as indicated in {3.85). Thus
when we replace n by N, j by A, we have the Hamiltonian
matrix in a 0-8 interacting boson approximation model, cor-
responding to the microscopic two-body interaction that
was considered.

Another interesting point concerns the shape problem.
In the macroscopic collective model we saw that the defor-
mation of a state can be estimated from the expectation value
of R ? sin’@ with respect to it. On the other hand, in the
microscopic case, we saw from (3.86)~(3.91) that the defor-
mation of the state can be estimated from the expectation
value of 72 sin’@ with respect to it. But the canonical trans-
formation whose unitary representation is (4. 1) does not map
r’sin®@ on 7? sin”6. In fact the matrix elements
(N'A’m|R ?sin’@ [NAm) given by (2.36) (suitably general-
ized to N’ # N through the analysis in p. 247 of Ref. 13} are
different from those of (n’j'm|r* sin’@ |njm) given by (3.91).
Thus the shape problem in collective models has different
connotations when we approach it from the macroscopic or
the microscopic end. With other coliaborators, we shail ex-
plore this problem further in future publications.

We have given a thorough discussion of the macroscop-
ic and microscopic collective models, and of their interrela-
tions, for the two-dimensional case. The interesting problem
though is'in three dimensions where the mathematical anal-
ysis is much more difficult. Yet conceptually the problem is
very similar and in the next section we proceed to outline it,
leaving for a later article the detailed implementation of
some of the steps.

V. OUTLINE OF THE GENERALIZATION TO THREE
DIMENSIONS

We wish now to outline the main steps required to im-
plement for the three-dimensional case the analysis given in
this paper for the two-dimensionsal problem.

A. The macroscopic collective model

As in Sec. IT we start with the Bohr-Mottelson model,
where now the surface of the drop is given by® "’

R=R, +1zamY2*,,,(@,¢)], (5.1)

where here R, @, @ are the spherical coordinates in the phys-
ical three-dimensional case. The collective motion in this
macroscopic model are then characterized by the five o, ,
m=2,1,0, — 1, — 2 and their corresponding momenta are
7, = — id/da”. For small vibrations the Hamiitonian is
then an oscillator in these variables.5!>%*

Asin Sec. IT we pass from the frame of reference fixed in
space, in which the coordinates are the @,,, to those fixed in
the body i.e., 3, ¥ and the Euler angles 8, i = 1, 2, 3 which
now instead of (2.3) are related by %"
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a, =[D2%(6)+ D2¥_,(6))(1/v2)8 siny
+ D 756,18 cosy. (5.2)

The eigenstates of the oscillator Hamiltonian, correspond-
ing to those given by (2.5) in the two-dimensional case, were
fully determined recently®® and can be written as

(By6,|vAILM ). (5.3)

The quantum numbers are related with the irreps of the
chain of groups of the Bohr—Mottelson vibrational Hamil-
tonian, i.e.,”®

U(5)20(520(3)20(2) (5.4)

v A L
and ¢ distinguishes between repeated irreps L of O(3}in a
given irrep A of O (5).

The kets [5.3) represent only vibrational states. We can
get though rotational or transitional ones by considering
higher-order terms in the Bohr-Mottelson Hamiltonian, as
in Sec. B of 11 for the two-dimensional case, getting then
what has been called the Frankfurt model.® It is more rel-
evant though, for our final objective, to achieve this purpose
by extending the Hilbert space, as was done in Sec. C of I1 for
the two-dimensional case. Thus we can add'® an s coordinate
to the five d coordinates a,,, getting a six-dimensional oscitla-
tor whose symmetry group is U(6). In this s-d boson model
one chain of subgroups is (5.4} leading to the state

(@By6,|NvALLM ), (5.5)

in which N is the irrep of U(6). This state can be obtained in a
trivial way'® from (5.3) and it corresponds to the
{@B {Nvm) of (2.25) for the two-dimensional case.
There are though other chains of subgroups of U(6} and
in particular,
Ue)> U(3)

D0(3)D0(2) {5.6)
N [2ey.2e;.2¢4] L M

will be very relevant for the objective of finding the unitary
representation of the canonical transformation that relates

the three-dimensional macroscopic and microscopic collec-
tive models.

In (5.6} we have indicated the irreps of the different
groups in the chain. For a given single-rowed partition [V ]
that characterizes the irrep of U(6}, the irreps of the sub-
group U(3) are given by three even numbers 2e,,/ = |, 2, 3,
with the property that'®'®

e;+e;+e;=N e;>e,>e;>0, (5.7)

The irreps L of O (3) contained in a given irrep [2e,, 2e,, 2¢,]
of U(3) are given by the inequalities discussed in p. 52 of Ref.
18.

The states associated with the chain of groups (5.6) can
then be written as

(@BY6,|(2e,, 2e,, 2¢,10LM ), (5.8)

where {2 distinguishes between the repeated irreps L of O (3)
contained in a given irrep of U(3). These states corrspond to
(ROP |NAm) of (2.28) of the two-dimensional case and they
are associated with rotational properties.'® The ket (5.8) is

not presently explicitly available, but as we showed in Ref.

16 how to calculate the matrix elements of the Casimir oper-
ator of U(3) in the basis (5.5), we can, by diagonalizing a finite
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matrix, obtain the coefficients of the expansion of (5.8) in
terms of (5.5). Thus, at least in principle, we have the rota-
tional states and we could also get transitional ones by con-
sidering, in the basis (5.5), Hamiltonians equivalent to (2.33).
Having then discussed a macroscopic collective model
of the s-d interacting boson type, we turn our attention to the
microscopic collective model in three-dimensional space.

B. The microscopic coliective model

As in Sec. A of ITI we start with an 4 body oscillator
Hamiltonian from which we want to project out the collec-
tive part. As indicated at the end of Sec. B of I11, this can be
done from any A4 so long as it is larger than the dimension of
our space.'? Thus in the three-dimensional case the smallest
A we can take is 4 = 4 for which we have the three Jacobi
vactors x;, s = 1, 2, 3 of components / = 1, 2, 3. The collec-
tive coordinates are then introduced through a transforma-
tion of the type (3.15) which for three dimensions and 4 = 4
becomes'?

3
xi= ¥ pD D ilay) hj k=123, (3.9)
k=1

where ||D ;.|| are the standard rotation matrices [e.g. asin p.
95 of Ref. 13] in terms of the ordinary Euler angles ¢; or
those of the angles in particle index space @;. The p}’s give
the principal moments of inertia as discussed in Sec. 3 of 111

All of the analysis of Sec. A of III applies to the three-
dimensional caseif i, j take values 1, 2, 3 rather than only 1, 2.
Thus the states of the four-body problem in three dimensions
can be characterized by the irrep /" of the U(34 — 3) = U{9)
group and its subgroups

U9 O 2(3) X U(3) [h,hohs)
¢} U
733 L 0{3) L, (510
U U
g@2) M DPUS, 1

where we indicate to the right of the groups the correspond-
ing irreps. We recall that, as in (3.11), [h,A,4,] is the irrep of
both % (3} and U(3) and besides'®

Byt byt hy= A" (5.11)

The eigenstates of the oscillator Hamiltonian, corre-
sponding to (3.12) in the two-dimensional case, can then be
denoted by o

(p,9,a,| LAk ) OLMOLK (£}, (5.12)
where £2, f2 distinguish between repeated irreps L, Lof 2(3),
O (3)in a given irrep [A h,h;) of %(3), U(3}, while K does the
same” for the repeated irrep {f | of S, in a given L of O{3).

The states (5.12) can be determined as polynomials in
the ), s =1,2,3;i=1,2, 3 acting on the ground state by
procedures'® similar to those that lead to the | % jmu{f}(r))
of (3.48). We do not have though at present an explicit ex-
pression of these states as functions p,%,«,.

The microscopic collective states can be projected from
(5.12} in a procedure similar to the one used in the two-di-
mensional case to get {3.81) from (3.48). In particular, this
implies considering those symmetric states (5.12) that are
scalars of O (3)i.e., in which {f | = {4} and L = 0, which are
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obviously independent of the angular coordinates «; associ-
ated with the particle indices s = 1, 2, 3. We note that for L to
vanish the inequalities in p. 52 of Ref. 18 indicate that

hy — hs, hy — h; must be even and, as in this case L = 0 ap-
pears only once, ' the £2 index is irrelevant. Furthermore for
the state to be symmetric, i.e., {f} = 4, when L = 0 we re-
quire that*® 4" must be even i.e., .#" = 2N and thus from
{5.11) we conclude that the states (5.12) with L = 0,

{f1 = {4} must correspond to a partition

[hhshs) = [2e), 2¢,, 2e,]; A" =2N, {5.13)
where the e,’s satisfy (5.7).

The collective state can then be denoted by

{p;, 0| 2e,, 2e,, 2¢,102LM ), {5.14)

and as the quantum numbers have the same range as in the
macroscopic collective state (5.8) (when we write /" = 2N}
we conclude that for a fixed ;N the number of states (5.14)
corresponds to the degeneracy of the representation [N ] of
U(6). Besides as {5.14) are the particular oscillator states
(5.12)for whichL = 0, {f} = {4}, the energy levels to which
{5.14) are associated continue to be equally spaced. Thus we
see that both the macroscopic and microscopic collective
Hamiltonians are related with the same chain of subgroups
of U(6) despite the fact that the latter were derived from
states characterized by the irreps of the chain of subgroups
{5.10) of U(9).

C.Canonical transformations relating macroscopic and
microscopic collective models

From the analysis of Sec. IV and the discussion in this
section we immediately conclude that the unitary represen-
tation of the canonical transformations relating the macro-
scopic and microscopic collective models can be written as

(@ByB. | U \ppopsd)
=3 3 (@By6i|[2e), 2e,, 2, ]2LM )

e,e.ey UM

X {[2e,, 2e,, 2e5102LM |p p,p59,), (5.15)
where care should be taken with the domain of the variables
as discussed in Chap. 11 in the last reference of Ref. 10.

We indicated in the previous subsection that the states
{5.8) of the macroscopic collective model that appear in
{5.15), can be obtained as linear combinations of the states
(5.5) where an explicit expression is available for the latter.”®
The states (5.14) of the microscopic collective model also
appearing in (5.15) are more difficult to obtain and we pro-
ceed to outline a possible, though not necessarily practical,
way of determining them.

To begin with the oscillator Hamiltonian H,, of (3.4)
when 4 = 4,/ = 1, 2, 3 can be written in terms of the collec-
tive coordinates p;, ¥;, a; of (5.9), as was done in the 1969
paper of Zickendraht.'' If in H,, we equate to zero the angu-
far momentum vector L associated with the coordinates o,
i=1,2, 3 we get a Hamiltonian H of which the kets {S. 14)
are eigenstates. We need though that (5.14) should also be
eigenstate of integrals of motion associated with the % (3)
group and its subgroups. Following the analysis given in Sec.
A of 111, we have for, the generators of % (3},

3
¢, = qué’;, Lj=123,

s=1

(5.16)
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with the definition (3.6) for creation and annihilation opera-
tors. We then write % ; in terms of the collective coordinates
p;» 94, a; to obtain results equivalent to the generators K,
K,, K, of S%(2) for the two-dimensional case that are given
in (3.36). Finally, we equate in % ; the L to 0, to obtain 4§/
the generators of % (3) dependent only on p,, ¢#; and their
derivatives which are equivalent to the generators J, J,, J; of
S% (2) for the two-dimensional case given in (3.78). Thus
finally, the kets (5.14) are eigenstates of the operators

3

HC’ G= 2 %5 < LZ’ L3,

5 i

(5.17)
=1
where G is the Casimir operator'® of the % (3) group.

We plan to implement in another publication the steps
given in the previous paragraph, so as to obtain an explicit
expression for the states (5.14) and thus also for the unitary
transformation that takes us from the macroscopic to the
microscopic collective model.

D. Shape of states in the three-dimensional case

We discussed extensively in the previous sections the
deformation of the states for the two-dimensional case. This
problem is of course much more interesting in the real three-
dimensional case. We proceed to outline the steps that allow
us to discuss the problem of shape both in the macroscopic
and microscopic collective models.

We consider first the macroscopic collective model of
Bohr-Mottelson and replace in Eq. (5.1) for the surface of
the liquid drop the ,,, by (5.2} and @, @ by @', @ ' where the
latter are angular coordinates in the frame of reference fixed
in the body. The deformations R,, R,, R, along the three
principal axis fixed in the body correspond then to the angles
@', D =m/2,0;,7/2,7/2; 0,0, and we get"?

R, =R,1 + (5/4m)B cos[y — 2nk /3)1}, k=1,2,3.
(5.18)

Thus clearly a measure of the deformation along the three
principal axis can be obtained from the expectation values of
B cos[y — (2mk /3)] with respect to the states of the macro-
scopic collective Hamiltonian. These states can be expressed
as linear combinations of (5.5) or, equivalently, of (5.8).

However, it is more convenient to consider some func-
tions of 3 cos[y — (27wk /3)], k = 1, 2, 3 for the expectation
values rather than these expressions themselves. We notice,
for example, that we have the following relation:

{x — Beos[y — (27/3)1 Hx — Bcos[y — (47/3)]}
X {x —Bcosy} =x* — xB? — 3% cos3y, (5.19)

and thus the cubic equation resulting from equating the
right-hand side to zero has precisely the roots x;
=pfcos[y — 2mk /3)), k= 1,2, 3.

We note that™®

B*=5{axal],
B cosdy = — (35/2) [ [axal*xal, (5.20)

where the square brackets indicate angular momentum cou-
plings. Thenf3?, 3 cos3y are polynomialsin thea’sand their
matrix elements with respect to the states (5.5) can be ob-
tained'™** with the help of the isoscalar factors for the
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O (5)20(3) chain of groups. Thus we can discuss the defor-
mation of states in the three-dimensional macroscopic col-
lective model, corresponding to (2.35) in the two-dimension-
al case.

Turning our attention now to the microscopic collec-
tive model, we note from the discussion in Sec. C of I1I that
P1> P2 P5 themselves measure the deformation along the
three principal axis. We can use then, for example, the expec-
tation values of p3, p3, p3 with respect to the eigenstates of a
microscopic collective Hamiltonian H . to get an estima-
tion of the shape of these states. Again though it may be more
convenient®® to writep?, p3,p; interms of p, b, 8 through the
relations

p2 = (p*/3{1 + 2b cos[6 — (27k /3)]}, (5.21)

from which it follows that p*> = p} + p} + p3.

Clearly then, by a similar analysis to that of the macro-
scopic case, rather than the expectation values of p; we
could take those of

o’ p'b?  p°> cos3s, (5.22)
and, solving a cubic equation, get the deformation param-
eters. As the eigenstates of H can be expanded in terms of
the complete set of eigenstates (5.14) of H -, we require then
the matrix elements of the operators (5.22) with respect to
the states (5.14). This is also a problem we intend to tackle in
a future publication once we obtain the states (5.14)
explicitly.

As indicated in Sec. IV, the shape problem in collective
models has different connotations when approached from
the macroscopic or the microscopic end. This is due to the
fact that operatorssuchasf3 %, B> cos3y donot transform into
p*b?, p°b? cos38 under the unitary operator (5.15). Thus, as
mentioned at the end of Sec. IV, we intend, with other col-
laborators, to confront the derformations obtained for states
in the macroscopic and microscopic collective models.

E. Flow diagrams relating the nuclear models

As a last point, we summarize the relations between the
nuclear models discussed in this paper by a kind of flow
diagram given in Fig. 1. We consider first the different oscil-
lator Hamiltonians and their interconnections and then ex-
tend the discussion to general Hamiltonians.

We start with the A particle oscillator Hamiltonian—
which is the three-dimensional generalization of (3.1)—and
denote it by the circle containing 4 in Fig. 1. We then project
from it the microscopic collective (MC) Hamiltonian by the
procedure outlined in this section getting then the three-di-
mensional generalization of H. of (3.53). This Hamiltonian
is indicated by MC in a circle and, as we obtain it from pro-
jection from the particle oscillator Hamiltonian, we connect
A and MC by a line going from the first to the second.

We then consider an oscillator boson approximation
(OBA) Hamiltonian containing s and d bosons and the dis-
cussion in this section indicates that MC and OBA (where
the latter also appears in a circle in the figure) are related by a
unitary representation of a canonical transformation given
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FIG. 1. The flow diagram is explained in Sec. E of V. We indicate here only
the meaning of the acronymics of the Hamiltonians appearing in the circles:
A-A-nucleon oscillator; MC-Microscopic Collective; OBA-Oscillator (s-d' )
boson approximation; BM-Bohr—Mottelson oscillator; GA-General A nu-
cleon problem; GMC-General microscopic collective; IBA-Interacting {s-d )
boson approximation; F-Generalized Bohr—Mottelson model as developed
by the Frankfurt group.

in (5.15). This fact is shown in the figure by the heavy line
connecting MC and OBA with arrows in both directions, as
the canonical transformation allows us to go from the MC to
the OBA or vice versa. Finally, by projecting out the d-boson
part of the OBA we get a Hamiltonian which is identical to
the oscillator Hamiltonian of Bohr-Mottelson (BM) as indi-
cated by the last circle of the upper line of Fig. 1.

We turn now to the general 4 particle (GA) Hamilton-
ian which is the three-dimensional equivalent of (3.5). By a
procedure similar to the one discussed in Sec. E of II for the
two-dimensional case, we can project the general microscop-
ic collective (GMC) Hamiltonian corresponding to (3.84).
This GMC Hamiltonian can be expressed as a matrix with
respect to the eigenstates (5.14) of the oscillator microscopic
collective (MC) Hamiltonian, which is indicated in Fig. 1 by
the dotted connection between the two models.

Turning now to the macroscopic s-d interacting boson
approximation (IBA) analyzed in Ref. 9, we can express its
most general Hamiltonian as a matrix with respect to the
eigenstates (5.8) of the oscillator s-d boson approximation
(OBA) as discussed in Ref. 16. Thus, through the canonical
transformation relating MC and OBA, we can pass from
GMC to a kind of IBA or vice versa as indicated by the two
lines with arrows in the diagram. Finally, as discussed in
Ref. 8, there is a procedure by which we can relate IBA
Hamiltonians with those of a generalized Bohr—Mottelson
type which we designate as Frankfurt (F) Hamiltonians as
most work on them’ was done there. These Hamiltonians
can be expressed as matrices with respect to the eigenstates
(5.3) of the oscillator Bohr-Mottelson (BM) Hamiltonian,
which is indicated by the dotted line connecting BM and F.

Thus we have outlined a procedure by which starting
from the Hamiltonian of a microscopic system of 4 nu-
cleons, we can arrive finally to a macroscopic collective
model which is a suitable generalization of the one intro-
duced by Bohr and Mottelson.
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APPENDIX: THE PSEUDO-COULOMB HAMILTONIAN
AND ITS EIGENSTATES

In this Appendix we review some of the well-known?*
solutions in parabolic coordinates of the Hamiltonian H - of
(3.55)—which we call pseudo-Coulomb'*—and then derive
from them the eigenstates of H-, J %, J,, where the last two
operators are given by (3.74).

In terms of the spherical coordinates 7, 8, ¢ defined in
{3.54) the parabolic ones u, v, ¢ are given by

=rl—cosf), v=rl+4cosb), d=¢. (A1)

To derive the volume element in these coordinates we note
that from the determinant of the matrix (3.27), relating the
Jacobi vectors x}, i = 1, 2, s = 1, 2 with p, y, ¥, a, we have
dV = p* cos2ydpdydidda

= (r/2) sinfdrdfdpda = ‘dudvdgda,

O<u, v< oo, 0<¢, a2m, (A2)
where we made use of the transformations (3.54) and (A1)
From the definitions (3.55), (3.59), and (3.60) and the com-
mutation rules (3.61), we have that the operators H, 45, L,
commute among themselves and the last two are given by

A3= — i_r.a___+%x3(vz
Ox;
1 a a
L.="(x, — —x,—
3 i(lc?xz xzaxl)

(A3)

From (3.69) and (A1) we see that the common eigenstate 1 of
these three operators satisfies, in parabolic coordinates, the
equations?’

([ £ - 2]

du du 4y I 4
da a 1 v
+[‘5”5‘4ua¢2 :}
={n+ 1)¢,
{Ada)
J ad 1 & u
A3¢=[‘[—5;“57‘Ea¢2 4]
g 1 & v,
+[—5”5;‘rva—¢7+7“¢—“‘”’
(Adb)
L;,z//:—tég-_mw, (Adc)

where we denote by # + 1, a, m, respectively, the eigenvalues
of H./2, A5, L. If instead of A5, L,, we consider the opera-
tors M, = (L, + A4,)/2, N, = (L; — A,)/2, whose eigenval-
ues we denote by o, 7, the ¢ is also an eigenstate of them in
whichm =0+ r,a=0—1.

The explicit form of the eigenstate ¥ of (A4) is then the
ket

[(n/2)or) = (— 1)~ “uv) ~*27) ‘explilo + 7)¢ ]
IF(‘:/;) ﬂ/g(u/Z)F‘ff;) Tyrz(v/z)’
Flo 8 N u/2F 5472 0/2),

o+ 720

o+ 7<0,
(AS5)
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where the factor ( — 1)"/? ~“ is required” for the Condon
and Shortley?? phase convention and the function F}"*(p),
m>0 of the variable p satisfies the equation'*

[_ 4> Lm/2P (/4] I]F,"m(p)

dpz p2
=(2n 4+ m + YF "), (A6)
so that its normalized form with respect to the volume ele-
ment (A2) becomes'
Frp) = 2"+ V2 [(nl)/T(n + m + 1)]}pim + /2
e °L :,"(Zp)’ m>0’
(A7)
where L 7" is a Laguerre polynomial.
The kets (A5) are then eigenkets of the operators
M? = N? M,, N,, with eigenvalues (n/2)[(n/2) + 1], o, 7,
respectively. Thus with respect to them, the matrix elements
of L, =L,+il, Ly;A, =A, +id,, A, become
(n/20'7'|L .. \(n/2)o7)
= {[(n/z) ? U] [(n/z) i a + ll}iao"ai 161"7
+{l(m/2)Fr1ln/2 + 7+ 11¥8,,6,.,.,, (A8a)

{(n/2)0'T'|L;|(n/2)o7) = (0 + 7)8,,0. ., (A8Db)
((n/2j0'7'|4 _ |(n/2)oT)

= {[(n/2)¢a] [(n/z) i0-+ ll}lao'ai 157'1'

{2 Fr(n/2) £ 7+ 1136,,6.,, 1, (A8c)
j

Injm) =3 — W2 =2+ ((n/2)a, (n/2)m — aljm)|(n/2)om — o),

then applying 4 . to the left- and right-hand sides of |njm)
and using (A8c) rather than (A8a) we arrive at precisely the
same recurrence relation {A 10) for the Clebsch—-Gordan co-
efficients. Thus the states |njm) are explicitly determined
through (A12) and (A5).

As a final point, we determine the matrix elements of

7 sin’0 = uv, (A13)
with respect to the states |n#jm). As indicated in (3.88), this
matrix element is relevant to the discussion of the shape
problem in the microscopic collective model.

From the equation relating Laguerre polynomials (Ref.
|

(n'jfm'|r sin*6 [njm)

((n/2)0'7"|45|(n/2)07) = (0 — T)6,56.-- (A8d)

From the fact that L = M + N it is clear that the eigen-
state |nIm) of H¢, L?, Ly is given by

|nim) = Y ((n/2)o, (n/2)m — o|lm)|(n/2)om — a), (A9)

where (|} is a Clebsch-Gordan coefficient. Then applying
L tothe left- and right-hand sides of (A9) and making use
of (A8a), we see that the Clebsch~Gordan coefficients must
satisfy the recursion relations

(Fmil +m+ 1]1{(n/ 2o, (n/2im £ 1 —allm + 1)
={[(n2) +olln/2) Fo+11H
X {(n/Qo T 1, (n/2m — o + 1|Im)
+{l(n/2)Fm+olln/2) +mFo+ 11}

x {(n/2)o, (n/2)m — o|lm), (A10)

as is actually the case.”’

We now wish to obtain the eigenstates |njm) of H,, J?,
J,, where the last two are given by (3.74). These eigenstates
will have the property that

I, [jm) =4, [njm) = [{Fm)j £ m + )]}{njm + 1"

{A11)
If we propose now that
(A12)
15, p. 1037)
pLYp)= —(v+ WL 7, o)+ 2v+m + )L Tp)
—Ww+mL7_ () (Al14)
we immediately conclude that
[ Frers
o

= —[v+m+ v +1§6,,,, +2v+m+1)5,,
— [vv+m)6,,_,. (A15)

Taking into account then the explicit expression of |njm)
given by (A12) and (AS5) we obtain

= Y (n'/2)0', (n'/2m — o’'|i'm){(n/ 2o, (n/2)m — oim)

X}t{"stn'/zb\az(n/zha+ [(n/2) — o+ 1]"'[(’1/2) —o+m+ 1] +5(n'/2b70‘,(n/2)~g[n —20+m+41]
- 5("'/2]—‘17'4"/2}70 1 {(nr2) — 0']5[("/2) — 0o+ m]é}

X{—5(,:’/2)+a'.(n/21+a+ a2y —m+ o+ 11H(n/2) + o + 1]} + 8 4 omsm ol +20—m+ 1]
~ 8wz v aranrn + o1 L1/2) — m + 0]} [(n/2) + 0]}, (A16)
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The diagonal and symmetric Bianchi type IX models are coupled to a homogeneous spinor field.
An action for the combined fields is constructed, where the orthonormal basis used is given
explicitly in terms of the metric. This allows one to vary the action with respect to the metric and
the spinor fields only. Next, a Hamiltonian formulation is given, and a qualitative solution for the
problem is presented. We also show that the k = + 1 FRW (Friedmann-Robertson-Walker)
model is not compatible with a homogeneous spinor field, while the more complicated models are.

PACS numbers: 98.80.Dr

1. INTRODUCTION

Recently Isham and Nelson' have studied Friedmann—
Robertson-Walker (FRW) models with matter given by a
homogeneous spinor field in both the classical and quantum
regimes. One of the most discouraging results of their work
was that the k = + 1 models do not admit such a homogen-
eous spinor field. Since the k = + 1 models are special cases
of the Bianchi type IX models, more general type IX models
could be compatible with homogeneous spinor fields.

The reason for the failure of the k = + 1 models is that
G, is automatically zero for these models, while T, is not.
The constraints T,,; = 0 are so restrictive that the Hamilton-
ian for the spinor field vanishes, leaving only the vacuum
part of the gravitational Hamiltonian. It is well known that
there are no vacuum solutions for £ = + 1 FRW models, so
the solution breaks down. However, the more complicated
models all admit vacuum solutions, and we will show that
the diagonal and symmetric’ (or nontumbling®) type IX
models with a homogeneous spinor field exist. In fact, the
symmetric type IX models have G,; #0, which allows an
even richer solution structure.

This paper has three aims: (i) to demonstrate the com-
patibility of diagonal and symmetric type IX models with a
homogeneous spinor field; (ii) to give a Hamiltonian formu-
lation for spinor fields in homogeneous models; and (iii) to
present a qualitative solution® of the combined field equa-
tions in the diagonal and symmetric cases.

We begin by writing the Einstein-Dirac action

I= J[\/-:—gR + 1677, ) d*x, (1.1)

where R is the scalar curvature and .¢,, is the Dirac La-
grangian density in a curved background.® In the usual for-
mulation, .#,, is a function of the spinor field and £ ¥, an
orthonormal basis which satisfies

b B = 8urs i B = 8%, (1.2)

“Also, Asesor, Department of Physics, Universidad Auténoma Metropoli-
tana-Iztapalapa, México 13, D. F., México.
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and their derivatives. In order to connect this density to R,
which is a function of g,,, and its derivatives, we can do one
of two things; we can write R as a function of h ¥ and vary
with respect to he .. to obtain the gravitational equations, or
we can explicitly give A ¥, asafunction of g,,, and vary with
respecttog,,,. We may construct a Hamiltonian formulation
of the problem for either one of these two approaches. For .n
example of the first approach see Nelson and Teitelboim.®
We will concentrate on the second method.

One problem with the second approach is that it is usual
to prescribe a certain variation of 4 ©, with respect to g, in
order to achieve a canonical form for the energy-momentum
tensor. However, if we choose a basis for other reasons, the
energy-momentum tensor may not take the usual form. In
fact, the bases usually chosen for Bianchi type models, when
varied do not always satisfy the relations that lead to the
canonical energy-momentum tensor. This problem is dis-
cussed in the Appendix.

In Sec. II we develop a Hamiltonian formulation of the
Einstein—Dirac system, then apply it to Bianchi type IX cos-
mological models. In Sec. 111, we discuss the equations of
motion, demonstrating the incompatibility of k = + 1
FRW model with a homogeneous spinor field, and the fact
that other type IX models do admit such fields. Section IV is
devoted to qualitative solutions of the field equations for the
cases where such a solution exists. The last section includes
conclusions and suggestions for further work.

il. AN ACTION FOR HOMOGENEOUS SPINOR FIELDS IN
BIANCHI-TYPE COSMOLOGICAL MODELS

We begin by considering the Einstein-Dirac action
(fi= l,c = 1) in the form
I=—J[rugu N2 — NG + 16m.L ] d*x,
2.1)
with

L = — Y, ~ By, 0~ mib},  22)
where Greek indices run from O to 3 and latin indices run
from 1 to 3. The dot means derivative with respect to x% =1,
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the ordinary partial derivative will be designated by (,u) and
the covariant vector or spinor derivative by (;u).

The first three terms in the action (2.1) correspond to
the Einstein Lagrangian/ = R (V' — g) d *xreparametrized
according to the Arnowitt-Deser-Misner (ADM) formula-
tion,® by introducing quantities

N:{—4g°°)_‘/2, N. =4go'
g; ="g; =, ¥, and X" (2.3)

Here the superscript 4 denotes a four-dimensional geo-
metrical object, and the superscript 3 will be used for objects
on selected three-dimensional hypersurfaces. The 77 are de-
fined in terms of the ‘g, and the *I";},, while 5, and 7,
are algebraic combinations for the 7%, the g;» and their
derivatives.

In the matter Lagrangian .% ,,, g = det’g,,, ¥ = ¢y’
and * are the generalized Dirac matrices defined by

frv) = —28", (2.4)
with signature { —, +, 4 , + } for the metric tensor g,,,,.

The covariant spinorial derivative of the Dirac 4-spinor
is given by

lp;u = dj,p. - F;L ¢’ (25)
with the connection coefficients
F;t = - }1};(/7)(1;;1 ;; (P}B 7/ﬁ7/(z . (26)

The vierbein basis }f(pm satisfies
A AL T Y
P b PH =67,

P = N B 'V (2.7)
so that the generalized Dirac matrices are related to the stan-
dard matrices of special relativity **' by

7 =0, (2.8)

For the standard y matrices the following representa-
tion is used:

~ A 4
h(p),.th (p}v = gyvv

I 0 0 aj‘]
0 = k= , 2.9
v [o —1]’ v [—a”" 0 (2.9)
with
0 1 [O —i]
! == =
g = [1 0]’ arz l’ O s
1 0
o= [o - 1]’
0 7
(5)__: - OV, (1), (2} (3):: i 2'10
Y=y Yy { I 0] (2.10)
By definition we also have
[y ] = — 2i0*". (2.11)

Our first step is to break up® the matter Lagrangian in
(2.1) into terms such as p dg, N.¥%,, and N, .¥’,,. We will
obtain such a Lagrangian density for the Class A Bianchi—
type cosmological models.

Since the matter Lagrangian .7 ,, is a function of g,,,.
mainly through the basis 4, , we must choose a suitable
basis. It has been usual’ to write the metric of the Bianchi-
type models as
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ds’ = — (N> = N,N)dt?+ 2N, dt o'

+ e MBIy, {2.12)

where £2 {t) is a scalar, 8, is a 3 X3 matrix, N = N{7), and
N, = N,(t). The forms ' are invariant one-forms appropri-
ate to the model under consideration and obey

- o
do' = —1C"; o' Ao*,

{2.13)
where the C*, are group structure constants of the particu-
lar Bianchi type under consideration. For type IX models,
= = €
A convenient orthonormal basis® is
¢®=Ndy, ¢"=N'dt+h" dx

vyithj; . an orthonormal triad [# 4" ¥05 = o>

h,'hy =8, ] Hereg,, is the metric on ¢ = const surfaces. In
order to define our orthonormal triad we take a basis of one
forms o' = e~ “e” .

To calculate the Lagrangian ., we need to evaluate
expressions of the type I',, v, I, E}fwal“a. These terms
turn out to be functions of the y* themselves and C*' ;,,
the structure coefficients in the equation

(2.14)

do' = —1IC™ . 6N, (2.15)
The C,;, for the basis (2.14), if N = N (r) and

N, = N,t), are
C%,; =0,

CY = %( — by by + NhyS R,). (2.16)

C”)Uk) =%’ e _ﬁjpe “Acr
the C™; are those that appear in Eq. (2.13). If we now calcu-
late I, using Eq. (2.6} and insert the results in .7, we
obtain for the Class A Bianchi-type cosmological models

L = Ve My — Yie Uy Ou

+ lie” 3”12(9’3,«k Je~ Bkjaw)V(O)w

+ Ne - [ée”‘lzeﬁmre Bi.s‘

Xe ,C o — miy]

+ N ' [Alte - 3“¢e - Bjreelr C 'l'r 7/({ )U(;())lb]'
Variation of this Lagrangian density with respect to the field
variables ¥ and ¢ gives the generally covariant Dirac equa-
tions. Variation with respect to the metric tensor g“* must be
performed using the tetrad field we have chosen. This vari-

ation is in general not unique and our vierbein basis does not
fulfill the generally assumed relation

i

(2.17)

Sh,,

| A 7Pyl
— = i, g,

08,

[¢3

(2.18)

by means of which the “standard” symmetric energy-mo-
mentum tensor of the Dirac field is normally obtained. In
view of this fact our energy~momentum tensor differs from
the ‘“‘standard” one (see Appendix).

In this paper we will study Bianchi type IX models
which can be divided into three cases: the FRW k = + 1
case (B, = 0), the diagonal case B, = 3,

= diag W+ + (\/3),8,,ﬂ+ - (\/3)ﬁ-9 — 2B, ), and the

symmetric case where 3, = ¢ ~ *3,¢",
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0 1 0
Kk,=|—1 0 0f
0 0 0

We will construct an action for the symmetric case, which
we can always specialize later to the other two, putting¢ = 0
and 3, = O respectively.

We can now insert the metric (2.12} with
B; = e~ *B,e* in the action (2.1}, and substitute .7, giv-
en by Eq. (2.17). We define

p; = (eBisﬂjxe 7ﬂ1j - %6;‘,'77'[{)’ (2.19)
with
6p, =e *{ap, +ap_
3
o ————”i———] e, (2.20)
sinh[2(v/3)B_]
o, = diag(1,1, — 2),a, = diag (V'3, — 1/3,0),
0O 1 0O
a,=(1 0 ol
0 0 O
Using
Py =ps + 87 oY Oysin®[(VIB_1,  (2.21)
we find
I= ”87J- [p+ﬁ+ +P-B~ +P&,¢ —ﬂﬁkk
+ die =22V — darie ~ >y Oy — N,
— N9, ) dt do. (2.22)
Here do=w"'A w? A w?, and
7
___iezn(l _ V) +€()n<l(7/'k )2 _lp2 _ip ________1355—
2 o KD &P 6T S Ginh?2v/38_)

e By up,
cosh’(v/38_)
X (@YPY*Y)P) — 8me” (¢ -cosh(2v/3B_) + le ~#+]
XYY — 16amipy,
F\ = 4 cosh(38,) sin2¢ sinh(v/38_ )y >y Sy
— 41 sinh(38., ) cosh(v/38_ )"y Sy
+ 47 cosh{3,, ) cos2¢ sinh(v/38_ 'y,
5, = 4 cosh(3B, ) cosh(v/38_ )y 2yy
+ 47 sinh(38., ) cos2¢ sinh(v/38_ )y ' y
— 47 sinh(33, ) sin2¢ sinh(v/38_ )y,
;/3 = —p,+ 4mre 3!117/7(3)},(5)1/}’
where
V=1+2* [cosh(4v/36_) — 1]
+ e % — e~ - cosh(2v/3B_).

+ 27 — 87~ *?tanh?*(v/36_)

iIl. EQUATIONS OF MOTION

Given the action (2.22), we only have to vary it with
respectto B, ,p . , P, 4, N, N, ¢, and ¢ to get all the
equations of motion. To obtain the final system, we have to
choose N and N, and also solve the constraint equations
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>, =0.
For convenience, we choose N, = 0 and

N = 6e ¥ /7, [this second choice is equivalent to taking
£ (t) = t]. We will solve the constraint #°, = 0 for 7*, and
define H = 7*,. It is not difficult to show that we may solve
the constraint 55 = 0 for p’, in terms of ¥y*y"¢, thus
eliminating ¢ from the problem (except as a quadrature).
Substituting this value for p’, into #°, and solving for Has a
functionof 8, ,p , &2, {/7, and ¢, the action for § | becomes

I= J[P+d3+ +p_dﬂ__——Hdﬂ],

where
HZ =p2+ +P2, + 48?729- 6{)(&7{3)?’(5)¢)2
X coth’(2v/38_) + 487e ~ V(B . JBy"¥ Y
+ 96mme = Pfnp + 9e ~ (VB ) —1). (3.1b)
The spinor potential V(5 , ) is
Vs(B ) =e" cosh(2v/36_) + je *-. (3.2)

Note that in this Hamiltonian form we have dropped
the velocity terms in  and . This is because the action (3. 1)
with these terms added, when varied with respect to ¥ or ¢
does not give the Dirac equations. To see the reason for this,
we have to return to the action (2.22) and vary with respect to
 and ¢/, and then impose the conditions N, = 0 and the
constraint #7, = 0. Unfortunately, the N; = 0 coordinate
choice is incompatible with the action (3.1} with the velocity
terms in ¢ and ¢ added. In fact, it is easy to see that with
N = 6e —*?/H, theequations for yand ¥ become (- =d /d2 )

b= % =32 (FyPyy)
X YOYPyIY[1 + tanh*(v/38_)]

(3.1a)

3i 6im
—~ = V5B, e N — ——e O, (3.3a)
H °T= H
b=+ %1-;1 e Py
X 11';7,(3)7/(5)?,(0)[1 + tanh2(1/3ﬂ_)]
- %’- VsiB. e 279y — %@e~mw0’. (3.3b)

Actually the difference between these equations and
those obtained by varying (3.1) with the appropriate spinor
terms consists only in replacing 1 + tanh*(v/38_) by
2 coth?(2v/3B_)in (3.3).

Now, varying (2.22) with respect to N, and N, gives us
the following constraints on the spinor variables (excluding
impossible conditions on the metric variables):

Iy =gy Sy =o. (3.4)
In order to study the structure of Egs. (3.3) and (3.4) we take a

spinor basis in which
i6,

ae
a,e
v= b | (3:3)
b,e'*
The constraints (3.4) tell us that b, = — a,a,/b, and that
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¢, =0, — 6, + ¢,. The content of Egs. (3.3) now reduces to

. 3VsiB '
a,—4a; — - SH +) e *%p, sin(¢, — 6,) =0, (3.6a)
. 3 (02 +b2)(a2——b2)
o= e = lb?Z ~ [1 + tanh*(v/38_)]
3 - b om _
+ ;I‘Vs(ﬂi)e 2ﬂcos(¢1—91)571 + _;{_e W _ g
(3.6b)
. V(B .
a, —3a, + SH + ) e— 202 all)a_ sin(d, — 6, = 0, (3.6
1
R 3 a2 +b2 a2 —p?
bt e 1b)(22 U1+ tanh?/36.))
1
- —3_V B )e_mcos(¢ —0)1‘. + i"le—mzo
H SV x 1 1 bl H s
{3.6d)
. 3 )
by —3b, + FI— Vs(B, Je =2, sin(¢, — 6,)=0, (3.6¢)

Ir s la +b1)e; —b1)

$,~— ——e~ (1 + tanh®(v/38_)]

H b?
+ 2Bl D cosip, — 6,) — T g
H S + bl 1 1 H ’
(3.6f)
o4 3w olal +bi)la; —bi)
O+é— 0+ —I—i—e e b2
X[1 + tanh*(v/38_)]
3 —20b, bm 3,
2 L4y —g)_ m
H 5B e 2, cos(#, 1) H €
=0, (3.6g)
[ %42 3_(‘11‘12>
( b, ) ts b,
+ 3 Vs(B . Je  *“a,sin(¢, — 6,) = 0. (3.6h)
+

H

It is not difficult to show that Egs. (3.6g) and (3.6h) are conse-
quences of the first six of Egs. (3.6), which means that the
constraints {3.4) are compatible with the Dirac equation. On
the other hand, the addition of (3.6d) and (3.6f) gives

¢, = — 6, + const, (3.7)
2

so in Egs. (3.6), Eq. (3.6f) can be substituted by (3.7). More-
over, from (3.6f) and (3.6b) we can calculate ¢, — 6,. With
=¢, — 0,, we get

3VS(B¢) COS'}/ [gl . ﬁ]efzn‘ 12m e__,3n
H b, a, H
=0. (3.8)

Now, Egs. (3.6a), (3.6¢), and (3.8) constitute a reduced
set of equations whose integration, if possible, would allow
the integration of all of Egs. {3.6) because, knowing a,, b,
and ¥ as functions of {2 one could integrate (3.6¢c) and obtain
a,. With these four functions (3.6b) would be integrable and
we would know 8,, and then ¢, could be calculated from y
and 6, and 9, from (3.7).
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For the diagonal type IX model and the FRW case
¢ = p,, = 0 and we have the additional constraint

Uy =0. (3.9)
With ¢ given by (3.5) this equation tell us that a3 = 2. The
addition of this constraint to the system of Eqs. (3.6) makes
Eqgs. {3.6¢) and (3.6¢) equal and some terms zero. However,
this system of equations is still consistent and could also be
solved using the reduced set (3.6a), (3.6¢), and (3.8).

For our three cases the symmetric, the diagonal and the
FRW, the problem reduces to the action (2.22) which gives
us B, , the constraints (3.4) for the symmetric case and also
the constraint (3.9) for the diagonal and the FRW cases, and
the set of Eqgs. (3.6) for ¢. The only equation we lack is one for
H. Varying (2.22) with respect to £2, and using .

N = 6e~*?/H, and Egs. (3.3) to substitute for ¢ and 1, we
find that

H:: _ 48

Vs(B . 10y e ¢

144mm oo 7y, 18 , aq -

- Yy e (V@B:)-11.  (3.10)

Calculating ¢%%%¢ and ¢4, we see that they are pro-
portional to @5 — b?. Thus, in the diagonal and FRW cases
where we must apply the constraint (3.9), the spinor part of
the Hamiltonian vanishes, and H as given by Eq. (3.1) re-
duces to the vacuum Hamiltonian. In the FRW case H be-
comes imaginary, so a homogeneous spinor field is incom-
patible with £ = + 1 FRW models, as was pointed out by
Isham and Nelson. However, in the diagonal case vacuum
solutions exist and are well known, so we will be able to give
qualitative solutions for this case very simply. The vanishing
of the spinor part of the Hamiltonian may imply that spinor
fields satisfying the constraints {3.4) and (3.9) correspond to
“ghost” spinor fields.”

In the next section we will show that for 22— co it is
possible to find qualitative solutions in the sense of Ref. 2 for
the diagonal and symmetric cases.

IV. QUALITATIVE SOLUTIONS

Now that we have the equations governing the behavior
of B, H and ¢ as functions of £2, we can in principle pro-
ceed to solve them. Because of the highly nonlinear charac-
ter of the equations, the possibility of finding exact solutions
seems remote. There are several methods for obtaining ap-
proximate solutions for type IX models in the pure gravita-
tional case*'®"'? and these can be extended to models con-
taining a spinor field. We will use the graphical technique of
Ref. 2.

We begin by noting that the equations of motion are
similar to those of a particle, the universe point, moving in an
eight-dimensional space with coordinates B , , ay, @y, by, 6,,
8,, and ¢, for the symmetric case and a seven-dimensional
space with B, , a,, b,, 8,, 6,, and ¢, as coordinates for the
diagonal case. Here {2 plays the role of time. The analogy is
not exact because the equations for the spinor variables are
only first order. In the pure gravity case, it is possible to
display the evolution of B, as a trajectory in the 5,5 _
plane, where the potential ¥ (8 , ) governs the motion. Be-
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cause of the first order nature of the spinor equations, such a
potential description in the full eight- or (seven-) dimensional
configuration space seems impossible. However, the behav-
ior of the spinor variables is relatively simple, and it turns out
to be possible to construct, at least near the singularity, a
diagrammatic solution for £ _ , where the spinor variables
are given in terms of quadratures. We can begin by defining
new spinor variables 4,, 4,, and B,: a, = 4,7/,
a, = A,e*"?, b, = B,¢*?’% and & and p by

8 =4V 34} + Bi)4; —Bl)/B1,

p =487 A (B} — A3)cos(¢, — 6,)/B,. 4.1)

V_ i 2n 172
EL44, = [? — D —4C?)"? sin( ~ 6f—"—‘ﬂ—}—{f———dn)] ,

V. 202 172
B.=[§ +5(03_4c2)”2sin(_6f______-’w'H’e d.())] ,

202 — 21 — 1/2
7/=COS I(ZC [DZ[] —Slnz(_6ffl(—ﬂ;}_{)e_'dn)] +4C28in2[-‘6f V'SWiH)e ]] ! )’

with C and D constants. Knowing V(8 , )/H as a function
of {2 we can, in principle, integrate these equations and the
rest by the procedure described in the preceeding section and
obtain the remaining four functions 4,, 8,, ¢,, and 6,.

Now, inserting & and p in H ?, given in (3.1), we find (if
we ignore exponentials in minus £2 ) that )

H?*=P2 + P2 46 coth’[2(v3)B_]
+20V5(B e 4+ 9e 42 [V(B,)—1]. (4.3)

From Egs. (3.3}-(3.5) and (4.1) it is possible to show (for the
symmetric case) that 6 is a constant of the motion and p is
constant if terms of the form ¢ ~*? /H can be neglected (that
is, near the singularity). Since 8 and p are independent of
B, , variations of H with respect to these functions, treating
6 and p as constants, gives us the correct equations for 5 , .
Equation (4.3) can be used to calculate dH /d{2 and we find
(ignoring, again, exponentials in minus £ )

H= — % VsB, e 2 — %e“‘” Vg, )—1]. 44
If we now look at the potentials V(8 , )and V(5 , ), we can
justify our assumption that the exponential expressions we
have been discarding are indeed ignorable. The form of
V(B )is well known, with roughly triangular equipotential
curves and exponentially steep walls, with soft channels ex-
tending from each corner (see Fig. 1). The function V(8 )
also has triangular equipotentials and exponential walls, but
it has no channels at the corners (see Fig. 2). The minimum of
V(B . ) — 1is zero, and that of V(B )is 3/2. For large 2
and B, suchthat V(B ) — 1 and V(B ) are near their
minima, e *?V(8 , Jande~*?[V(B ) — 1] are ignorable
and 4,, A,, B,, and H are essentially constant, and will re-
main constant except during brief periods when the universe
point is in contact with the exponential walls. Since any
change in these quantities will be slow in comparison to the
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For the diagonal case p = § = 0. If we are interested in solu-
tions near the singularity, 2 is very large, and if we assume
that 4, A,, B,, and H change relatively slowly (an assump-
tion to be justified later), expressions of the type
e "F(A,,A,, B,, H), where n is positive, rapidly become
ignorable in the equations of motion.

If we drop such terms the equations of motion for A4,
A,, B,, 0,, 8,, and ¢, can be obtained from (3.6), and in this
case it is possible to reduce to quadratures the solutions of
the reduced set of equations equivalent to Eqgs. (3.6a), (3.6e),
and (3.8). Following this procedure we get for 4,, B,, and

v

(4.2a)
(4.2b)
(4.2¢)
r
rapid decay of e ~ " we are justified in ignoring terms of the

type e " "°F(A,, A,, B,, H ) near a singularity.

Now, it is possible to use Eqs. (4.3) and (4.4) to calculate
B, and H as functions of {2, substitute these functions of 2
in Egs. (4.2) and obtain all the spinor variables. The Hamil-
tonian (4.3) can be treated by means of the wall approxima-
tion; that is, the strong exponential behavior of all the poten-
tial terms allows us to replace them by a series of infinitely
hard walls that, because of the explicit 2 dependence of these
terms, move with changing £2. The two triangular potentials,
V(B . )and V(B , ) give us triangular walls, the gravitation
and spinor walls, respectively, and the triangular symmetry
allows us to calculate the velocity of these walls when the
universe point is not touching them by looking only at the

FIG. 1. Equipotentials of V(8 , ) for large values of 8, . The value of ¥
increases exponentially from one contour to the next as one moves out from
the center. The walls associated with this potential will coincide with one of
the triangles formed by these lines.
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FI1G. 2. Equipotentials of V(8 , ). The four equipotentials correspond to
values of ¥ that increase by factors of ten from 10 for the smallest triangle
to 10* for the largest. The walls associated with this potential will coincide
with one of these equipotentials.

wall perpendicular to the 5, axis. For these walls, the entire
potential terms are 3e ~ %~ —*? for V(8 ) and pe ~*- —22
for V(B , ). Since the position of the walls are given by set-
ting each of these terms equal to a constant and solving for
B . w.u as a function of £2 we see that the velocity in both
cases (in the sense of df3 _, .., /d(2 }is 1/2. The last wall, the
centrifugal wall, blocks off a region near the 5, axis and is
due to the 8§ 2 coth’[2(v/3)5_] term in (4.3a}. Because there is
no explicit £2 dependence in this term, this wall is essentially
static and moves slowly away from or toward the 8, axis as
H changes due to Eq. (4.4).

In the Hamiltonian for the diagonal case only the gravi-
tation potential exists, and diagrammatic” and piecewise
analytic'? solutions have been found for the vacuum case
near the singularity. These solutions can be used in our diag-
onal case, where we may insert f, and H as functions of £2
found from the vacuum solutions into (4.2) to find the behav-
ior of the spinor quantities.

In symmetric case all the walls play a role, and we must
study their behavior. Because the velocities of the spinor and
gravitation walls are both one-half, we can have two cases, as
shown in Fig. 3. In the first case the gravitation wall is inside
the spinor wall, and it stays always inside, so that the uni-
verse point only interacts with it and the centrifugal wall. In
the other case the gravitation wall is outside the spinor wall.
Here, the gravitation wall always remain outside, but the
character of the interaction depends on the sign of p. There
seems to be no reason to expect p to have one sign or the
other, so we must look at both cases. If p is positive, the
spinor potential is positive, and the reverse of the situation
described above for the gravitation wall inside the spinor
wall occurs, that is, the universe point always interacts with
the spinor wall and never touches the gravitation wall. If
however, p is negative, the walls perpendicular to the 8, axis
are shown in Fig. 4. In this case, the universe point can inter-
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FIG. 3. Two possible positions of the spinor wall with respect to the gravita-
tion wall. The solid line represents an equipotential of ¥ {8 , ), while the

dotted and dashed lines are equipotentials of V(8 . }, outside and inside the
gravitation wall respectively. Since both walls move with velocity J, their
relative position will be preserved.

act successively with both walls. If we can describe the tra-
jectory of the universe point far from the walls and give a set
of bounce laws for interaction with them, we can build up a
qualitative solution.

It is easy to show that far from the walls, H,p _,and p _
are constants, and the universe point moves in straight lines
with velocity, in the sense of [(8, )* + (B_)*]'/?, equal to
(1 —82%/H?'2. 1f8 /H > 1/3/2 this velocity is less than 1/2,
and the universe point can only interact once with the centri-
fugal wall, then moves in a straight line out to infinite values
of §, . 1f 6 /H <1/3/2, the universe point can interact at
least once with the gravitation and spinor walls. From Eq.
{4.4), we can see that if p is positive, or the gravitation wall is
inside the spinor wall, A will decrease each time the universe
point interacts with a wall, and eventually, § /H will become
larger than 1/3/2 and the universe point will stop interacting
with the potentials (except for the centrifugal potential). If p
is negative and the spinor wall is inside the gravitation wall,

Vis,)

By

FIG. 4. The potential V{8, )+ V(@ )forf_=0andp = — 5. The
dashed line is a hard wall approximating this potential, To the right of the
minimum the hard wall is positioned so that the areas above and below the
solid curve are equal.
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whether or not this type of decoupling takes place will de-
pend on the detailed behavior of the universe point.

We need only give a series of laws for reflection and
refraction, for the case where the universe point does interact
with the potentials, we have completed our qualitative solu-
tion. These laws are simplest for the centrifugal wall, where
reflection is specular, and H does not change during a
bounce. Reflection from the triangular walls can be calculat-
ed using the wall perpendicular to the 8, axis and extended
by symmetry. Reflection or refraction from either the gravi-
tation or spinor walls can be calculated using two constants
of motion valid for the walls perpendicular to the B axis,
p_ = const, and p, + 2H = const. The laws of reflection
are

4

3Hi

Y (4.5b)
(HE— &)

cotf, = — cscd; + $cotd,,

where 9, and 8, are the angles of incidence and reflection,
respectively, and H, and H, are H before and after refection.
Equations (4.5) can be used to calculate both 6, and H,,.
When p is negative and the spinor wall is inside the gravita-
tion wall, the universe point passes this wall, is refracted, and
eventually reflects from the gravitation wall, returns to the
spinor wall and is refracted again. The only new information
we need is a law of refraction. In the wall approximation, the
potential is given by the dashed line in Fig. 4, where the
minimum of the potential can be shown tobe — p?/12.If the
universe point passes form the region of zero potential over

sinf, _ (H =& )1/2’ (4.5a) theregionof V= — pz/ 12, the law for the change of H and
sin8, HY - & the law of refraction are
|
sind, ( H;-¢& ) {4.6a)
sinf), HY -8 +p/12)
. G. H. g.
cotd, = — i cotb, +§——m'—+ 4 cotd, —g—’csc—‘—)
(H’_Z_‘SZ)I/Z (H?_52)1/2
2
p/4 )1/2
xX[1+ - . (4.6b)
( (Hf—&z)[2cos0,- —Hr/(Ht?‘52)/2]2
If the universe point passes from V= —p°/12to V=0,
sing, (H!—6"+p°/12)
sinG:) - ( H: -8 /) (472
H. 9. H. g.
cotfly = — } cotd, — l( . csch, )+ (gcotzei N 2 . csch, )
3 \(H? -8+ p/12)'/? 3 (H} =84 p*/12)'?
o (1 N p*/4 ) (4.70)
(H?— 8 + p*/12)2 cosb, + H /(H? — 8 + p*/12)'/?)?

We now have a complete scheme for computing the
qualitative motion of a type IX model filled with a homogen-
eous spinor field. The universe point moves in straight lines
until it encounters one of the walls, and then is reflected or
refracted according to one of the bounce laws given above
and H changes according to one of the above equations.

V. CONCLUSIONS

The coupling between the Dirac field and the diagonal
and symmetric type IX models has been discussed. We gave
a Hamiltonian formulation of the problem and showed the
incompatibility of the k = + 1| FRW model with a homo-
geneous spinor field. We were able to describe the behavior
of the universe point near the singularity by means of the
qualitative solution method. What we lack in this paper is a
quantization scheme.

A number of approaches to the problem of quantizing
the gravitational field have appeared'® from the thirties up to
today. However, quantized general relativity is not well
enough understood today and compromise models in which
homogeneity is imposed before the gravitational field is
quantized have been proposed.'*!* In practice this is what is
known as quantum cosmology and quantum models.
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Some of the work which has been done in the past has
been concerned with quantizing gravity coupled with matter
in the sense of square-root Hamiltonian methods,’ true ca-
nonical quantization,'® the Heisenberg picture,’ and others.
Some of the problems associated with square-root Hamilto-
nians have been discussed.'® The “true canonical quantiza-
tion” scheme could be attempted in our cases. However, as
we have seen, unfortunately, the V; = 0 coordinate choice is
incompatible with the action (3.1) with the terms in ¢ and Vs
and a “true canonical quantization” could not be easily
achieved for the matter field coupled to gravity. Moreover, a
Heisenberg picture seems more natural for our cases. How-
ever, in order to apply this method one should be able first to
solve classically equations (3.3) or equivalently (3.6). Al-
though near the singularity, and especially for the diagonal
case, we discussed how to reduce these equations to quadra-
tures, it is not at all clear how to solve them, even in this case,
and no obvious quantization scheme springs to mind.

APPENDIX

In studying cosmological models with spinor fields one
must be doubly careful about the variational principle one
uses. First, one must be sure that the imposition of homo-

Octavio Obreg6n and Michael P. Ryan, Jr. 629



geneity before variation still allows one to obtain Einstein’s
equations, and second, one must be sure that the T, that
appears in the equations is correct. The purpose of this Ap-
pendix is to show that the T,,, we arrive at is valid.

The usual method of obtaining 7, is to write the spinor
action as

1=~ [V — iy, — by — my] d*x

(A1)
where ¥, is defined in Sec. I1, and to vary I with respect to
8.~ The problem with this simple prescription is that / is a
function of hw) , sixteen variables instead of the ten g,,,. The
usual methods for solving this problem are to: (1) Vary both
the matter action and the gravitational action with respect to
h,,“, obtaining a first order formulation of general relativity
coupled to a spinor field (see Nelson and Teitelboim®), where
a constraint reflecting invariance under Lorentz rotation of
this basis }fw “is obtained; and (2) impose some condition on
};w “ to reduce the number of independent variables in the
variation. The usual condition for method (2} is (see, for ex-
ample, Brill and Wheeler'")

d;/ﬂ = - %?/Ugf)a dgar’ (AZ)
for both variations and derivatives of y“.
In general, the variation of (A1) is

o= —— (L) [ v — gy, - o) a's

+ E( )J(\/ g)( \:/_ga ¥y
~ 0. 2% -9,
— 3 — WYV g — V'V OV

+ VYV — VPOV W) d ', (A3)

where X ° = ¥*8y%y, + 8Py, v — v°g88,,., and

2 =V YV + VsV 0 — V7 0808, If we now
impose (A2), the second part of (A3) becomes zero, and the
first part gives us

Tjuv = — %i(d’ﬂy ‘/’;v) - l/’;ul I ¥, (Ad)
the usual spin-1/2 energy—momentum tensor. If, however,
the basis we choose does not satisfy (A2), then we must keep
the extra terms in (A3). Actually, since there always exists a
basis which satisfies (A2), there should exist a spinorial rota-
tion which operating on  should allow us to recover {A4)
without changing probabilities.

Unfortunately, the bases that have been generally used
to study the Bianchi models are of the type
h Y=g e B, =g, B @, where the A

aptla) o

Y are an

(a)
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invariant basis which is not varied, and the g, form a
“square root” of the metric §,, in the invariant basis, in the
sense of §,,, = q,,, 95,75 Also, theg,,, are given as algebra-
ic functions of g, . It is not difficult to show that if g,,, is not
diagonal, then the extra terms in (A3) remain.
The basis that is used in the body of the paper is

RO =1,k% =0k =0, and A", (x*) appropriate to the
Bianchi type in question. The invariant basis of one-forms is

o =di, o'=h" dx. (AS)

The matrix g is
Go=N, g5, =0, gp =9 Ny,
q9; =94 :eﬂﬂeﬁij’ (A6)

where N;=g,, and §, = e ~ *?¢*”;. With this prescription it
is not difficult to show that for Class A models 7T, and T,
are the same as would be given by (A4) (the fact that T, is the
same is unexpected, but true), while T; is not, except when
B, is diagonal. Notice that this means that our results agree
with those of Isham and Nelson' for FRW models. If we
accept the T}, given by (A3), we can show that the homogen-
eous action (2 22) does indeed give us the Einstein equations
for class A Models.

Note added in proof: After this paper was submitted, we
received a preprint by Marc Henneaux treating some of the
same material in a slightly different formalism.
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ERRATA

Erratum:Towards a factorization of M, [J. Math. Phys. 21, 1024(1980)]

Patrick L. Nash

Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North

Carolina 27514

(Received 21 October 1980; accepted 7 November 1980)

PACS numbers: 02.40.Vh, 99.10. + g

In the_ﬁrst sentence after Eq. (80), X * should be re-
placed by X “. In the second sentence after Eq. (91), €54

should be replaced by ¢f;), and ¢} , , replaced by eq-
The minus sign should be deleted from Egq. (99).

Erratum: Inverse Scattering. Il. Three Dimensions [J. Math. Phys. 21, 1698

(1980)]
Roger G. Newton

Physics Department, Indiana University Bloomington, Indiana 47405

PACS numbers: 03.65.Nk, 99.10. + g

The Corollary to Lemma 2.2 should start: “For almost
all x and y, and 311 k>0..” and in both integrals K, should
be replaced by K 2.

In Lemma 3.2 delete the words “for each k,.” Eq. (4.2)
should have — oo as the lower limit on the integral. Eq. (5.1)
should read

5, = jargdetS,. (3.1
The equation above (5.24) should read
Y oI ;' =0,
Eq. (5.24) should read
YZ'QH(I——B,,, % )(I—B,,)=O, (5.24)
" mbn Ky + K,
and Eq. (5.25) should state:
For real k,
1 I =17 '

The parenthesis in Eq. (5.26) should be raised to the
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power IV, . In Eq. (6.4) the second I1 _, should be replaced
by IT ;' In Eq. (6.6) the power N, should be replaced by
2N,.

In Lemma 6.1 the hypothesis should read

log det S, _, = lim (log det S, + ikV /2m).
0 k—

The right-hand side of (6.21) should have a factor of Q on its
left.

In Lemma 6.2 it should be added that the hypotheses
are the same as those of Lemma 6.1.

In Eq. (8.3) delete one fd@'. The left-hand side of the
equation on line 16 of Appendix 1 should be replaced by

[ kil

On line 4 from the bottom of the right hand column of p.
1712, k should be replaced by K. In footnote 26, (8.1) should
read (8.4).
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