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A detailed construction is given of a supermanifold which is compact and has far from trivial 
topology. Higher dimensional examples are also described. The Grassmann algebra from which 
the supermanifolds are constructed may have finite or infinite dimension. 
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1. INTRODUCTION 

The purpose of constructing manifolds is to combine a 
fixed and manageable local structure with a variety of possi­
ble global topologies. A differentiable manifold is locally dif­
feomorphic to Rm, while a supermanifold is locally "super­
diffeomorphic" to B L m.n (the Cartesian product of m copies 
of the even part and n copies of the odd part of B L' the 
Grassmann algebra over RL

). In the context of physics this 
local structure is motivated by "superspace", originally pro­
posed by Salam and Strathdee. I 

Precise definitions of supermanifolds vary, both in the 
topology used on B L m.n and in the definition of "superdiffer­
entiability" of the transition functions between overlapping 
coordinate neighborhoods. The definition used here is that 
developed by the author in Ref. 2, which includes other defi­
nitions3 but also allows many further possibilities. The natu­
ral definition of "superdifferentiability" of functions of 
Grassmann elements, summarized below, is in effect much 
more restrictive than that for functions of real numbers, ba­
sically because Taylor series in nilpotent elements terminate. 
As a result the class of possible global topologies for super­
manifolds (even with the broader definition) is more restrict­
ed than that for ordinary differentiable manifolds. (A com­
parable situation exists for complex manifolds.) 

It is the purpose of the present paper to demonstrate 
that supermanifolds exist which are far from topologically 
trivial, and also that the broader definition of supermanifold 
adopted in Ref. 2 does substantially increase the possible 
global structures. 

An (m,n) dimensional G oc supermanifold over BL is de­
fined2 to be a Hausdorff topological space Y together with a 
set of charts (Ua, 'Pa) such that (a) ua Ua = Y; (b) 'Pa is a 
homeomorphism of Yonto an open subset of BL m.n; and (c) 
'Pa o'PfJ - I: 'P[J( UanUfJ )---+'Pa (UanUfJ) is "G "''' or "superdif­
ferentiable," where in (b) the topology on BL m,n is the usual 
topology on B L m,n regarded as a finite-dimensional vector 
space and in (c) a functionfUCB L m,n---+BL is Goo if, given 
(al,· .. ,am +n) and (a l + hl' .. "a m + n + hm+ n) in U, 

I(a l + hl,· .. ,am + n + hm + n) 
m+n 

=/(al' ... ,am+ n ) + L hdGJ)(al,· .. ,am+n)) 
k=1 

+ o(llIhl, .. ·,h", + n )11)2, 

"'Supported by the Science Research Council. 

where the partial derivatives GJ are in turn differentiable 
functions of U into B L' (More details of this definition can be 
found in Ref. 2). 

2. A FIRST EXAMPLE 

The first example is a (1,2) dimensional supermanifold 
over BI (constructed from B I

I ,2 very much as an Iwasawa 
manifold is constructed from C 3

, Ref. 4), Suppose B I
I

,2 is 
identified with the set of 3 X 3 matrices of the form 

x 

o 
where x is an even element of B I , andYI andY2 are odd 
elements. This set of matrices forms a (non-Abelian) group 
under matrix multiplication, and thus B 11

•
2 acquires the 

structure of a Group G, summarized by 

(X'YI'Y2)(U,V I,V2) = (x + U'YI + VI + XV2'Y2 + v2), 

Letting 1 denote the unit element of BI and.B the odd gener­
ator of BI , an element of BI

I
,2 can be written (al,bl.B,b~) 

where a, bi' and b2 are real numbers. Define D to be the 
discrete subgroup of G consisting of elements (m l,n /J,n~) 
where m, n I' n2 are integers. Then G ID, the space of left 
co sets of Din G (with the quotient topology) can be given the 
structure of a G oc supermanifold, as is now described, 

Let [(X,YI,Yl)] denote the coset containing (X'YI'Y2); then 
[(X'YPY2)] = [(x',y; ,yi)] ifand only if there exist integers m, 
n I' n2 such that 

x=x'+ml, Y2=Y~ +n~, 

YI =Y; +nd3+x'n~. 

Six subsets of B 11,2 are now specified, in terms of which eight 
coordinate neighborhoods on G / D are defined: 

SI = !(al,bIl'l,b~)la,bl,b2ER,!<a<!j, 

S2 = !(al,bIl'l,b~)la,bl,b2ER,!<bl <~j, 
S3 = ! (al,bl.B,b~ )la,b l,b2ER,! < b2 < ~ I, 

T, = !(al,bl.B,b~)la,bI,b2ER, -~<a<~J, 
T2 = ! (al,b/3,b.j3)la,b l,b2ER, - ~ < b l < ~ 1, 
T3 = ! (al,bl3,b~)la,bl,b2ER, - ~ <b2 < ~l· 

Letting VI = SlnS2nS3, V2 = Tlu2nS3, V3 = SlnT2nS3, 
V4 = SlnS2nT3' V5 = T j nT2nS3, V6 = T lnS2nT3, 
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V7 = S]nTlnT3' VB = T lnT2nT3, the eight coordinate neigh­
borhoods U C G I D are defined to be U i : = [~] 
(i = 1, ... ,8) ~nd the eight coordinate maps Pi:Ui--Vi CB I 1.2 

by Pi([p]) = p (i = 1, ... ,8). The U, cover G ID since, given 
any (X'YI'Yz) in BI 1.2, there exist integers m,n l , n1 (not neces­
sarily unique) such that 

x=al +ml, YI =bJi3 +nJi3 +an.j3, Y2=b.j3 +n.j3 

with - 2/5 < a,bl,b1 < 4/5. The maps Pi are well defined 
because no individual Vi contains two distinct members of 
the same coset, and they are evidently homeomorphisms of 
the U onto the V which are open subsets of BI 1.2. , , 

It must now be established that the transition functions 
1//01//. 1·I//(UnU) __ I//(UnU), i,j' = 1, ... ,8 (of which 

( ) • ) I J I I ) 

there are 56 to be considered) are all Goo (superdifferentia-
ble). One example, 1//6°1// 1- I, is calculated in detail here. 
Suppose [(X'YI,Yz)]EUlnU6 • Then (X'YI'Y2) = ((a + m)l, 
b /3 + n Ji3 + an.j3,b.j3 + n.j3), where! < a < M < b I < ~,and 
~ < b1 <~ and also (X'YPY1) = ((e + m')l,d l /3 + n;/3 + en~/3, 
d.j3 + n'~(3), where - ~ <e <~d <dl <~, and - ~ <d2 <~. 
Thus (X'YI'Yz) = ((a + m)l,b l/3 + n l/3 + an.j3,b.j3 + n.j3), 
where either 

case ( 1 H < a < ~, ~ < b I <~, and! < b2 < ~; 

orcase(2H<a<~, !<bl<~' and ~<b2<~; 

orcase(3):!<a<~, !+a<bl<~' and ~<b2<~; 

orcase(4H<a<~, !<bl<a-!, and ~<b2<~' 

Therefore the set I//d UlnU6 ) is the union offour disjoint sub­
sets of B 11.2, these sets consisting of points (a l,b l/3,b.j3) in 
B 11.2 with a, bl> and b2 satisfying one of the four sets ofcondi­
tions listed above; also 

in case (1) 1//6°1// 1- l(p,ql,q2) = (P,ql,q2); 

in case (2) p 6ol// 1- l(p,ql,q2) = (p - 1,Q'I,Q2); 

in case (3) 1//6°1// 1- I (p,Q I ,Q2) = (p,Q I - P/3,Ql - (3); 

in case (4) 1//6°1// 1- l(p,QI,QZ) = (p -l,QI 

- (p + 1)/3,Q2 - (3). 

The transition function P60p 1- I is thus clearly Goo, 
and in fact GOY (superanalytic). The other transition func­
tions have been calculated and also proved to be GOY. Thus 
G I D has the structure of a GOY supermanifold. 

Since the group G can also be regarded as a simply con­
nected three-dimensional Lie group, with D a discrete sub­
group, G I D can be regarded as a three-dimensional real ana· 
lytic manifold, (with fundamental group isomorphic to D, 
which is non-Abelian). However, G I D regarded as a super· 
manifold (with supermanifold structure defined as above) 
will have the same topology as G I D regarded as a manifold, 
and thus will also have fundamental group isomorphic to D. 
Also G I D can be mapped homeomorphically onto a closed 
and bounded subset of ]R6, and thus shown to be compact. 
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3. FURTHER POSSIBILITIES 

(1,2) dimensional supermanifolds over Bl. for any finite 
value of L, and also over the infinite-dimensional algebra B rye 

defined in Ref. 2, can easily be constructed in a similar man­
ner by starting with the basic group structure 

(X'YI'Yz)(U,V I,V2): = (x + U'V I + YI + XV 2,y2 + v2 ) 

once again and considering the quotient of this group by the 
discrete subgroup D consisting of elements (P,QI,Q2) of BI. 1.2 

withp, Ql' and Q2 "Grassmann integers," that is 

p = mil + m.j31 /32 + ... , 
ql = n l/31 + n.j32 + n~3 + n4 /31 /32/33 + ... , 
Q2 = n;/31 + n~/32 + n;/33 + n~/31 /32/33 + "', 

where the m i , ni , and n; are integers and/3I,/3z,'''' /31. are the 
odd generators of the Grassmann algebra. In each case the 
supermanifold constructed is compact and has fundamental 
group isomorphic to D. 

Higher dimensional supermanifolds can also be con­
structed in a similar manner by considering multiplicative 
groups of upper triangular matrices of higher order. For in­
stance there is a (3,3) dimensional supermanifold G ID, 
where G is the group of 4 X 4 matrices of the form 

(~ o 
o 

under matrix multiplication, with U I, U 2, U 3 even elements of 
BI. and VI' V2' V3 odd elements, andDis the discrete subgroup 
of G consisting of matrices whose elements are all Grass­
mann integers. Again, all such supermanifolds will be com­
pact and have non-Abelian fundamental group. 

The definition of supermanifold used here is broader 
than the others3 largely because a finer topology is used on 
B 1. m.n; in fact the coarser topology precludes the existence of 
compact, Hausdorff supermanifolds such as those con­
structed here (see Ref. 2, proposition 3.4), and it is thus dem­
onstrated that the broader definition does considerably ex­
tend the range of possible global topologies for 
supermanifolds. 
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This paper extends to nonlinear evolution equations of odd order the analysis of existence and 
structure of the polynomial conserved densities. The results for low order densities are similar to 
the case of even order. The situation for densities with high order derivatives is now radically 
different. An asymptotic algorithm is presented for the search of such densities, which are shown 
to be quadratic in the highest derivatives. The very existence of just one high order conserved 
density is shown to severely restrict the evolution equation, and in the third order case it leads, 
with some minor additional hypothesis, to the KdV family. 
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1. INTRODUCTION 

In a previous paper 1 the polynomial conserved densities 
for general evolution equations of even order were analyzed 
in detail. As indicated therein, the case of odd order requires 
a special treatment since the existence of nontrivial con­
served densities of arbitrarily high order in the field deriva­
tives cannot be excluded in this case (recall, for instance, the 
Korteweg-de-Vries equation 2 ). 

The present paper discusses some general properties of 
the polynomial evolution equations U I = P (u, ... ,u M) of odd 
order. Concerning densities of low order, the situation is 
much alike to the even order case, 1 as proved in Sec. 2, where 
criteria are given for the existence of one or two nontrivial 
conserved densities of this class. Sections 3 and 4 are devoted 
to analyze high order nontrivial densities. In Sec. 3 some 
necessary conditions on P are obtained for at least one such 
density p(u, ... ,uN) to exist, and the quadratic dependence of 
p on the two highest derivatives UN' UN _ 1 is established by 
direct computation. Section 4 presents an asymptotic algo­
rithm which allows us, first, to show this quadratic character 
in full generality, secondly, to limit the order of derivatives 
which may enter the coefficients of these quadratic terms, 
and finally, to give an explicit differential system for such 
coefficients. The integrability conditions for this system im­
pose strong restrictions on P. As an illustration, we prove in 
Sec. 5 that the KdV equation or its modified form are singled 
out among the third order nonlinear evolution equations U I 

= U J + !(U,U I'UZ) as simultaneously possessing one very low 
and one high order nontrivial conserved densities. 

Notation 

We will keep to the notation in Ref. 1. The symbol U M 

denotes the M-derivative of U = u(x,t) with respect to the 
real variablex:uM = JMulJxM = DMu, whereD, in general, 
stands for the total x-derivative. By Y M we shall denote the 
set of sufficiently smooth functions F (u,u 1 , ••• ,uM). Similarly 

Y M=1FE YM:Fu,,-JF IJu M #0), 

,r:W=1FE y M:Fu"u,,=J2F IJu?t #OJ. 
Two densitiesp, p will be called equivalent (p -p) whenever 

p - p = Q 1 (=DQ), i.e., if p - P is trivial. Finally Cv (P) 
will stand for the set of polynomial conserved densities 
pE .'7:~ under U I = P. 

2. CONSERVED DENSITIES OF LOW ORDER 

Let us consider the (nonlinear) evolution equation 

U I = P(u, ... ,uM), M odd, (1) 

where P is a polynomial in Y M. We are going to see that, 
concerning the low order (N < M 12) conserved densities of 
(1), many of the results obtained in Ref. 1 for even M still 
hold in the case of odd M. To begin with, we state the 
following 

Theorem 1: Pu"u" #O=>~ pECN(P), N <M 12. 
Proof PI -(oplou)P = Q (""u M _ 1)1 requires P to be 

linear in U M' 

Remark: The major difference between the odd and the 
even case lies in the fact that the existence of p( ... ,u",,), 
N> M 12, is only possible for odd M (remember the KdV 
equation!). To further emphasize this point let us observe 
that even the conclusion of Theorem 1 fails for N> M /2. As 
a matter of fact the equation U I = u: admits the conserved 
densities p = u~, \f k> 1. 

Given a polynomial P, linear in u"", let us decompose it 
in the form 

P = auw + b = A 1 + B, a,b,BE .'7."" I' AE .7~ 1 • (2) 

Then we have the following: 
Criteria: 

i) O#d(B)#d(A)} 
( M>3 

=> \f nontrivial conserved p(···,u(.w _ 3)/2 ) - AU. 

(ii) U H I
U

" I I U\I ItJ\I I 
A ....LO=B } 

M>3 

=>\f nontrivial conserved p(···,U(M -3)/2 )-AU, 

where d (.) denotes the degree of the corresponding polyno­
mial in the variable U M -I . 

Proof (i) The conservation of p requires the existence of 
QE Y.~ _ 2 such that 
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Pt - 8p A - ( 8p ) B = QI . 
8u 8u 1 

By comparing the powers of U M _ 1 we conclude (i). 
(ii) The coefficient of U2M -2 in 

~ [ 8p A _ ( 8p ) B] = 0, 
8u 8u 8u I 

leads to the condition 

( In 8p ) =B /A au 1 uM_ 1 u,W_l U.W 1 U M _ 1 

(3) 

(4) 

(5) 

so that (ii) follows at once. • 
Finally we state a necessary condition for the coexis­

tence of (at least) two conserved densities of low order. 

Theorem 2: Let p, is be two nontrivial conserved densi­
ties for (1), M;.3, of orders «M - 3)/2, and such that 
is --t Ap, 'If AE lR. Then 

(a) Pu"u" 1 = 0, 

(b)bu" .u
M

_. =2auw 2· 

Proof (a) Since p, is are nontrivial and conserved under 
u, = P there must exist two functions F,G€. Y M -I such 
that 

p_ FI _ G1 

- 8p/8u - 8iS/8u . 
(6) 

Let us define 

g==aF - G, a= 8iS I {jp . 
8u 8u 

(7) 

Obviously aE Y M -3 and moreover, since is --tAp, 

gl =aIFEYM_1 • (8) 

HencegEYM_2 andFmustbelinearinuM _ 1 • It 
follows that 

P=F1/
8P =h( ... ,uM_2)uM +k( ... ,uM_ 1 ), (9) 
{ju 

and thus (a) is proved. 
(b) LetF=S(···,uM_2)uM_ 1 + T(.··,uM_2), 

P = a(···,uM -2 )uM + b ( ... 'U M -I ). FromFI = ({jp/{ju)Pwe 
get 

a {jp = S~ {jp = S 
{ju U.., 2 {ju U.w _, ' 

b {jp 
8u 

(10) 

=Su" 2U~-1 + V(···,UM_2)UM_ 1 + W(··.,UM_2)· 

So the conclusion follows at once. • 

3. CONSERVED DENSITIES OF HIGH ORDER 

LetpE Y'J" N>M + 1;.4, bea conserved density un­
der (1). As it is well known this implies ({j /{ju)Pt = O. Now, 
it is not difficult to show by direct computation that 

p, = £ Pulj =AUM+ N + BUM+N_I + C, 
j~O 

with 
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(11) 

A ==PUNPUM' B Pu,JPuM~' + N(Pu")d + PUN~' PUM . 
(12) 

The terms included in C do not contribute to the coefficients 
of UM +2N, UM +2N -I in ({j/{ju)p" so that the only nontrivial 
contributions to these two coefficients come from: 

(_I)M+ND M+ N a 
aUM + N 

--+( -1)M+NAu~uM+2N 

+(-l)M+N[AuN • + (M+N)(A u)duM+2N_I , 

(_1)M+N- 1D M+ N- 1 a 
aU M + N _ 1 

( l)M+N-IB --+ - u"U M + 2N _ 1 , 

(_l)NDN~ 
aUN 

-( -1)NAu,uM+2N 

+(-I)N[Bu,+N(Au)duM+2N_I' 

( _1)N-IDN-I _a_--+( _1)N-IA U 
a Us_. M+2N-I 

UN_I 

The coefficient of U M + 2N turns out to be 
[1 + ( - I)M ]A u" which is automatically zero. On the oth­
er hand, the vanishing of the coefficient of U M + 2N _ I 
requires 

M(Pu,U)IPu\l -2 Pu,u,Puw • = (2N - M)Pu,,,,(Pu.)l. 
(13) 

Consequently Pu,u, E Y M , and therefore 

p-~a(O)( ... ,UM)U~ + b (· .. ,UN_ 1 ), N>M + 1;.4. 
(14) 

The next proposition quotes some other interesting conse­
quences of (13): 

Proposition 1: Let N> M + 1 ;.4. Then: 

(i) ~ puw • #O::::>~ pE CN(P); 
8u PUw 

( .. ) {j PUM • _f\...--o.~(O)_kQ2IMP2NIM-I 
11 - -- - V---,?U - , 

{ju Pu u" 
w 

where k is a constant and Q is defined by (InQ)1 = PUu / 
Pu ; 

M (iii)Pu " = constant (#0), P
UM

_. #O::::>~PECN(P). 
Assertion (iii) follows from the polynomial character of p. 

It is a simple exercise to prove that for N>M +4;.9 

P, =AUM+ N +BUM+N_I + CUM+ N_2 
A 

+DUM+ N_ 3 +E, (15) 

with 

C= ~ (N)(p ) [P - Pu, )-=-0 j u", j 2 J + Pu.,. u" 

+ (N - l)(PuJI] + Pu" 2 Pu " ' 

(16) 

D==pu, ± (~)(Pu"" ,)j +Pu, • 
j~ 0 J 
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2 (N -1 ) XL· (PUM +,_) j 
j=O J 

+ Pu,._, [PUM , + (N - 2)(Pu)d + PU N _ 3 PUM . 
.A 

The terms included in E do not contribute to the coefficients 
of UM +2N ""'UM +IN-3 in (lj/lju) Pt· The vanishing of the 
coefficient of U M + IN _ 1 provides no new information. As to 
the coefficient of U M + 2N _ 3 it leads to the condition: 

M16+2 [Au,. -Bu,]z+ ~ [A uN _. +BuJl 

+ M [Au" - Bu,v_. + CuN]1 + 2 [(Au,_,)1 - (CuJI 

+ Au" -3 - Bu,., + Cu.,_, - DuJ = O. (17) 

The vanishing of the coefficient of UN in (6) requires, having 
in mind (14). that: 

(18) 

In other words 

P- ~ a'O)(···.UM)U~ +! a<l)(""UM+l)U~_1 + e(.··,uN _ 1 )· 

(19) 

In fact, one can easily prove that a' I) = {3(""UM)UM +2 

+ Y(""U M + 1 ). but we omit the details. 

4. A PRACTICAL ALGORITHM OF ASYMPTOTIC 
CHARACTER (N) 1) 

Two remarkable suggestions arise from the preceding 
section. First of all, one suspects that for N> 1 every con­
served density pE CN(P) should be quadratic in the highest 
derivatives. And on the other hand formula (15) could possi­
bly admit a simple generalization when N> 1, which might 
prove useful when computing ljp,Iou. 

Indeed it is rather easy to show that given q>O. there 
exists mo(q) such that 

Pm - jto U M + m- j [ ktJ; )(PUM+k_)k] 

EffM + m _ q _ l , Vm>moCq)· (20) 

Relations of the form (20), which express equality only in the 
dominant terms containing uM + m' uM + m _I , ••• ,m>l, will 
be simply written in the sequel as 

Pm ~ ~ UM+ m._ j [ i (;)(PUM +' )kJ. (20') 
i>O k = 0 

Wi th this notation, the generalization of (15)for apE C N (P ). 
N> 1, turns out to be 

o ~ A (j) Pt = L U M + N _ j ' 
j>O 

(21) 

Therefore. the vanishing of lj Pt/ou leads to the equation 

[ 

n n-j ] 
U ern) A U) .::.. 0 L M + 2N - n L L j,m I u, _ 00+ j + ..l m - • 

n>O j=Om=O 

(22) 
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X(N-n;j+m)J. 

The coefficients ofuM + 2N _", n = 0, 1,2,.··(n<N) in (22) 
must be zero. so that after substitution of A lil by their expres­
sions (21) one finds the conditions 

jto ]: et~ [ Lt/UN_. ~t~ (N ; i) 
(23)" 

with 

O. n = 1,2,oo.,M - I,M + I,M + 3 ..... 

M+2r+l,.··, 
h(")= 

n = M + 2r, r>O sufficiently small. 

Remark that (23)" holds only for n<N. More explicitly. 
given n. 3No(n) such that (23). holds whenever N>No(n). 
We are now in position to prove thatp must be quadratic in 
its highest derivatives. We proceed by induction. Since it is 
known to be true for the first two terms [see (19)], let us 
suppose that 

P= ~qIlalJlu~_j+R(""UN_q). q<N, (24) 
j=O 

where the functions aU) depend on derivatives of low orders 
«N). We want to prove that R must be quadratic in UN _ q' 

First of all we observe that h <,,) depends only on low 
order derivatives for n<N. so we can forget them in this 
argument. 

Let us see which are the contributions in (23)lq + 1 to the 
coefficient of UN _ q + 1 • Their sum must be zero. because it is 
nothing but the coefficient of UN _ q+ 1 UM +2N -2q _I in 0Pt/ 
ou. Now, the quadratic terms !a(j)u~_j' O<j<q -1. make 
no contribution since [aU)] m has only low order derivatives. 
Hence the only contribution will come from R, due to the 
terms i = q,q + 1, .... 2q + 1. in (23)". Let us put i = q + a, 
O<a<q + 1. Then the summation in k forcesj to be >q + a. 
And furthermore. the partial derivative with respect to 
uN + j + m _" requires 2q + 1- j - m>q, so that finally we 
conclude 

q + a + m<j + m<,q + 1. i.e., a + m<, 1. 

Moreover the only way to get UN _ q + 1 in (23 bq + 1 is by 
means of the final D m derivative with m > O. Thus a = O. 
m = 1, i = j = q. which obviously contributes 
e~'f+ lIP"MRu,v_qU,v_qU,_q to the U N _ q + 1 term. Therefore 
R",_q'" qU"_q = 0, as announced. (Remark that e~~'l+ 1) 

= ( - l)qM #0, Vq.) 
In the discussion above the precise range of aU) in the 

derivatives has not been fixed. We are now able to show that 
aU)E ff M + 2j , a fact which was already made plausible in the 
preceding section. Indeed. for a< p) to appear in (23)" the only 
possibilities are: 

(1) i = N - s, s<N. But then n=N. 
(2) i = P and hence n>j>p. Now the partial derivative 
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with respect to UN + j + m _ n vanishes unless 
N + j + m - n = N - p, i.e., n = j + m + p;;.2p + m. 

As a consequence, the lowest n such that a l pi may ap­
pear in (23L is n = 2p. However, since cl2P

o) = 0 this is not p. , 

really the case. Thus we must consider the next one, 
n = 2p + 1. Now (23)2P + , contains both a l Pland a\PI separa­
tedly in nonzero terms. If we make the induction hypothesis 
that aljlE .7.11 + 2j' O<j<p - 1, then it is very easy to see that 
the highest derivative in (23 bp +, is U M + 2p t , , so that a l 

pi 

E .7M + 2p' which completes the argument. 
We may summarize the conclusions of this section in 

the following way: 
Proposition 2: Given J;;.O, there exists No(J) such that 

every pE CN(P), N;;.No(J), satisfies 
J 

I" iii 2 +R R '7 P - ~ L a U.'11 _ j , E./ N - J _ , , 
j~O 

with aUIE .7 M + 2}' Moreover, the coefficients a l Jl satisfy the 
differential equations 
[(Il - '1/21 Il -- 2r 

I I [E~~;nalrl],n = h IIlI, n = l,2,+~N), (23')n 
r=O m=O 

with 
n 2r m (N - r) 

nl,m I k [PlI\f " I 2r 1m t I. ]k' 
J... - II - 2r- In - M 

Note: Equation (23')n follows from (23)n by suitably 
changing the indices. In principle, (23')n allows to calculate 
a' IlJ, a' , ) ,", in terms of P whenever the function P does not 
preclude the existence of solutions. (See, for instance, Propo­
sition 3 in the next section.) 

5. APPLICATION TO THIRD-ORDER EQUATIONS 

In order to illustrate the power of the asymptotic algo-
rithm, we are going to prove the following. 

Proposition 3: If the polynomial P in (1) is such that: 
(a) P = U 3 + f(u,u t ,u2); 

then 

(b) 3a(u)E Y~ conserved under (1); 
(c) 3pE C'II(P) for some N> 1; 

P=u3+(aO+alu+a2u2)ul' ajEIR. (25) 

Proof Hypothesis (c) and the Proposition 1 (iii)=?fu, 
= 0, i.e.,f = f(u,u I)' The conservation of a(u) requires 

O~a, = a'(u)P~(a"'/2)uf + a' f (26) 

Therefore, 3H (u) such that 

f = - (al"/2a')u~ + H (u)u, . (27) 

The polynomial character of P (and hencef) forces a'" = 0, 
and thus 

(28) 

Let us finally apply the asymptotic algorithm (23')" to the 
density p in (c): 

n = l=?a«)1 = constant. We choose dO) = 1. 

n = 3=?a'" = - 2N + 1 (H (u) + a], a = constant. 
3 
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(29) 

n = 5=?3a\2) - ~ (2N + 1)(N 2 + N - 2)H3 

- 2N3+1 H,[(2N-I)(H+a)-NH] 

=h's,= 2N+I f[H'u -lH"u2 + 'H2] 3 I 2 2 '2: 1 

+H'''ufl· (30) 

The integrability of (30) requires H "'ui -0, i.e., H '" = 0, 
which completes the proof. • 

Note that (25) covers thosef(u,u"u2 ) which are linear 
combinations of u 1 (linear), UU, (KdV) and u2u 1 (modified 
KdV). It is also remarkable that other sets of weak hypoth­
esis lead to the same conclusion. For instance, Proposition 3 
holds if (a), (b), and (c) are replaced by 

(a') puu. = 0; 

(b') 3a(u), b (U)E Y~, conserved and inequivalent 
(b (u),.,tlla(u»; 

(c') 3pECs (P), some N> I, with a,o'EY 0 . 

The prooffollows similar lines, by using Proposition I, (ii). 
When H '" = 0, the integration of (30) leads to 

a l2
, = 2N

1
; 1 [N(N + I)H 'u2 + (N 2 + N - 3)H" u~ 

+(2N-I)(H+a)2+/3J, (31) 

with /3 constant. One might proceed this way step by step to 
determine the coefficients air). As H '" = 0, conserved densi­
ties of arbitrarily high order are known to exise and thus no 
further obstruction would be met. The succesive integration 
constants a, /3, ... , cannot be determined since their values 
can be changed by adding to our p other conserved densities 
oflower order. 

If a = f3 = ... = 0, H (u) = u, and N = 9, then 

p=u~ - 1'uu~ + Ps [90u2+17u2]u~ + ... , (32) 

which coincides, up to an irrelevant global factor 
- 2519424/46189, with the corresponding density given in 

Ref. 2. 
It should finally be noted that our Proposition 3 gener­

alizes a previous result by Estabrook and Wahlquist,4 who 
reached the same conclusion (25) under the stronger hypoth­
esis P = u 3 + f (u)u" by using their prolongation structure 
techniques. 

ACKNOWLEDGMENTS 

We thank G. Garcia Alcaine, F. Guil, L. Martinez, and 
F. Ramirez for many useful discussions. The financial sup­
port of the Junta de Energia Nuclear is also acknowledged. 

'L. Abellanas and A. Galindo. J. Math. Phys. 20.123911979): 21,1267 
(1980). 

'R. M. Miura. C. S. Gardner, and M. D. Kruskal, J. Math. Phys. 9, 1204 
(1968). 

'R. M. Miura, "The Korteweg--de-Vries equation: A model equation for 
nonlinear dispersive waves," in Nonlinear Waves, edited by S. Leibovich 
and A. Seebass (Cornell U. P .• Ithaca, New York, 1974). 

4F, B. Estabrook and H. D. Wahlquist. J. Math. Phys. 17, 1293 (1976). The 
authors are indebted to the referee for bringing this reference to their 
attention. 

L. Abellanas and A. Galindo 448 



                                                                                                                                    

On the nature of the Gardner transformation 
B. A. Kupershmidt 
Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109 

(Received 7 April 1980; accepted for publication 17 October 1980) 
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family of integrable equations. 
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1. INTRODUCTION 

The initial analysis of the Korteveg-de Vries (KdV) 
equation by Gardner, Green, Kruskal, Miura, and Zabusky, 
which later developed into a theory of the so-called "integra­
ble systems", appears now to be a combination of some in­
genious tricks (which have only been applied in the case of 
the KdV equation) and the general concept of "inverse scat­
tering". While the general developments of the theory of 
inverse scattering are fairly well known (see, e.g., Refs. 1-4), 
the applicability of the ingenious tricks has not been exam­
ined in general; it is the goal of this note to discuss the degree 
of generality of the particular trick that has been called the 
"Gardner transformation" (see the historical remarks in 
Ref. 5, p. 422), which led to the discovery of an infinite num­
ber of conservation laws for the KdV equation. 

2. THE GARDNER TRANSFORMATION FOR THE KdV 
EQUATION 

We recall briefly the actual derivation, which is taken 
from Ref. 5. If v satisfies the modified KdV (MKdV) 
equation 

(1 ) 

then 

U = v2 + Vx (2) 

satisfies the KdV equation 

(3) 

Equation (2) is called the "Miura transformation" (a general 
interpretation of it can be found in Ref. 6). Now (3) admits 
Galilean symmetry 

t' = t, x' =X + 6ct, u' = u +c, (4) 

while (1) does not. Then a suitable combination of(2) and (4) 
shows that 

(5) 

the Gardner transformation, is a solution of(3) ifw is a solu­
tion of 

W, = 6wwx - Wxxx + 6t:2W2wx 
= J(3w2 

- Wxx + 2t:2
W

3
), J=d Idx, (6) 

which can be considered as a deformation ofEq. (3). More­
over, Eq. (6) also possesses an infinite number of conser va­
tion laws [because it becomes equivalent to (1) after a change 
of variables). So we have an integrable deformation. Since 

such deformations are only very rarely integrable, the situa­
tion is quite intriguing. And even if all that were not enough, 
formula (5) tells us that Eqs. (3) and (6) are in fact equivalent 
as evolution fields [in other words, using (5) we can express w 
as a formal power series in E with coefficients that are polyn­
ominals in U,Ux"" w = u - EUx + E2(uxx - u2

) + .... Since 
W, = J(3w2 

- Wxx + 2E2W3
) we obtain an infinite number of 

conservation laws for (3) by inverting (5); half of them are 
nontrivial and this completes the "classical" story of the 
Gardner transformation7

]. 

3. INTERPRETATION 

The Galilean invariance of the KdV equation which 
was used in an essential way in the construction of the defor­
mation (5), is no longer available for the higher KdV equa­
tions which correspond to the Lax representation 

L, = [P,L], (7) 

with L = - J2 + u. Therefore, if any deformation exists for 
the higher KdV equations it must be based on something 
other than Galilean invariance. We shall examine this in 
what follows. 

First, we recall that one of the most important proper­
ties of the Miura map (2) is the fact that this map is a "canoni­
cal transformation" from the natural Hamiltonian structure 
J(o lov), 

V, = J(oH lov), 

ofEq. (1), namely, 

v, = 6v2vx - vxxx = J(olov)(~v4 + ~v:), 
into the second Hamiltonian structure 
B2 = ( - J 3 + 2Ju + 2uJ)(81ou), 

u, = ( - J3 + 2uJ + 2Ju)(oh lou) 

of the KdV equation, namely 

(8) 

( 1') 

(9) 

u, = 6uux - Uxxx = ( - J3 + 2uJ + 2Ju)(81ouHu 2
• (3') 

The word canonical means that the corresponding Poisson 
brackets are compatible with the Miura map (2). Technical­
ly, this statement is equivalent to the equality 

(2v + J)J(2v - J) = - J3 + 2uJ + 2Ju, (10) 

where 2v + J = Dul Dv is the corresponding Frechet deriva­
tive and 2v - J = (2v + J)+ is its adjoint operator (for de­
tails see Ref. 2 or 6). 

Keeping this in mind it is natural to assume that the 
map (5) is also a canonical map from the natural Hamilton-
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ian structure 0 (8 18w) of Eq. (6). 

w, = 6wwx - wxxx + 6E2W2wx 
= 0(c5/c5w)(w3 + w;!2 + E2w4 !2), (11) 

into some other Hamiltonian structure, which must be noth­
ing else but [(DuIDw)0(DuIDw)+]c5!8u. We have 
(DuIDw) o(DuIDw) + = (1 + EO + 2E2w)0(1 - EO + 2E2W) 
= 0 - E203 + 2c2[(w + cWx + E2WZ)0 + o(w + cWx 
+ [2WZ

)] = 0 + E2( - 03 + 2uo + 20u). Therefore the map 
(5) is indeed canonical into the Hamiltonian structure B: 

B = [0 + E2( - a3 + 2ua + 20u)](c5!8u), (12) 

which is just the first Hamiltonian structure Bl = a(<5I8u) of 
the KdV equation, 

u, = 6uu x - uxxx = a(c5!c5u)(u3 + !u;) 

plus E2 times the second Hamiltonian structure B2 of the 
KdV equation: B = Bl + E 2B 2• 

Thus we have arrived at the combination (12) of two 
Hamiltonian structures for the higher KdV equations. This 
means that the Hamiltonians for these equations, if they ex­
ist, are formed in some way from the regular Hamiltonians 
H" of the KdV equations. Recall that the sequence H" of 
Hamiltonians is such that the equation 

(13) 

is the higher KdV equation number n (see, e.g., Ref. 2), and 
all the Hamiltonians Hn commute in both the Hamiltonian 
structures B I and B2 • 

Because the natural initial term Ho = u is such that 
BI(Ho) = 0, weseethatEq. (13)can be written in terms of our 
mixed Hamiltonian structure (12) as 

u,( =Bz(Hn))=B(iin), 

where 
- -2 ~ -2 k H.r = [ ~ ( - E ) Hn _ k • 

k~O 

(14) 

( 15) 

Notice thatH" = Hn (E) is a singular function of E. For exam­
pie, the KdV equation could be written as 

u, = 6uu x - U xxx 

2 3 0 a)) 8 (1 u2 1 u) = [a+[(-o +2u +2 u - -- ---, 
8u E2 2 E4 2 

and if we consider the linear combination of the KdV fields 
which corresponds to H =}: cjHj , 

( 16) 

then the same Eq. (16) in our mixed Hamiltonian structure B 
has the Hamiltonian 

H- " -2 *' ( -2)kH =L,..C;E L,.. -E ;-k' (17) 
k=O 

4. DEFORMATION 

The next step is to make sure that every deformed equa-
tion 

w, = 0(018w)H *, ( 18) 

whereH*(w) = H(u)atu = w + E2W2 + EWx andHistaken 
from (17), is indeed a deformation of the "unperturbed" Eq. 
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(16) in exactly the same manner as (6) is a deformation of(3). 
Of course, B IE ~ 0 = B I but there is a potential source of 
difficulties in the singular dependence of H upon E in (17). 

Theorem. The r.h.s. of the modified Eq. (18) is a polyno­
mial in E for H taken from (17). 

Proof It suffices to check the claim for H = Hn from 
(15). In this case the r.h.s. oft 18) is clearly a finite polynomial 
in E and E-

1
; we wish to show that this polynomial contains 

no terms which involve negative powers of E. This follows 
from the regular invertibility of the deformation (5): We can 
write w = U + }:/;= 1 EkPk , P k being finite polynomial in 
U'U x , ... , and therefore w, = a, (u + ~ EkPk ) 

= F + ~ ck ~(oPklauIS))(fF, where Fis the r.h.s. of(16) and 
uls

) = d suldxs. Substituting u = w + E2W2 + EWx in the last 
expression we find w, as a formal series in non-negative pow­
ers of E only. Q.E.D. 

Example: The next KdV equation after (3) is 

u, = ( - 03 + 2ua + 2au)(810u)(uJ + u;/2) 
= a[u(4) _ lOuu(2) - SU(1 )2 + IOu 3 ] 

= a(818u)(S/2u4 + SUUIJ)L + ~U(2)2). ( 19) 

Corresponding H = E- 2 (U 3 + u~/2) 
- E- 4(u 2/2) + E- 6(uI2); this gives a deformation ofEq. (19) 
in the form 

WI = a(810w)( ~W4 + 5WW11
)2 + !WI2

)2 

+ E2[Sw2w1l12 + 3w5
) + E4

W
6
}. (20) 

Note that the (usual) modified equation associated with (19) 
via the Miura map (2) is 

(21) 

5. RELATIONS BETWEEN THE GARDNER AND MIURA 
TRANSFORMATIONS 

In Sees. 3 and 4 we showed that the deformation (5) is 
indeed valid for the whole KdV hierarchy. We now wish to 
understand its relation with the Miura map (2). 

The map (2) is canonical between the Hamiltonian 
structures 0 (8 /ou) and B2 and therefore it is canonical for the 
Hamiltonian structures Eza (818v) and E2B2. Ifwe now make 
the translation u = U + CE- 2, then the map 

(2') 

is canonical between EZO (8 18v) and 
E2 ( _ 0 3 + 2(ii - ce 2 )a + 2a(u - CE- 2))c5!tJu 
= [e2( - a3 + 2iia + 20ii) - 4co](D/8u), which is exactly 

B (ii) when C = - 1. To eliminate E2 in E
2a(0 18u) we set 

v = EV; then (2') becomes 

(2") 

which is a canonical map between 0 (8 lc5iJ) and B (u). To 
convert (2") into a regular map we observe that the Hamil­
tonian structure 0 (0 180) has constant coefficients and hence 
is invariant under translations of iJ. So if we let iJ = w + b, 
(2") will become 

ii = - E-
2/4 + E2W2 + 2E2 Wb + E2b 2 + EW x ' (2"') 
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Now the regularity condition for (2"'), 

e2b 2 = 1/4e2, 

yields 

b = 1/2e2
, 

and (2m) becomes (5). 

6. DISCUSSION 

(22) 

(23) 

For each higher KdV Eq. (13) we constructed its defor­
mation (18) which has the following properties: 

(i) There exists the reduction map (5) of the deformed 
equation into the undeformed one. Therefore the deformed 
system is also integrable (meaning: has an infinity of inte­
grals), because all conservation laws (c.1.'s) ofthe unde­
formed equation become c.1.'s of the deformed equation after 
pull back; 

(ii) The deformed equation (18) is Hamiltonian; it has 
now only one Hamiltonian structure, a (8 18w). In this struc­
ture, all integrals of the deformed equations commute, since 
they are preimages of the c.l. 's which were in involution al­
ready, and the reduction map is canonical. Note that there is 
no such thing as "Lenard relations" (13) for the deformed 
equations. 

It will be important to understand whether there exists 
any general "integrable deformations" pattern in the theory 
of integrable systems. The answer is undoubtedly yes and 
will be dealt with elsewhere. Here I shall make brief 
remarks. s 

A) If one begins with the arbitrary scalar Lax equation 
(7) with 

L =an+2+ i uja
j 

(24) 
i=O 

then one can construct the deformation theory, and general­
izations of both properties (i) and (ii) from the above discus­
sion remain true. 

B) When an integrable equation is not hi-Hamiltonian, 
Hamiltonian formalism is omttle help either to find a defor­
mation or to interpret it. 

Examples: 
I) If 

~C) 2 2 2 3 p, =6PxC(1 +E- -Pxxx + e vpx' (25) 

where 

C = (sh2evp)/(2ev) + (ch2evp - I)/(2e2
), (26) 

then 

W=C+vpx (27) 

satisfies (6). Thus (25) represents the second deformation of 
the KdV equation (3). 

(2) If 

q, = a(2q3 - qxx + 6~qq;/(l + 4e2q2)], (28) 

then 

W= [(I +4E"2q2)1/2-IJl2e2+qx(I +4e2q2)-1/2 (29) 

satisfies (6), 

(30) 
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satisfies (1), and we have the commutative diagram 
(2)·(30) = (5)·(27). Thus (28) is the deformation of the MKdV 
equation (1), (30) is the reduction map, and (29) is the ~efor­
mation of the Miura map. This suggests that not only mte­
grable systems but also their relationships are objects of 
deformations. 

(3) Deformations phenomenon is not the privilege of 
only the Lax equations. Consider, e.g., the Benney equations 
for long waves on a two-dimensional surface9 

n = 0,1,2,. .. (31) 

for the sequence offunctions an (x,t). This system has an in­
finity of integrals hnEan + l[ao, ... ,an _ 2] (see Ref. 2). 

Proposition 32: Let 

An., = An + I,x + nAn _ IAo,x + e[AoAn,x + (n + ljAnAo,x 
+ nA n _ dAl,x - eAoAo,J2)]l2, n = 0,1,2, .. ·. (33) 

Denote by HnEAn + Q[AO, ... ,An_l] the integral #n for 
(33). Then the map 

an = An + 0 (e), (34) 

such that 

hn = Hn + eHn + I , (35) 

maps solutions of(33) into solutions of (31). 
C) Evidently conservation laws survive deformations, 

i.e., remain nontrivial under deformations. Therefore it is 
important to know which integrals of the undeformed equa­
tions were nontrivial in the first place. 

Let us consider, as an example, the well-known case of 
the KdV hierarchy (13). Then the r.h.s. of (IS) shows that for 
the deformed equation w is the c.l. Therefore inverting the 
Gardner transformation (5) 

(36) 

one gets an infinity of c.1.'s h n E.# where .# is the ring of 
polynomials in U,U x "",. IfJ,g,E.#, let us write/zg is 
f(u,O,O,. .. ) = g(u,O,. .. ), andf-O iff = ago 

Proposition 37: h2n + 1 -0,h2" to. 
Proof I) Write w = w+ + w- where 

w+ = ~ h2n e2n
, w- = ~ h2" + 1 ~n + 1 and substitute this 

into (5). Then the part which is odd in e yields 
w- - ew/ - 2e2w+w- = 0, or 
w- = - (2e)-laln(l - 2e2w+). 2) From (5) one gets 
U:::;W + €2W2, so 
w:::;(2e2)-1[ 1 - (1 - 4e2u)1/2] =~: =0 C

n
e2nf..ln + 1, all c

n 
's 

are different from zero. Thus h2n :::;Cn un + 1. Note now that if 
f-O thenf:::;O. Q.E.D. 
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We obtain a fast convergent series expansion for the Fermi-Dirac function Fer (a) for 
- lO<;;a<;; - 1. We give values of Feria) for £7 = n +! (n = 0,1,·.·,6) with a in the same range. 

P ACS numbers: 02.30.Mv 

I. INTRODUCTION 

The Fermi-Dirac functions F(7 (a), where £7 is a positive 
real parameter, is defined for all real numbers a by 

1 "" x
a

-

1 

Fa(a) = T(£7) Jo eX+u + 1 dx. 

A. Evaluation of I, 

First we expand the integrand denominator of 

f .- p. (y + 1 a I)"" - I 
II = dy 

.- I'" e" + 1 
in a series of powers of eY 

_1_ = L ( - lre"Y. 
e" + 1 npO 

(1 ) 

When £7 is an integer, this integral may be easily evaluat­
ed by a power series; a complete discussion of this case is due 
to Rhodes. I For arbitrary a, there are several expansions 
depending on the range of values of a. 2--4 The calculation of 
F,,(a) for a < 0 is needed in many questions of quantum sta­
tistical mechanics; for example, to solve the equations of 
state corresponding to extreme conditions (high pressure 
and nonzero temperature). Analytical expansions are avail­
able in all ranges, except when - lO<;;a<;; - 1. Previous 
evaluations of Fa(a) for this range were made by numerical 
integration4

.
5 or by polynomial approximation.6 In this pa­

per we obtain a fast convergent series expansion of Fa(a) for 
- lO<;;a<;; - 1. 

This series converges uniformly for leYl < 1, that is, for y < O. 
Now, by expanding e"Y at a convenient point Yo. we obtain 

II. SERIES EXPANSION FOR - 10<;;a<;; - 1 

For simplicity, let us define 

Sa
'" xa - I 

1= Iu(a) = T(a)Fa(a) = dx. 
o ex+a+l 

Substituting y = x + a in this integral gives 

f' (y+lalr-I 
1= _ a, e" + 1 dy. 

Now I will be calculated as 

I = 11 + 12 + 13 

by dividing the integration interval by the points - p andp, 
where 0 <p < la I. Another restriction on the values of p and 
convenient numerical suggestions will appear later. 

'''Fellow ofCONICET (Consejo Nacional de Investigaciones Cientificas y 
Tecnicas, Argentina). 

e"Y = e"Yo L nk(y - YOlk 
k;;.O k! 

By replacing successively in (1), taking into account the 
uniform convergence of the series to exchange the order of 
integrals and summations, it follows that 

nk 

II = L ( - Ij"eny
" L ., 

n40 k.;-ok. 

xf -I:: ly + lal)"- lly - YOlk dy. 

The integrals involved in this expression may be evaluated 
using the formula 

f (a + bx)" 
(a + bx)" - IX" dx = -'-..-:.-----'­

b k + I 

( - 1 YCk)(a + bX)k - Jal 
XL . . 

O'J,k k -j + a 

where 

Ak= L (-lYCk)(lal-~)k-J(Yo+\a\y. 
Ojd k - j + £7 
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B. Evaluation of 12 

We notice that 

12 = lala-I JP (y/\a\ + 1)"-1 dy. 
-p eY+l 

Since 0 <p < ja j, the series 

C~I + lY-1 = ~J£T~ 1)(\:\)" 
converges uniformly. The same statement holds? for the 
series 

I 1 I (1 - 4k )Bky2k - I 

e>' + 1 = 2" + 2" ~ k(2k - I)! 

l OO (y + jaj)"-I 
13 = dy. 

P e>'+l 
Since the expansion of the integrand denominator in a 

series of powers of e - Y 

1 _ ~ I lIn - ny -----4.-\- e , 
e>'+l n>1 

is uniformly convergent for y > 0, by exchanging the integral 
and the summation, with the substitution z = n(y + jalJ we 
obtain 

when p < 1T, B k being the nonzero Bernoulli numbers. There­
fore, arguments used in Sec. lA) apply here, yielding 

Thus,13 can be expressed in terms of incomplete Gamma 
functions as 

12=\a\a-1 L Cn ( 1 
n>1 £T - 2n + 1 

1 ~ Dk ) + -4.- ' jal k>l 2k + 2n - 1 

where 

C1 = (<7- l)p, 

= C (£T - 2n)(<7 - 2n - 1) ( p )2 
Cn + 1 n (2n + 1)2n ~ , 

DI = - 3BtPl, 

and 

C. Evaluation of 13 

Recall that 

( _ l)n + lenlal 

13 = I a r(£T,n(p + lal))· 
n>1 n 

From our numerical investigations we conclude that, in 
order to achieve a fast convergence, the values ofp andyo 
may be chosen as follows: 

P = lal/2, ifl~lal < 5; 

P = 2.5, if 5~lal~1O 

Yo = - (Ial + p)l2. 

As an application, values of FO"(a) for - 10~a~ - 1 
and (J' = n + 1 (n = 0,1, ... ,6) were computed with a maxi­
mum relative error of 10- 5

• In particular, we have checked 
the accuracy of all previously tabulated values.4

•
6 In the 

course of the computation we have made use of 
Abramowitz's tables7 for Bernoulli numbers. The corre­
sponding computing program is to be published elsewhere.s 

TABLE I. Values of F,,(a) for - lO<:;;a< - 1 and a = n + \ with n = 0,1,.",6. 

ALPHA 

-1.0 

-1.1 

-1 • .! 

-1.3 

-1.4 

-l.~ 

-1 .7 

-1.:1 

-1.9 

-2.J 

-2.1 

-2.2 

-2. ; 

-2.4 

-2.j 

-2.6 

-2.7 

453 

F1I2 

I.J27050 00 

I.07166D 00 

1.116230 00 

1.1606iJ 00 

1.2J511C 00 

1.2493.-C 00 

1.2931"C OJ 

1.3:l66;jC 00 

1.37964C 00 

1.42222lJ 00 

1.46'<29C DO 

1.50584C 00 

1.546830 00 

1.'j872JC 00 

1.6210dC 00 

1.66631;; 00 

1.7049<40 00 

1.7429bG 00 

F31Z 

1.5/56~D 00 

1.6>:058D OC 

1 .7<:99 7U 00 

1.<;~3840 OV 

2.C2UD 00 

2.1~4811) CC 

2.21l99C 00 

2.4UJ48u 00 

2.5~'l2~lJ Oc 

2.67939" ~}O 

2.8dno 00 

Z .91223C OJ 

3.12481J 00 

3.ZUS8u DC 

3 .4~230D 00 

3.6069€G OC 

3.7155~l CC 

3.9,195" CC 

f 512 

2.002250 00 

2.165020 CO 

2.3385/0 CO 

2.523/1(; 00 

2.719430 00 

2.9271'>1) 00 

3.148S·jiJ 00 

3.3622% 00 

3. 6294:~ 00 

3.8903-:0 00 

4.16S41IJ 00 

4.455170 CO 

4.76COCu 00 

5.0602gD uC 

5.416450 00 

5. 7688€C, CO 

6.13791) uO 

6.524110 00 

J. Math. Phys .. V01.22. No.3. March 1981 

F7/2 

2.294840 00 

2.503120 00 

2.728200 00 

2.9711 'JD 00 

3.233230 00 

3.51541D JO 

3.d191BD 00 

4.145630 00 

4.496100 00 

4.87195D OU 

5.274020 00 

5.10552 D DO 

6.166170 00 

6.6580"l; 00 

7.182750 00 

7.741dtlJ 00 

S.33101D 00 

8.97003D 00 

(continued) 

F9/2 

l.478b7[) 00 

2.718420 00 

2.979800 00 

3.26461(. 00 

3.574720 00 

3.'l11geC 00 

4.27855D 00 

4.<)1b590 00 

5.U8450 00 

5."nb4C 00 

b.tl~3740 00 

b.6.l2S'l 00 

7.225860 00 

7.~~bBJlJ 00 

!!.558550 00 

9.J044!!lJ 00 

I.JD810;)1 

1.09732U 01 

Hl/2 

2.587160 00 

2.846840 00 

).131580 00 

3.443bOO 00 

3.1B536D 00 

4,)59460 00 

4.56B72D 00 

5.01620D 00 

5.505160 00 

6.03913D 00 

6.621810 00 

7.25126u 00 

7.94979lJ 00 

8.704000 00 

9.52483U 00 

1.041750 01 

1.i3~1711 01 

1.244120 01 

F1312 

2.64B3GO DC 

2.919!!OO DC 

3.2184'10 00 

3.'>47<:10 CO 

3.9Ct!200 00 

4. )0'11 W 00 

4.141210 )0 

5.220lg0 cO 

5.745900 00 

6. 32<!7 JD 00 

0.9553,D DC 

7.04t;HiD 00 

8.40~6dD GO 

9.24JH4D (JO 

/.015110 01 

1.114dLO :;1 

1.2231<0 Cl 

1. 34~B:;D Cl 
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-2.H 

-2.9 

-3.0 

-3.1 

-3.2 

-3.3 

-3.4 

-3.5 

-3.6 

-3.1 

-3.8 

-3.9 

-4.J 

-4.1 

-4.2 

-4.3 

-4.4 

-4.5 

-4.6 

--4.7 

-4.~ 

-4.9 

-5.0 

-5.1 

-5.2 

-5 oJ 

-5.4 

-5.5 

-5.6 

-5.7 

-5.8 

-5.9 

-6.0 

-& .1 

-6.2 

-6.3 

-6.4 

-6.5 

-6.6 

-6.7 

-6.iI 

-6.9 

-1.0 
-701 

-1.2 

-7.3 

-7.4 

-7.5 

-1.6 

-1.1 

-7.8 

-7.9 

-8.0 

-801 

-8.2 

-8.3 

-8.4 

-B.5 

-6.6 

-B.7 

-8.8 

-8.9 

-9.0 
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1.780411- 00 

1.81724~ 00 

1.8534)D 00 

1.889biJ 00 

1.'l2424C 00 

1.958TlC 00 

1.9)275[; 00 

2.0261% 00 

2.1)59120 00 

2.0915J(' 00 

2012340J 00 

2.15489~ 00 

2.18587u DO 
2.216390 00 

2.24648D DO 

2.276l1tLJ 00 

2.3053% 00 

2.3342,0 00 

2.;62710 00 

2.3906llJ 00 

2.41855(, 00 

2.44594~ 00 

2.4729')0 00 

2.4991l~ 00 

2.526120 00 

2.552220 00 

2.5780JlJ 00 

2.60355C 00 

2.628790 00 

2.65376" 00 

2.678480 00 

2.70294C 00 

2.727150 00 

2.7~1l20 00 

2.174870 00 

2.798390 0':' 

2.821690 00 

2.fl4417C 00 

2.867660 00 

2.890340 00 

2.9128LlJ 00 

2.935120 00 

2.957230 00 
2.979160 00 

3.000920 00 

3.02250C 00 

3.043920 00 

3.065170 00 

3.086270 00 

3.10720e 00 

3.127990 00 

3.148630 00 

3.169120 00 

3.189480 00 

3.209690 00 

3.229770 00 

3.249110 00 

3.269530 00 

3.28922U 00 

3.308780 00 

3.328220 00 

3.347540 00 

3.366150 00 

4. il412U OJ 

4.30401~ 00 

4.487550 OC 

4.67469') 00 

4.865360 00 

5.0'.,952(; 00 

5.2')710[, 00 

5.4~8050 CC 

5.662320 OJ 

5.869860 OC 

6 .ellGo 10 00 

6.29453U DC 

6.51151ll CO 

6.7316% 00 

6.954840 00 

7. HC91l. CC 

7.410050 00 

7.64204U 00 

7.S/689C CC 

8.11457U CO 

8.35504U 00 

8.598270 DC 

8.844220 DC 

9.0<'2850 00 

9.34415[, 00 

9.59807U 00 

9.8;4580 00 

1.011310 01 

1.037530 01 

1.(63<)40 01 

1.090600 01 

1.1L75llJ 01 

1.14466D 01 

1.172050 01 

1.1,/<)68U 01 

1.2t7550 01 

1.2;,5650 01 

1.2b3980 01 

1.312540 01 

1. 341330 01 

1.3 i 0 3 50 01 

1.3<)9590 01 

1.429050 01 
1.4;8730 01 

1.41;8630 01 

1.518750 01 

1.549080 01 

1.57'1630 01 

1.610390 01 

1.641350 01 

1.612530 01 

1.1c3910 01 

1.735500 Cl 

1.767300 01 

1.799290 01 

1.831490 01 

1.8&3890 01 

1.896480 01 

1.929280 01 

1.9b2210 01 

1.9'15450 01 

2.028830 01 

2.062400 01 

TABLE 1. (Continued). 

6.921610 00 

7.349C6D 00 

7.18B6W 00 

8.2466YO 00 

e.12367,) CO 

9.21 S8dtJ 00 

9.7356d) 00 

1.02714) 01 

1.082740 01 

1.1404cO 01 

1.20015J 01 

1.26202() 01 

1.32605) 01 

1.392260 Cl 

1.4606'll! 01 

1.531310 01 

1.60430 01 

1.67<;5dll 01 

1.75717) 01 

1.837130 01 

1.9194{J 01 

2.004240 01 

2.0914,) 01 

2.181130 01 

2.27331) 01 

2.3680,» 01 

2.465280 01 

2.56'>120 01 

2.667560 01 

2.77264D 01 

2.880360 01 

2. '1901&D 01 

3.103870 01 

3.219700 01 

3. 33829~ 01 

3.459650 01 

J.58381D 01 

3.710HO 01 

3.84061D 01 

3.9733eo 01 

4.108880 01 

4.24738) 01 

4.38881D 01 
4.5332(J 01 

4.6805bU 01 

4.830930 01 

4.984320 01 

5.140760 01 

5.30025lJ 01 

5.462840 01 

5.628530 01 

5.797350 01 

5.9693LO 01 

6.144460 01 

6.322790 01 

6.50432) 01 

6.6890<)0 01 

6.87111J 01 

7.06839D 01 

7.262970 01 

7.460850 01 

1.662070 01 

7.866630 01 

9.64248) Qu 
1.03562D 01 

1.111290 01 

1.191450 01 

1.276290 01 

1.365990 01 

1.460750 01 

1.560710 01 

1.666250 01 

1.777390 01 

1. ;;94390 01 

2.017490 01 

2.146610 01 

2.282770 01 

2.42540D 01 

2.574980 01 

2.731 750 01 

2.895920 01 

3.067740 01 

3.241440 01 

3.435250 01 

3.631410 01 

3.836180 01 

4.04'178D 01 

4.272480 01 

4.~04530 01 

4.746170 01 

4.997670 01 

5.259290 01 

5.531210 01 

5.813900 01 

6.107440 01 

6.41214D 01 

6.728300 01 

7.056180 01 

7.396050 01 

1.148200 01 

8.112910 01 

8.490450 01 

8.881120 01 

9.285210 01 

9.703000 01 

1.013480 02 
1.058090 02 

1.104150 02 

1.151710 02 

1.200780 02 

1. 251400 02 

1.3031>10 02 

1.357420 02 

1.412870 02 

1.470000 02 

1.528830 02 

1.589400 02 

1.651730 02 

1.715860 02 

1.781830 02 

1.649660 02 

1.91938D 02 

1.991040 02 

2.064650 02 

2.140260 02 

2.211900 02 

(continued) 
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1.190340 01 

1.2903:10 01 

1.397610 01 

1.,1271lJ 01 

1.63606lJ 01 

1.7&813001 

1.9J942D 01 

2.060460 01 

2.221760 01 

2.39';890 01 

2.51743D 01 

2.712970 01 

2.'13 114[) 01 

3.20257[, 01 

3.43792LJ 01 

3.1>87880 01 

3.95315tJ 01 

4.214470 01 

4.S32590 01 

4.8482BD 01 

5.18235(; 01 

5.53561001 

5.9J892~ 01 

6.3iH14D 01 

6.719181) 01 

7.1:'795001 

7.6204HJ 01 

8.101510 01 

8.b202~ll 01 

9.159120 01 

9.726880 01 

1.032290 02 

1.,,94870 02 

1.1~0570 02 

1.229480 02 

1.301HU 02 

1.317440 02 

1.456740 02 

1.539740 02 

1.626590 02 

1.7174lU 02 

1.812340 02 

1.911520 02 
2.0150BO 02 

2.123180 02 

2.235960 02 

2.353570 02 

2.476170 02 

2.603910 02 

2.736950 02 

2.875450 02 

3.019580 02 

3.169500 02 

3.325400 02 

3.487440 02 

3.655810 02 

3.830670 02 

4.012230 02 

4.200670 02 

4.396110 02 

4.598940 02 

4.809170 OZ 

5.0210&D 02 

1.3584S[) 01 

1.482420 01 

1.616750 01 

1.762200 01 

1.919570 01 

2.089700 01 

2.27350lJ 01 

2.471910 01 

2.685<)30 01 

2.916620 01 

3.165090 01 

3.432510 01 

3.720110 01 

4.029180 01 

4.36109iJ 01 

4.717250 01 

5.u9917U 01 

5.,08420 01 

5.946630 01 

6.415520 01 

6.916900 01 

7.452630 01 

8.024690 01 

8.635120 01 

9.286050 01 

9.979710 01 

1.071840 02 

1.150460 02 

1.234080 02 

1.322960 02 

1.417370 02 

1.517590 02 

1.623920 02 

1.736670 02 

1.856140 02 

1.982610 02 

2.11660D 02 

2.258280 02 

2.40BOBO 02 

2.56636D 02 

2.133530 02 

2.909980 02 

3.0%130 02 
3.292430 02 

3.49930D 02 

3.717220 02 

3.946660 02 

4.18810002 

4.442060 02 

4.709060 02 

4.989630 02 

, .284340 02 

5.593140 02 

5.918440 02 

6.259030 02 

6.616130 02 

6.990400 02 

7.382490 02 

7.793080 02 

8.222860 D2 

8.672560 02 

9.142900 02 

9.634650 02 

1.47L'l,0 01 

1.614U,,0 01 

1.169730 Cl 

1.'13tl'>00 01 

2.1225/0 01 

2.122920 D1 

2.54u970 01 

2. I7IH 10 01 

3.035~ 10 01 

3.31'>8';0 01 

3.(,19790 01 

3.949';<0 01 

4.3C6960 01 

4.b94240 01 

5.1135(0 Cl 

5.567210 01 

6.057870 01 

6.588:J 10 01 

7.160520 01 

1.178370 01 

8.444710 01 

9.162S90 01 

9.936440 01 

1.07,,910 02 

1.1604,,0 02 

1.262710 02 

1.366230 02 

1.471'CO 02 

1.5964HO 02 

1. 7242GO 02 

1.8612~0 02 

2.0C79tO 02 

2ol649t-D 02 

2.3329tO CZ 

2.512540 02 

2.704420 02 

2.909320 02 

3.12tlO:,0 02 

3.361250 02 

3.6099'.'0 02 

3.b74B,0 02 

4.156910 02 

4.457140 02 
4.7764eO 02 

5.115970 02 

5.476710 02 

5.B598LO 02 

6.266440 02 

6.697840 02 

7.1552tlO 02 

7.640lCO 02 

8.153bHO 02 

8.6'17460 02 

9.272'140 02 

9.8816UO 02 

1.052530 03 

1.1205;0 03 

1.1924(0 03 

1.268260 03 

1.348320 03 

1.432780 03 

1.521840 03 

1.615110 03 
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Cont. from Table I. 
-9.1 3.385830 00 2.096170 01 

-9.2 3.404810 00 2.130120 01 

-9.3 3.423610 00 2.16lt260 01 

-9.4 3.442430 00 2.198590 01 

-9.5 3.461080 00 2.233110 01 

-9.6 3.419620 00 2.267810 01 

-9.1 3.498060 00 2.3J2700 01 

-9.8 3.5161000 00 2.337770 01 

-9.9 3.53106100 00 2.373030 01 

-10.0 3.552780 00 2.40810 10 01 

'P. Rhodes, Proc. Roy. Soc. A 204,396 (1950). 
2A. Sommerfeld, Z. Phys. 47,1 (1928). 

8.074551) 01 

8.28587D 01 

8.500580 01 

8.118730 01 

8.9lt0310 01 

9.16535D 01 

9.393880 01 

9.625900 01 

9.861440 01 

1.010050 02 

2.297610 02 5.252820 02 1.014860 03 1.714610 03 

2.379410 02 5.481>650 02 1.068550 03 1.818160 03 

2.463340 02 5.728710 02 1.124620 03 1.928400 03 

2.549430 02 5.919390 02 1.183150 03 2.043170 03 

2.637120 02 6.238730 02 1. 24lt230 03 2.165110 03 

2.128250 02 6.507010 02 1.307960 03 2.292100 03 

2.821040 02 I> .184it60 02 1.314410 03 2.1026800 03 

2.916140 02 7.071300 02 1.4103680 03 2.561680 03 

3.013510 02 7.367760 02 1.515860 03 2.115630 03 

3.113380 02 7.674090 02 1.591060 03 2.810950 03 

(1955). 
6R. Latter, Phys. Rev. 99,1854 (1955). 

'L. Nordheim, "Muller Pomillets Lehrbuch der Physik" 4 (1934) Braunsch­
weig, as quoted in Ref. 4. 

7M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, with 
Formulas, Graphs and Mathematical Tables (Dover, New York, 1972). 

8 A. Banuelos, R. A. Depine, and R. C. Mancini (To be published in Com­

put. Phys. Commun.) 
4J. McDougall and E. C. Stoner, Philos. Trans. A 237,67 (1938). 
'A. C. Beer, M. N. Chase, and P. F. Choquard, Helv. Phys. Acta 28,529 
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On nearest neighbor degeneracies of indistinguishable particles 
Benjamin Kedem a) 

Department of Mathematics, University of Maryland, College Park, Maryland and DeRartment of 
Mathematics, Ben Gurion University of the Negev, Beer Sheva, Israel 

(Received 6 June 1980; accepted for publication 25 September 1980) 

Arrangement degeneracies suggested by sufficient statistics associated with binary stationary mth 
order Markov chains are discussed, and are shown to correspond and generalize some 
degeneracies arising when indistinguishable particles are placed on a one-dimensional lattice with 
n compartments. From these statistics it is possible to define an mth order unit. The arrangement 
degeneracy obtained from s I's and n - sO's so that lower order units are placed in higher order is 
difficult. For this case only the third order arrangement degeneracy is obtained, the first and 
second orders being relatively simple. These results are applied in determining the asymptotic 
distributions of rare events. 

PACS numbers: 02.50.Ga 

1. INTRODUCTION 

In statistical mechanical treatment of cooperative 
phenomena such as magnetic spin, binary alloys, 
elasticity, etc., the total energy of interaction Ei is 
given as a linear combination of potential energies as­
sociated with certain arrangments of indistinguishable 
particles on a one-dimensional lattice. For example, 
if only occupied nearest neighbors and next nearest 
neighbors of the types 11, 101, 111, are of interest then 

2. A CONNECTION BETWEEN NEAREST AND NEXT 
NEAREST NEIGHBOR DEGENERACY AND 
SUFFICIENCY 

Let {X t, t = 0, ±1,' .. } be a two state (0-1) stationary 
Markov chain and consider a binary time series from 
the chain, Xl"" ,X". The sufficient statistics asso­
ciated with the chain are1 

Ei = n11 V 11 + n 101 V 101 + n 111 V 111 (1 ) 

where the V's stand for potential energy and the n's 
refer to the frequency of occurrence of the neighbor 
type. Here 1 refers to an occupied site while 0 refers 
to a vacancy. Of interest then is knowledge of the ar­
rangment degeneracy associated with the types of 
neighbors. That is, the number of binary sequences 
of size n which satisfy certain restrictions (numbers 

In order to find the joint distribution of S ,R pH it is 
necessary to determine the number of binary sequences 
M"(s, Yph) for which S = s ,R 1 = Y 1 ,H = h. This number is 
easily found as follows. Form a succession of O-cells 
(O-runs) and I-cells (I-runs) in one of m possible 
ways. We can now distribute the 1 's and O's in their 
respective cells so that none is empty. First place the 
s l's in the s -Y

1 
l-cdls in 

of types). Much attention to these combinatorial prob­
lems has been given by McQuistan in a series of arti­
cles in which he considered both simple and complex 
particles such as dumbbells, e.g., see Refs. 1-3. Par­
allel to the physical interpretation of arrangement de­
generacies there is a purely statistical one in which ar­
rangement degeneracies are used in approximating impor­
tant distributions such as the distributions of crossings 
and upcrossings of a fixed level by a stationary process 
and the distribution of extremes in such processes. 
This has recently been dealt with in Ref. 4. 

The purpose of this article is to show the connection 
between the purely statistical and statistical mechanical 
approaches in regard to arrangement degeneracies by 
examining sufficient statistics associated with mth or­
der Markov chains. At the same time we shall extend 
some of McQuistan results by introducing higher order 
degeneracies whose usefulness will be demonstrated 
in finding the asymptotic distribution of "rare" events. 

It should be made clear that we shall mainly deal with 
degeneracies associated with pairs in which the inner 
elements do not contain 1 's, but in the last section we 
allude to more general degeneracies associated with 
more complicated pairs such as pairs of the type 0-1, 
0-1-1,1-0-0. 

a)Research supported by AFOSR F49620-79-C-0095. 

( 

8 -1 \ = (Sy-l) 
S-Y1 -1) 1 

ways. Next place the n -80's in the 8 -Y
1 
-h+ 1 

O-cells in 

(n-8-1) 
8 -Y1 -h 

ways. Therefore, 

and the number of sequences for which only the first 
two conditions are satisfied is 

(2) 

(3) 

a result which was also obtained by McQuistan2 for the 
degeneracy of nearest neighbor pairs. 

If the chain {X t} is of second order then4 the sufficient 
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statistics are S.RpH together withR 2 =L:i=,X i X i - 2 , 

C =L:r=3XiXi -lX i -2' U =X2 +Xn - 1 , V =Xl X 2 +Xn -lX n • Again 
the joint distribution of these statistics requires the 
knowledge of the number of binary sequences 
Mn(s ,r l'r 2'C, h,u, v) for which S = S, •.. , V = v. This 
was founds to be 

( 2 \rnax(h,u)\ (rl _1) 
M n(s,rl'r2,c,h,u,v)= \max(h,u)l, v ) C 

(

s - r - h) (S -r - 1 \ ( n - 2s + r + h -2 ) 

x r 1 -: - v r 2 ~ C) S - r 1 - r 2 + c

l 

- h - u + v ' 

(4) 

with the convention 

and where (h,u,v) takes value in{(O,O,O),(O,I,O), 
(0,2,0), (1 ,0,0), (2 ,0,0), (1,1,0)(1,1,1), (2,1,1), (1,2,1), 
(2,2,2)}. It follows that the number of binary sequences 
for which only the first four conditions are fixed is ob­
tained by summing over (h,u,v). We have 
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1: + 1: 
(0,0,0), (0,1,0), (0.2,0) (1,0,0>. (2,0,0). (1.1,0) 

+ 1: +M n(s,rl'r2 ,c,2,2,2) 
(1,1,1), (2, 1, 1), (1,2,1) 
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(5) 

Upon noting that r 1 = nu'c = nUl' r 2 - C = n 10l ' where 
niJ ••• t refers to the frequency of ij, ... ,k in the binary 
sequence, we recognize the occupied next nearest 
neighbor degeneracy obtained by McQuistan2 

Obviously (5') can be obtained from (5) by linearity. 
Here, and in what follows, we use the notation 

(5') 

Mn(c
1

, ••• ,c t ) to denote the number of binary sequences 
for which c p" . ,c t are fixed. It is readily seen that 
(5) reduces to (3) by summing over r 2 - c and c. 

3. HIGHER ORDER DEGENERACIES 

In the previous section we illustrated via two exam­
pIes that arrangement degeneracies may be viewed as 
special cases of counting problems associated with suf­
ficient statistics in Markov chains. The next thing 
which comes to mind is the question of generalizations. 
It is quite clear now that if one wants to look into or 
define higher degeneracies one should examine the suf­
ficient statistics and linear functions thereof of higher 
order two state Markov chains. By the very definition 
of sufficient statistics, it is intuitively clear that every 
conceivable arrangement degeneracy can be obtained by 
summing over Mn of a given order. We need not Con­
sider all the sufficient statistics associated with a given 
order but only those which define desired neighbor 
types. To make this point clear we shall defer the gen­
eral counting problem to the next section while concen­
trating here on straightforward generalizations of (3) 
and (5). We shall first illustrate this claim by examin­
ing sufficient statistics associated with third order 
chains. In this connection the notion of a "unit" is 
useful 

Definition: An mth order unit is a binary sequence 
which starts with aI, ends with m separating O's, (if 
needed to separate it from other units) and in which 
each O-run, if not an end run, consists of at most m - 1 
O's. Thus a unit is a block made of O-runs and I-runs 
where the length of the O-runs is restricted while the 
length of the I-runs is unrestricted. 

Definition: A free 0 is a 0 which does not belong to 
any unit. Observe that an end unit is a unit which does 
not need the separating O's at the end in order to be 
recognized. The notion of a unit is useful as it deter­
mines the general form of a binary series which satis­
fies our predetermined conditions. For example, con­
sider a first order chain and suppose it is desired to 
count the number of sequences for which Sand Rl are 
fixed at sand r l' There are s - r 1 first order units 
which we permute with the free O's in 

(
s - r 1 + (n -s) - (s - r 1 - 1») = (n -s + 1) 

s-rl s-rl 
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ways. Next we place a 0 at the end of each first order 
unit in one way. This determines the form of the bin­
ary series. Finally distribute the s l's in the s -r1 

units so that none is empty in 

ways. This yields Eq. (3). Equation (5) can be obtained 
in the same way by first determining the positions of 
the second order units and then placing the first order 
units in the second order units. This is followed by 
the distribution of the s l's. This procedure gives rise 
to an immediate extension of (3) and (5). 

Consider the third order analog of (3) and (5). The 
statistics of interest are S,R1'R2'C, together with 
K=L;?,4XiXi-lXi-2Xi-3 and n100l' the frequency of 1001 
in the sequence. These are sufficient statistics (not all 
of them!) associated with third order chains. We shall 
determine Mn(s ,rl ,r2'c, k ,n1001 ). 

There are (s - r) - (r 2 - c) - n100I third order units, 
(s -rl ) - (r 2 -c) second order units, and s -r1 first 
order units. First permute the third order units with 
the free D's in 

f n - 3s + 2r 1 + r 2 - C + 3' 
\s-rl--Y2+C-1l1001 ) 

ways. Next place the second order units in the third 
order units leaving none empty in 

ways. Then place the first order units in the second 
order units in 

ways and place the separating D's in the respective 
units in one way. Put one 1 in each first order unit in 
one way. There remain r II's. There are r 1 - c first 
order units with two or more l's. So choose r 1 - c 
first order units from s - r 1 and put one 1 in each in 

ways. There are c - k first order units with three or 
more l's. So select c - k first order units from r 1 - c 
and put 1 in each in 

(
rl -C) 
c -k 

ways. Finally place the remaining k l's in the c - k 

first order units allowing" empty" units in 

ways. Whence 
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x (os - r 1 - r 2 + C - 1) (n - 3s + 2r 1 + r 2 - C + 3) , (6) 

n 100I s - r 1 - r 2 + C - n 100I 

and by summing over n 100I we immediately obtain 

x (n - 2s + r 1 + 2) 
s -rl -r2 +c 

This last expression yields (5) upon summation over k. 
We can rewrite (6) in a form which resembles (5'). 
Let fZ3 denote the number of free D's associated with a 
third order degeneracy. That is, the number of D's 
which do not belong to any third order unit. Then fz, 
= (n - s) - 3( (n - s ) - niDI - n 100I - 1] - 2n100I - niDI' and 
(6) becomes 

From (3),(5'),(6') we see that a pattern of arrangement 
degeneracies begins to emerge whereby the highest or­
der units are permuted with the free D's then lower or­
der units are placed in higher order units, succes­
sively, then the separating D's are placed in one way, 
this followed by the distributions of l's so that 
s ,nll,nll1' •.• ,n101"" ,n100". 1' are preserved. In or­
der to arrive at the general result suggested by the 
above scheme we shall employ the notation *(rn) to 
mean a ,,-run of length rn. Then we readily have 

x (s -nll -1) (s -n 11 -nIDI -1) ... 
11 101 111001 

x (s - 1111 - n 101 - •.• -n10 (m-2)1 -1) 
n lO (m-})1 

(7) 

wherejzm stands for the number of free D's and is given 
by 
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-n iOI - 2n lOOI _ •• , -(m -1)nIO(m-lll' (8) 

Observe that the number of mth order units is equal to 

(9) 

since we essentially evaluate 6Xi(1-Xi_I)··· (1-X i _m ). 

From (7) we obtain (3),(5'),(6') as special cases. 

4. THE GENERAL ARRANGEMENT DEGENERACY 
OF MARKOV CHAINS AND ITS APPLICATION TO 
THE DISTRIBUTION OF RARE EVENTS 

In the previous section we dealt with one way of ex­
tending the next nearest neighbor degeneracy. How­
ever, this is only a special case of the general ar­
rangement degeneracy associated with an mth order 
Markov chain where the problem is to count the num­
ber of binary sequences for which all the sufficient 
statistics are fixed. This is a challenging problem 
for which no general solution exists as far as the pres­
ent author knows. The main difficulty is the fact that 
not all the low order units can simply be placed in 
higher order units as in the previous section since 
some conditions are violated. Clearly, if such a result 
is available, numerous arrangement degeneracies can 
be deduced from it. This solution will not be attempted 
here. However, we shall give the solution for third or­
der chains and this will give us a clue as to the general 
behavior of rare events in binary Markov chains. 

The sufficient statistics associated with a stationary 
third order Markov chain, apart from ends statistics, 
are S ,Rl'R 2 ,C,K as above together with 

We shall construct a sequence for which S ,Rl' ... ,R21 
are fixed. First observe that 

Also define the statistics 
A ll - ll == # of second order units which start and end 

with 11, 

(10) 

A1 - 1 =# of second order units which start and end with 
I, 

All - 1 == # of second order units which start with 11 and 
end with 1, 

A1 - ll ==# of second order units which start with 1 and 
end with 11, 

All == # of second order units which contain exactly 
two consecutive 1's, 

Al ==# of second order units which contain exactly one 
l. 

Clearly 

A ll - ll +A ll - 1 +A 1 - ll + A 1 - 1 +Au +Al = (S -R l ) - (R 2 -C) , 

All + A ll - ll + A ll - 1 = (R 1 -C) - (R 12 -K), (11) 
All + A ll - ll +A1 - ll = (R 1 -C) - (R 21 -K), 

which means that if Al' AlP and All - U are known then 
so are A 1 - ll , A ll - 1 and AI-I' As it turns out our problem 
is simplified greatly if Al ,All , All - ll are added to the 
other eight conditions. The reason for introducing the 
A's is that it is difficult to keep track of R 12 and R 21' 
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while from (11) it is seen that when the A's are fixed 
in addition to S ,Rl'R2'C ,K, so are R 12 ,R 21 • When the 
arrangement degeneracy is obtained the A's can be 
removed by summation. 

Recall that there are 

(s -r)-(r2 -c)-(r3 -r12 -r21 +k) 

third order units and 

(n -s) - 3[(s -r1 ) - (r2 -c) - (r3 -r12 -r21 + k) -1J 
- 2 (r 3 - r 12 - r 21 + k) - (r 2 - C ) 

free D's which we permute in 

( 
(n-s)-2(s-rl)+(r2-c)+3 ) 

(s-rl)-(r2-c)-(r3-r12-r21+k) 

ways. There are (s -r 1)-(r2 -c) second order units 
which we place in the third order units in 

ways. Place the separating D's in one way. Now, we 
cannot place the first order units in the second order 
units as we did in tlle previous section as R l2 ,R 21 

change. This is precisely why we need the A's. So ac­
cording to All,ApAll-l'AI-U,All-ll,AI-l' assign "typ€~" 
to the second order units. That is let All - ll second or­
der units start and end with 11, AU - 1 second order 
units start with 11 and end with 1, etc. This can be 
done in 

ways. There are now r 2 -c D's left which we distribute 
in Au-u+All-l+Al-U+Al-l second order units "non­
empty" in 

ways. This takes care of the D's and the first order 
units as well! It remains now to distribute the 1 'so 
According to the type assignment place 11 and 1 in the 
second order units as needed in one way, and then put 
1 in every empty first order unit (I-cell or I-run) in 
one way. There are r 1 - c first order units with two 
or more I's. But we have already A ll - 1 + A 1 -ll + 2Au-n 
+ Au first order units with two 1's. So select (r 1 - c) 
-(AU-l+Al-u+2All-U+Au) first order units from 
(s - r 1) - (A U - 1 +A1 - ll + 2Au-n +All) - (A ll -l + A 1- U + 2A 1- 1 
+ At> first order units in 

(s - r J-(All-l+Al-11+2All-U+All)- (All-I-AI-U+2Al_I+AI)) 

\ (r I - c) - (A ll -l + A l - ll + 2All - ll +Au) 

ways and put one 1 in each. We now have r 1 - c first 
order units with exactly two 1's, since previously no 
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first order unit was empty. There are c - k first order 
units with three or more 1 'so From the 1'1 -c first or­
der units which contain exactly two l's select c - k 
units and put one 1 in each in 

(
1'1 -C) 
c -k 

ways. We now have c - k first order units with exactly 

where A I - l is obtained from (11) in terms of All-ll,A11' 
A1'5,1'l'1'2,C,1'12,1'21'k, and is too long to write. Thus 
the desired arrangement degeneracy is obtained by 
summing over AlpA ll - ll ,AI' adhering to the convention 

We have 

(13) 

x ~ Bn(5,1',,1'2,C,1'3,1'12,1'2pk,All,Al'All-ll)' 
Au.A.l,All-U 

where Bn is equal to the product of all the coefficients 
in (12) which involve A1"A"All -W Note that 

L Bn(s,O,O, ... ,O,A1p AI'A ll _ll )==1, 
All .Al,All-ll 

(14) 

since Al = 5 and the rest of the A's vanish. 
Now the joint distribution of a binary time series 

from a third order stationary Markov chain is given by 

p(XI'X 2 , •• • ,xn)= (powers in X"X2,X3,xn_2,Xn_l'Xn) 

X pr21 -~prI2-~pr2-c""12.~pr2-c-r21'~pr3""21-rl2.~p~ pC-~ pC-~ 
1011 1101 0101 1010 1001 1111 1110 0111 

X prl -c-rI2+~p'I -c-r21 +~prl -2C.~[ p P lS""-l ""2+c-r3+r'2+-21-~ 
1100 0011 0110 1000 0001 

X pS-2rl-r2+2C+T12-llpS-2Tl -r2+2C +T21-1l 

0100 0010 

(15) 

where PX'x. x' ~r' =?r(Xi =Xi IX i -I =Xi_l,Xi_2=Xi_2,Xi_3 
L '-1 l -~-, -3 

=X
i

- 3), from which it follows that the joint distribution 
of S ,RI ,R" C ,R3 ,R12,R21,K,X I ,X"X3,Xn_2,Xn_l ,Xn is 
the product of (15) and the arrangement degeneracy of 

460 J. Math. Phys., Vol. 22, No.3, March 1981 

three l's. Finally, there remain 1< l's which we place 
in these c - k first order units allowing" empty" units in 

(c -k+ k -1) = (c -1) 
c-k-l k 

ways. It follows that 

(12) 

\hese statistics. But whenXl,X2,X3,Xn_2,Xn_I,Xn are 
equal to 0 this arrangement degeneracy is asympto­
tically, as n - 00, the same as (13). Therefore from 
(13), (14), and (15) 

(
n - 35 + 3) S S S S n-4S-:J 

- 8 PIOOOPOOOlPOIOOPOOIOPOOOO' (16) 

Assume that as n - 00 

(i) The 1 's become rare separated by long o-runs so 
that the event {R , = 0,R2= 0, ... ,K= o,Xl =y 2 =X3 =Xn-2 
=Xn _

1 
=X n == o} becomes a sure event; 

(ii) PlOOO- 0 such that nP lOOO = a, fixed; 
(iii)Poool -POIOO-POOIO-Poooo= I-P lOoo ' 
Then from (16), as n becomes large, 

P1'(S=5)- (n-3s+3)! 
(n - 4s + 3)! s! 

(~y (1_;)"-s-3 

as
( 35-3) ( 48-4)( 0!)-S-3( a)" =~ I---

n
- ... I---

n
- 1 --;; 1--;; 

----
s! 

(17) 

a result which is well expected." 
This procedure for finding the asymptotic distribution 

of S as n - 00 can be easily extended to the mth order 
case. Arguing as above we have from (7) (as the last 
binomial coefficient in the most general case is given 
by the last coefficient in (7) which stands for the num­
ber of permutations of the mth order units with the 
free D's) 

( ' ) (n-ms+m) S n-s-m P1' S = S - 5 P'O(m)PO(m+U 

_ as (n - ms)· .. (n - (1/1 + 1)8 + 1) ( a)n O! S 1-- _,eo<>, 
n 8. s! n S 

(18) 
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where n_ oo and P1oo"'O-O such that nP10o •. 'o:::'a.. 
More results of this nature can be obtained once the 

arrangement degeneracy of a specific order is known. 
For example, from (12) it should not be too difficult to 
show that under some conditions similar to (i)-(iii) 
S -R) is also asymptotically Poisson. In fact Poisson 
with parameter a(l - A), where A E (0,1) is a measure 
of the density, or clutering tendenceY, of rare events. 
For an interpretation of this fact see Ref. 4. 
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Approximate solutions to the Chandrasekhar H-equation are obtained by considering a truncated 
moment problem. Convergence to the physical solution is proved and a numerical example is 
outlined. 

PACS numbers: 02.60.Cb, 95.30.Jx 

1. INTRODUCTION 

The H-equation given by 

H(z)=l +zH(z) (1 H(x)da(x) 
)0 x +z 

(1) 

and its operator-valued analogs play an important role 
in transport theory.l-3 Iterative methods for its solu­
tion have been re-examined in the recent literature.3

•
4 

A typical result is that if da/dx is a positive element of 
L1(0, 1) with norm less than t then the iterative scheme 
given by 

11 Hrr(x)da(x) 
H.+1(z) =1 +zH.+1(z) 

o x +z 
(2) 

converges monotonically and uniformly on (0, 1) to the 
"physicaY' solution H(z). H(z) is positive, bounded, 
continuous, and monotonic on (0,00) and subject to the 
constraint 1/0(- vo) = 0, Vo > O. This constraint is 
equivalent to the requirement A(vo) = 0, where A(z) is 
the dispersive function given by 

A(zhl_2z2 e~, (3) 
)0 z-x 

since one has the identity 

(H(z)H(-Z»-l=A(z) . (4) 

Here we examine approximants to the physical solu­
tion of (1) which are associated with the power-moment 
problem. It is not necessary to know a. Only its mo­
ments are required. The approximants are introduced 
in Sec. 2. In Sec. 3 we examine their convergence. 
An explicit numerical example is given in Sec. 4. 

2. THE APPROXIMANTS 

A. Nonconservative case Co < 1/2 

Let a be a measure with known moments 

cn = 11 x"da(x) , n=O, 1,2'" 
o 

and with Co < 1/2. 

Let alf be the measure, associated with the truncated 
problem of order 2N - 1, given by5 

dd(JN(X)=t alflo(x-XNI), (6) 
x 1=1 

a)Supported in part by the National Sciences and Engineering 
Research Council of Canada. 

with 

ilx"daN(x)=ilxrrda(x), n=O,1, ... ,2N-1, (7) 
o 0 

where the X N j are the poles and the aN I are the residues 
of the [N - l/N] Pade approximant6 to the function 
nda(x)/(z - x). 

Let HN(z) be the physical solution to the H-equation 
with the approximate measure alf' That is, 

HN(z)=l +zHN(z) 11 HN(x):aN(x) . 
o z x 

This may be explicitly solved l to obtain 
N 

HN(z) = (1- 2 corl/2 II(z + XN1 ), 
i=1 Z +Vlfl 

(8) 

(9) 

where the tJlfl are the positive zeros (intertwining the 
positive poles XIf j) of the approximate dispersive func­
tion 

( ) 211 daN(x) 
AN z =1-2z ~. 

o z -x 
(10) 

Equation (9) follows easily from (8) and the identity 
(HN (z)HN (- Z»-1 = AN(z) which, in particular, implies 
that 

lim (HN(Z»-1 = lim (H(Z»"l = (1- 2cO)1f2 . (11) 
1 zI - ~ 1.1 - ~ 

This correct asymptotic behavior (together with higher 
order identities in z -1) is an attractive feature of the 
approximants associated with the moment problem. 

B. Conservative case Co = 1/2 

In the conservative case Co = 1/2 one has lim,., _ .. H(z) 
=00 and one needs a modification. This is easily ob­
tained by passing to the limit Co = 1/2 from case A. 
From HAO) = 1 one has that 

IT (2.J.) = (1 _ 2CO)I/2 • 
1~1 vN I 

The second moment in (10) yields (the term in Z-2) 
N 

L tJ~i-x~;=2c2/(1-2co), N~2. 
1=1 

(12) 

(13) 

It follows that as Co -1/2- the largest zero tJNN be­
comes infinite with the behavior 

(14) 

Taking the Co -1/2- limit of (9) thus yields for N" 2 
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(15) 

3. CONVERGENCE 

We are able to prove that the sequence of approxi­
mants H/f(z) converges uniformly on [0,00) to the physi­
cal solution H{z) if Co is sufficiently small. The suffi­
ciently small condition of our proof turns out to be Co 
< t. A cleverer proof could presumably improve this 
to co"'~' 

A basic estimate is 

1 < H{z) < d (16a) 

and 

(16b) 

where d={I- 2cot112 and zE{O,oo). For small z the 
upper bound may be improved by using 

H(z)<I+zd r1da
{x) (17a) 

)0 x+z 

and 

H/f{z) < 1 + zd 11 daN+(x) . (17b) 
o x z 

From (16a), (16b) and (17a), (17b) one has 

-zd i 1 
da(x) <H/f(z)-H(z)<zd I1 daN(x) (18) 

o x+z 0 X+z 

for z E (0, 00). Using the estimateS 

i 1 da/f(x) '" i 1 
da(x) , ( ) zE 0,00 , 

o x+z 0 x+z 

one has 

IH/f(z) - H(z) 1< zd 11 da+(x) , zE(O, 00). 
o x z 

If a is continuous at x = ° it follows that 

!H/f{z) -H{z) 1< E, 0", Z < li(E) , 

(19) 

(20) 

(21) 

with 15 independent of N. It remains to obtain estimates 
for z;, 15. 

From (1) and (8) one obtains 

H/f(z) _ H(z) = zH/f(z)H{z) ( II H/f(x) da/f(x) 
o x +z 

_ i 1 H(x) da(x») . 
o x+z 

(22) 

Thus 

!H/f(z) _ H(z) I,,; H/f(Z)d( £1 Z IHN(x) - H(x) I daN(x) 
Q x +z 

+ 1£1 ZH(X)[d~<x;-da(x)J I). (23) 

Now zH(x)/(x + z ) is continuous in x if z;, 0> 0. It fol­
lows from Theorem 64.1 in Ref. 7 [provided that a is 
continuous at x = 0, 1 and a dense set of points in (0, 1) 1 
that 

1· i 1 zH(x) dCl/f (x) _ i 1 zH(x) da{x) 
1m _ • 
/f-~ 0 x+z 0 x+z 

(24) 
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Thus 

I i 1 H(x) [da/f(x) - da(x») \ 
z < El, 

o x +z 

Let N1 = SUpzE [8 .~)Ml (z, E1). Then 

I I i l zlH {x)-H(x)1 ( ) 2 
HIf{Z) - H(z) ,,; HN(z)d /f + daN x + E1d , 

o x z 

N>N1{El), Z'3o. (26) 

Similarly one may start from an equivalent form of (22) 

( ) ( ) _ H () () i 1 
x[HN(x)dClN(X)-H(x)da(x)] 

H/f Z - H z -- If z H z + o x z 
(27) 

to obtain 

!HN(z) _ H(z) I < dHN(z) r 1 x I HN(x) - ~(x) I dClN(X) + E2d2 , 
Jo x z 

zErO,oo), N>N2' (28) 

where 

I f 1 xH(x)[daN(x) - da(x)] I < Ez for N> Mz(z, EZ) 
o x +z 

and Nz = sUP"E[o,oo/lf2 (z , E 2). Adding together inequali­
ties (21), (26), and (28) one obtains 

2IHIf(z) - H(z) I < dHN(z) i 1 

I H/f(x) - H(x) I da/f(x) + E 
o 

+ d 2 (El + E2) (29) 

for zE [0, 00) and N sufficiently large. 

Multiplying (29) by da/f(z), integrating, and solving 
algebraically for n IHN(x) - H(x) I da,..{x) yields the esti­
mate 

< CorE +d
2
(El +E2)]/(2- d 10

1 

HN(X)dClN{X») 

provided that 
1 

2 - d i H/f(x) daN (x) > 0, 

(30) 

(31) 

where n H/f (x) da/f(x) == 1 - 1/ d and d = (1 - 2cor112. 

Thus (SI) is the condition that 3 - (1 - 2cor1/2 > ° or Co 
<to Thus if Co <t and a(x) is continuous at x=O, 1 and 
a dense set of points in CO, 1) then n !HN(x)-
H(x)! daN (x) is arbitrarily small f;r N sufficiently 
large. Estimates (29) and (16) then yield lim/f_~HN(Z) 
=H(z) uniformly for zE[O,oo). 

4. NUMERICAL EXAMPLE 

The simple case a(x) = ex has been extensively tabu­
lated.

1
•
Z Here we compare the exact results for C = t 

and C = ~ with the lowest-order approximants N = 1, 2, 
and 3, which are easily obtained by hand calculation. 

Solving Eq. (7) for the a/fl and xNj in (6) yields 

au =c, Xu = 1/2, 

a21 = c/2, x21 = 1/2 - 1/213 = 0.211325, 
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TABLE 1. (c = 1/4) approximate solutions HN(z) and exact so­
lution H(z) to the Chandrasekhar H-equation for a(x) =x /4. 

and 

z Ht(z) H 2(z) 

0.2 1.0914 1.1096 
0.4 1.1496 1.1666 
0.6 1.1901 1.2039 
0.8 1.2199 1.2308 
1.0 1.2426 1.2513 

a22 = c/2, x22 = 1/2 + 1/213 = 0.788675 

a31 = 5c/18, X31 = (1 - 1375)/2 = 0.112702, 

a32 = 4c/9, X32 = 1/2, 

a33 = 5c/18 , X33 = (1 + 1375)/2 = 0.887298. 

H(z) 

1.1135 
1.1680 
1.2044 
1.2309 
1.2513 

The approximate dispersive function AN given by Eq. 
(10) can then be calculated. 

A1(z) = (i(l- 2c) _1/4)/(z2 -1/4), 

() 
z4(1-2c)-2z2(1_c)/3+1/36 

A2 z = z4_2z2/3+1/36 ' 

i\3(Z) 

z6(1_ 2c) - z4(63 - 43c)/60 + z 2(21_ 12c)/100 - 1/400 
Z6 _ 21z'/20 + 21z2 /100 _ 1/400 

From this the positive zeros lJN/, N = 1,2, can then 
be obtained. 

lJu(c) = HI _ 2C)1/2 , 

lJ21 (c) = [(1- c(~)((1- C)2 - (1- 2c)/4)1/2/3(1- 2C)]1/2 
(2) 

Equation (9) then yields HN , N = 1,2, 

H1(z) = (z + t)/(z(l - 2C)1/2 + t). 

z2 + z + 1/6 

For c = t one thus has 

lJu(1/4) =1/12 =0.707107, 
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T ABLE II. (c ~ 1/2) approximate solutions HN(z) and exact 
solution H(z) to the Chandrasekhar H-equation for a(x) =x /2. 

z Ht(z) H 2(z) H 3(z) 

0.2 1.4000 1.4414 1.4490 
0.4 1.8000 1.8276 1.8294 
0.6 2.2000 2.1959 2.1946 
0.8 2.6000 2.5562 2.5532 
1.0 3.0000 2.9121 2.9082 

lJ21(1/4) = (1/2 - v"r/6)1/2= 0.242984, 

lJ22 (1/4) = (1/2 + v"r /6)1/2 = 0.970030, 

H(z) 

1.4503 
1.8293 
2.1941 
2.5527 
2.9078 

and the values in Table 1. For the limiting case c = ~ 
one obtains [vNN(1/2) =00] 

v21(1/2) = 1/2 f3 = 0.288675, 

V31(1/2) = t[(9 - V69J/10]1/2 = 0.131660, 

V32 (1/2) = H (9 + V69J/1 0]1/2 = 0.657773, 

H1(z)=1+2z, 

i +z +1/6 
H2(z) = z/ f3 + 1/6 ' 

f3(Z3 + 3z2/2 + 3z/5 + 1/20) 

and the values in Table n. 
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An exact invariant for a class of time-dependent anharmonic oscillators with 
cubic anharmonicity 

P. G. L. Leach 
Department of Applied Mathematics, La Trobe University, Bundoora, 3083, Australia 

(Received 23 October 1979; accepted for publication 29 February 1980) 

An exact invariant is constructed for a class of time-dependent anharmonic oscillators using the 
method of the Lie theory of extended groups. The presence of the anharmonic term imposes a 
~ons.traint on the nature of the time dependence. For a sub-class it is possible to obtain an energy­
hke mtegral and a condition under which the motion is bounded. 

PACS numbers: 03.20. + i 

1. INTRODUCTION 

In the investigation of the behavior of plasma one of the 
models which was early adopted was that of the motion ofa 
charged particle in an axially symmetric field. An advantage 
of such a model was that, under suitable approximations, the 
radial equation reduced to that of the simple harmonic oscil­
lator. One could not ask for a better model as far as the 
resulting mathematics was concerned. However, the Zeta 
machine and its like did not work and a more refined model 
was needed. This lead to the equation of the time-dependent 
harmonic oscillator to take into account time-varying fields. 
This oscillator system had attracted earlier attention, pri­
marily as an approximation to the lengthening pendulum. 
Unfortunately, unlike the time-independent oscillator, there 
was no known exact invariant for the time-dependent 
oscillator. 

That deficiency was overcome by Lewis 1 using a meth­
od based on Kruskal's scheme.2 The Lewis invariant has 
attracted a considerable amount of attention from a variety 
of viewpoints. 3-5 We were able to offer a simple derivation 
and interpretation of the invariant6 and to provide invariants 
for similar linear systems.7 Indeed each member of the whole 
class of quadratic Hamiltonians was shown to be equivalent 
to any other member to within a (time-dependent) linear 
canonical transformation. The application of these results to 
quantum mechanics was begun by Lewis and Riesenfeld8 

and extended by us.9 Naturally for quantum mechanics the 
class of permissible linear transformations is restricted, but, 
for a time-dependent quadratic Hamiltonian of constant sig­
nature, there would appear to be no difficulty. In fact the 
quantum mechanical results for time-dependent linear 
transformations closely parallel those for the time-indepen­
dent case as reported by Wolf and others. 10 

We have not heard of the Zeta machine for many years, 
but it appears as if its successors require an even better model 
than that of the time-dependent harmonic oscillator. It was 
suggested 11 that a time-dependent anharmonic oscillator 
with cubic anharinonicity in the Hamiltonian would be suit­
able as a starting point and that an invariant for such a sys­
tem could be informative. Assuming that a nonlinear system 
required nonlinear transformations, we proposed a scheme 
for constructing an invariant related to the Hamiltonian by 
means of such a transformation. 12 In general it was antici­
pated that the transformation would be an infinite series and 
probably divergent as well. However, in celestial mechanics 

truncation of similar series has been used with some success, 
for instance in the work of Gustavson 13 on the notorious 
Henon-Heiles problem. 

To provide the solution to a problem in the form of an 
infinite series is sometimes acceptable (as in the case of the 
ordinary oscillator), but generally speaking it may be regard­
ed as less than satisfactory. The whole advantage of the Lew­
is invariant is that it is concise, easy to work and has a precise 
"physical" interpretation. We became convinced that useful 
transformations must nearly always be linear although the 
opposite viewpoint has recently been advanced by Mahar­
atna, Dutt, and Chattarji. 14 It is our opinion that the results 
obtained here support our viewpoint. 

It is evident that in general a time-dependent problem 
will not possess an invariant. This is not surprising. The 
point is to be developed elsewhere. It will be seen in the case 
of the problem discussed here that the determination and 
interpretation of such invariants rely on point transforma­
tions of the type l-T, q_Q. In the Hamiltonian context this 
means a linear canonical transformation coupled with a 
change of time scale. That such should be the case is fortu­
nate for the results may readily be extended to quantum me­
chanics. Indeed the linear transformation belongs to the 
class of transformations for which the Schrodinger wave­
functions are related by means of a geometric transform 
rather than the more general integral transform. 10 a. 

Apart from the context of Hamilton-Jacobi theory, 
time-dependent transformations have not much been used 
until recently. Nevertheless we do express some surprise that 
the methods employed here have not been adopted general­
ly. Specifically, the theories of Lie and Noether have been 
around for a considerable time and yet, to our knowledge, 
have only been applied, in a context similar to the present 
one, in recent years. Many of the ideas employed in this 
paper have been developed in earlier papers to which refer­
ence is made when appropriate. 

2. THE PROBLEM 

As reported above, it has been suggested that a better 
model for the motion of a charged particle in an axial field 
should include allowance for anharmonicity. Let us be more 
generous and allow velocity dependent damping and a co­
ordinate free forcing term. Whether the addition of such 
terms is helpful to the model is unknown to us and we leave 
that matter to the physicists. All we wish to do here is to 
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provide the maximum possible flexibility for the model. 
The Newtonian equation of motion for such a particle 

may be written as 

ij + a(t )ij + b (t )q + c(t )q2 + d (t ) = O. (2.1) 

The time-dependent parameters a, b, c, and d are not speci­
fied as to properties, but are assumed to be as good as the 
occasion requires. Following Caldriola and Kanai, 15 we use 
an integrating factor to construct a Lagrangian which is 

L = !ij2A _ (!bq2 + !cq3 + dq)A, 

where 

A = A (t) = eXPJ' a(t ') dt '. 
to 

The conjugate momentum is 

p=qA 

and the Hamiltonian is 

H = !p2A -I + (!bq2 + !cq3 + dq)A. 

Under the change of time scale given by 

T = it A -I(t ') dt', 
to 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

the problem may be discussed in terms of the equivalent 
system with Hamiltonian 

(2.7) 

Note that under the succession of transformations used here, 
it is the form of the expression for the Hamiltonian rather 
than the precise relationship of one symbol to the corre­
sponding proceeding one which is of interest. The alternative 
normal procedure would require a new set of symbols for 
each equation and naturally would be followed in a practical 
application. Under the translation 

q-rlj + r(t ), p-p + s(t ), 

we obtain a new Hamiltonian of form 

H = ! p2 + !bq2 + !cq3 + g(t ), 

provided, in terms of the coefficients of Eq. (2.7), 

r + br - cr - d = 0, s = r. 

(2.8) 

(2.9) 

(2.10) 

As far as Eq. (2.9) is concerned, we may ignore the garbage 
term g(t ) as it plays no role in the equations of motion. It 
should be noted that in quantum mechanics g(t ) would ap­
pear in the phase. 

Apart from the cubic term, Eq. (2.9) is now in time­
dependent oscillator form and so the appropriate transfor­
mation is (cf. Ref. 6) 

Q=p-Iq, P=pp-pq, (2.11) 

where p(t ) satisfies the auxiliary equation 

p + bp =p-3. 

The Hamiltonian now takes the form 

H = p-2 [ ! p2 + !q2 + !cq3 J ' 

which, under the change of time scale 

T = It p-2(t ') dt', 
t, 

466 J. Math. Phys., Vol. 22, No.3, March 1981 

(2.12) 

(2.13) 

(2.14) 

becomes 

H = !p2 + !q2 + *Bq3. (2.15) 

Thus we see that all Newtonian equations of motion of the 
form ofEq. (2.1) may be discussed in terms of the Newtonian 
equation 

ij + q + B (t )q2 = 0, (2.16) 

provided the original linear coefficient is sufficient to war­
rant the final positive sign. In terms of the physical model 
this restriction is reasonable. We are looking at a physical 
situation which does involve attraction to the first order. 
Otherwise kinking is inevitable. 

3. CHOICE OF APPROACH 
The initial problem has been reduced to a discussion of 

the three (equivalent) alternative forms, respectively, the 
Hamiltonian, the Langrangian, and the Newtonian 

H = iJl2 + !q2 + J"Bq\ 

L - Iq'2 _ lq2 _ IBq3 
- '2 2 3 ' 

N = ij + q + Bq2 = O. 

(3.1) 

(3.2) 

(3.3) 

Considering that we have possible quantum mechanical ap­
plications in mind, we must pose the question: Upon which 
of Eqs. (3.1), (3.2), or (3.3) do we base our analysis? The 
Hamiltonian is most closely related to quantum mechanics. 
However, our experience of applying transformations to 
nonlinear Hamiltonians has not been happy.12.16 The La­
grangian is not far removed from the Hamiltonian and is 
susceptible to treatment by the generalized Noether's theo­
rem. Furthermore any invariant found in this way has a cor­
responding Hamiltonian invariant. 17 Also the invariants are 
easily found using Noether's theorem as there is an explicit 
formula. On the other hand, the Newtonian equation ofmo­
tion is the most generous when it comes to providing invar­
iants derived by the method of the Lie theory of extended 
groups. IS 

The approach chosen here is that of the Lie theory of 
extended groups. Those who are familiar with the method 
will know that the price of generality is a more awkward 
determination of invariants vis a vis the Noether method. 
This drawback may be allieviated by the use of point trans­
formations which we have discussed elsewhere. 19 This pro­
cedure is particularly effective when there is only one possi­
ble invariant. Essentially a new time and coordinate system 
is found in which the invariant is a function of coordinate 
and velocity only. The transformation is one of time scale 
and linear in the coordinate. This relates very well to the use 
of change of time scale and linear canonical transformation 
in the Hamiltonian formalism. It will be particularly attrac­
tive if the invariant (in the new coordinates) is energy-like 
since this will have useful quantum mechanical applications. 
If it is not, then at least we will have an invariant. 

4. THE METHOD OF THE LIE THEORY OF EXTENDED 
GROUPS 

Although the Lie theory of extended groups has en-
f · I 20' t t joyed a rightful resurgence 0 attentIOn recent y, 1 may no 

be familiar to all readers. Accordingly we provide a brief 
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resume relevant to Newtonian equations of motion. Suppose 
there exists a transformation with generator 

a a 
G = s(q,t) - + 77(q,t) -. 

at aq 
(4.1) 

(We restrict ourselves to the one-dimensional problem.) If 
under the transformation generated by this operator a New­
tonian equation of motion is to remain invariant, then, writ­
ing the equation as 

N(ij, q ,q, t) = 0, (4.2) 

we require 

G(2)N(ij, q, q, t) = 0, (4.3) 

whenever Eq. (4.2) is satisfied. The second extention of G, 
denoted by G (2) is given by 

G(1) = G + 'Y/(II~ + 'Y/(2) ~ 
./ aq ./ aij' (4.4) 

(4.5) 

Presuming that Eq. (4.3) has non-trivial solutions for 5 and 
77, a constant of the motion may be found by imposing the 
double requirement that 

G{!)if>(q,q,t)=O, (4.6) 

Dif> (q,q,t) = 0, (4.7) 

where D ==cd /dt. 
In the analysis of certain linear systems21 it became ob­

vious that the task of finding the G's, let alone solving Eqs. 
(4.6) and (4.7), was complicated. It had been observed that 
linear systems of the same dimension had the same symme­
try group, Sl( n +2,R ).22 There was also the Hamiltonian 
result about the equivalence oflinear systems under linear 
canonical transformations. This suggested that a point 
transformation of the type t-T, q_Q would simplify mat­
ters. In quantum mechanics a time-independent energy-type 
invariant is desirable23 and in classical mechanics it is most 
useful. The generator for such a constant is 

a 
G=-, 

at 
(4.8) 

provided of course that the appropriate space-time frame of 
reference is used. Supposed that in solving Eq. (4.3) a gener­
ator of the form 

a a 
G=f(t~ + [g(t)q+h(t)]-

at aq 
(4.9) 

is obtained. All one needs to do is to change to new space and 
time variables, Q and T, by means of transformation linear in 
Q such that now 

G=a/aT (4.10) 

and an invariant independent of the new time may be ob­
tained. As a function of Q and Q it may be an energy type 
integral, in which case it has suitable quantum mechanical 
features. If the invariant is not of that form, the quantum 
mechanical applications are not so obvious, but at least an 
invariant does exist. We note that it has been found that, in 
the case for which there are several generators, a common 
transformation reduces them to a commonly simpler form. 
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This is the case with linear systems. 24 For nonlinear systems 
the existence of several generators does not usually occur. 
Indeed it should be mentioned in passing that even in the 
instance of integrable nonlinear systems there may only be 
one generator.25 This seems strange as an integrable system 
has two constants of integration for a one-dimensional sys­
tem. It is hoped to discuss this point at another time. 

To conclude this section we make a brief summary of 
the generalized Noether's theorem. Suppose a transforma­
tion with generator G leaves the action integral invariant, 
with G as defined as in Eq. (4.1). Then there exists an invar­
iant given by 

if> (q,q,t) = - [sL + (77 - Sq) (aL /aq) + f(q,t) J, (4.11) 

wheref(q,t) is determined along with 5 and 77. 

5. A USEFUL RESULT 

As a result, which is useful in this work and which does 
not appear to have been stated before, concerns the form of 
the generator G for the class of Newtonian equations of 
motion 

N (ij,q,t )=ij + g(q,t) = 0. 

Under the requirement that 

G(2) N(ij,q,t) = 0, 

we have 

(5.1) 

(5.2) 

(5.3) 

Remembering that both 5 and 1] are functions of q and t only, 
we separate coefficients of powers of q to obtain 

a25 -=0, (5.4) 
aq2 

a 21] a25 
--2 -=0 (5.5) 
aq2 aqat ' 

a21] a25 a5 
2-- -+3g- =0, (5.6) 

aqat at 2 aq 

a277 _ g a1] +2g ~ + 5 ag + 77 ag = 0. (5.7) 
at 2 aq at at aq 

From (5.4) 

5 = a(t) + b (t )q. (5.8) 

From (5.5) 

1] = Ii (t )q2 + c(t )q + d (t ). (5.9) 

Thus 5 is at most linear in q and 1] at most quadratic in q. We 
shall use these forms in the development below. 

A similar result may be obtained for Noether's theo­
rem. The Lagrangian corresponding to the Newtonian equa­
tion (5.1) is 

L=!q2_F(q,t), F(q,t) = fg(qf,t)dqf . (5.10) 

The Noether invariant (4.11) has the form 

if> (q,q,t) = 5 [!q2 + F (q,t)] - 1]q - f(q,t). (5.11) 

Taking the total time derivative of(5.11) and equating pow-
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ers of q to zero we obtain 

as =0 
aq , 

~ as _ art = 0, 
2 at aq 

F as _ art _ af = ° 
aq at aq , 

F as + s aF + rtg _ af = 0. 
at at at 

From Eq. (5.12) we have 

S (q,t ) = a(t ), 

and using this in Eq. (5.13), 

rt(q,t) = ~a(t) q + b (t). 

From Eq. (5.14) we find thatf(q,t) has the form 

f(q,t) = - £ii(t) q2 - Ii (t) q. 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

The arbitrary function of time from the integration of Eq. 
(5.14) is neglected. The possible expressions fora(t) and b (t) 
are then found from Eq. (5.15). At this point we simply note 
that the Noether's theorem generators are simpler in general 
form to those obtained using the Lie theory. A comparison of 
the expressions for Sand rt might tempt some to identify e(t) 
in (5.9) with ~a(t). As will be seen below, this is not the case. 

6. APPLICATION OF THE LIE THEORY TO THE 
ANHARMONIC OSCILLATOR 

The reduced problem is the existence of the invariants 
for the Newtonian equation of motion 

ij + q + B(t)q2 = 0. (6.1) 

From Sec. 5 we know that the generator is of the form 

G (q,t) = (a + bq)alat + (/iq2 + eq + d )alaq, (6.2) 

only rt' 2, is required and it is 

rt,2, = ij - tq -2tij 

= bel + 3i;qq - 3bqij 

+ cq + 2eq + eij + d - qii - 2ija. (6.3) 

Substituting into 

G<2'(ij + q + Bq2) = 0, (6.4) 
and equating powers of q to zero, we find that 

b = 0, (6.5) 

d + d = 0, (6.6) 

c +2a +2Bd = 0, (6.7) 

aB + Be + 2GB = 0, (6.8) 

U-ii=Q ~~ 

From Eqs. (6.6-9) it follows that 

d = D sint + E cost, 

2e =a +a, 

B=Ka-5/2 exp{ -~a j'dt'la(t')}, 

(6.10) 

(6.11) 

(6.12) 

where a, K, D, and E are constants and a(t) satisfies the third 
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order equation 

ii + 4d + 2Bd + 0. (6.13) 

Thus the generator of a one parameter symmetry group 
for Eq. (6.1) is 

G(q,t) = aalat + !~(a + a)q + d Jalaq, (6.14) 

provided B (t) takes the form specified in Eq. (6.12). In view 
of the result for Noether's theorem, a generator for a trans­
formation which preserves the action is 

G(q,t) = aalat + (!aq + d)alaq, 

i.e., a must be taken as zero. 

(6.15) 

From Eq. (6.13) we see that for d=l=O, there is a consid­
erable increase in the complexity of the differential equation 
defining a. From Eq. (6.12) the range offunctions B (t) is 
increased for a=l=O. However, this is at the price of removing 
the resulting invariant from the Noether class. As far as ease 
of manipulation is concerned, clearly the case d 0, a=O is 
the simplest. As to whether the non-Neotherian case 
d =O,a=l=O is simpler than d=l=O, a = 0, it is not so easy to 
judge except when it comes to obtaining explicit expressions. 
The general case d=l=O, a=l=O is clearly the most complex. 
Because the case a=l=O is non-Noetherian we would expect 
some qualitative differences in the invariant which will prob­
ably have direct bearing on possible quantum mechanical 
applications. For the moment we shall examine the general 
case and then discuss the particular cases in turn. 

7. DEFINING EQUATION FOR THE INVARIANT 

In Sec. 4 we suggested that the process of finding the 
invariant would be simplified by a transformation to a new 
space-time coordinate system. We define the transforma­
tion as 

T=f(t), Q =g(t)q + h (t). (7.1) 

By imposing the requirement that G (q,t ) as given in Eq. 
(6.15) take the form 

G(Q,T) =alaT, (7.2) 

we see that 

aj= 1, ag + ~(a + a)g = 0, ali + dg = 0, (7.3) 

so that the parameters of the transformation are given by 

f(t) = j' a-I(t ') dt', (7.4) 

g(t) = a- 1/2(t )exp( - ~af(t »), (7.5) 

h (t) = - j' d (t ') a-3/2(t ')exp( - ~af(t '») dt '. (7.6) 

Applying the transformation to the Newtonian equation of 
motion (6.1), it now takes the time-independent form 

Q"+aQ'+KQ2+MQ+N=0, (7.7) 

where the constants M and N are given by 

M = Haii - ~(a + a)2 + a(a + a) +2a2 -4Kh J, (7.8) 

N = h (M + Kh ) + g! !(a - a)d - ad J, (7.9) 

and the prime represents differentiation with respect to T. 
The constancy of the expressions on the right-hand sides of 
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Eqs. (7.9) and (7.10) may be confirmed by direct differenti­
ation and the use of the differential equations for the various 
parameters. 

In the normal way of finding the invariant correspond­
ing to an operator G, we would solve the Eqs. (4.6) and (4.7). 
However, as Eq. (7.8) is independent of Tand the invariant is 
a function of Q and Q " we rewrite it as 

Q' dQ' +aQ' +KQ2 +MQ+N=O. 
dQ 

The invariant is then obtained by quadrature. 

(7.10) 

For the case a = 0, we immediately obtain the energy­
like integral 

lP(Q',Q) = !Q'2 + J"KQ3 + !MQ2 + NQ. (7.11) 

This is a Noetherian invariant and so has a corresponding 
Hamiltonian form. We now examine the problem from the 
Hamiltonian viewpoint. 

8. HAMILTONIAN VIEWPOINT 

The Hamiltonian corresponding to the original Newto­
nian is 

H = 1 p" + ~q2 + lBq3. (8.1) 2 _ 3 

The transformation which reduces the Newtonian equation 
to a time-independent form involved both a change of time 
scale and a linear transformation of the coordinate. In the 
Hamiltonian context such a transformation is accomplished 
in two stages. The first involves a linear canonical transfor­
mation which removes the time dependence to a multiplica­
tive factor. The second is a change oftime scale so that the 
Hamiltonian is nOw the invariant. Thus under the transfor­
mations we expect the Hamiltonian to become 

H(Q,P,T) = W2 + *KQ3 + ~MQ2 + NQ, (8.2) 

which is the Hamiltonian version ofEq. (7.12). We now ver­
ify this result. 

The form of the linear transformation may be inferred 
from Eqs. (7.1) and (7.3) (with a = 0) and the fact, implicit 
in Eq. (8.2), that Q' = P. Thus 

Q = qg + h, P= agq + agp - dg, (8.3) 

where 

g = a- 1/
\ h = f dg/a. (8.4) 

The type two generating function is 

Fz(q,P,t) = gPq + aq2/4a + dq/a + hP. (8.5) 

Then 

H '(Q,P,t) = H (q,p,t) + oFiq,P,t )/ot 

= a- 11!p 2 + *KQ3 + !MQ2 + NQ j. (8.6) 

The change oftime scale, T = fa-I(t ') dt', yields the Hamil­
tonian (8.2). 

We emphasize that an invariant of the form given in Eq. 
(8.2) exists only in the case a = 0, i.e., for functions B (t) in 
Eq. (8.1) given by 

B (t) = Ka-S/2 , (8.7) 

where a is a solution of the nonlinear equation 
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ii + 46 + 2Ka-5/2(D sint + E cost) = 0. (8.8) 

In view of the form ofEq. (8.8) it is rather fortunate that the 
foregoing analysis may be performed without an explicit 
knowledg of a(t). In terms of the originai coordinates the 
invariant is 

I (q,q,t ) 

= ~ai/ - ~aqq + J"Bq3 fa + (!a + a/a)q2 - dq 

-+ !gh (ad - ~a2 + 2a2 - 2Kh) + (ad - ad)/a Jq 

+ d 2/2a +4Kh 3/3 + 3Mh 2/2 + gh (ad /2 - ad). 
(8.9) 

For the simpler case when d is zero, this reduces to 

I (q,q,t) = a! !q2 + ~q2 + !Bq3J - !aqq + dq2/a, (8.10) 

which is not overly complicated. 

9. DISCUSSION 

We have seen that an invariant may be obtained for 
certain time-dependent anharmonic systems. From the in­
variant we may obtain information regarding the bounded­
ness of the motion of the particle. To illustrate this, we con­
sider the simplest case a=O, d =0. Then 

a(t) = A + B sin2t + Ccos2t, (9.1) 

B (t) = K (A + B sin2t + C cos2t )-5/2, (9.2) 

M=A2_B2_C 2 • 

By requiring that B (t) be finite and real we have 

A>(B2+C 2)1/2, M>O. 

(9.3) 

In this particular instance, the transformation from (q,p) to 
(Q,P) is 

Q = gq, P = agq + agp, 

so that, when p = 0, the invariant is 

1= tKQ3 +!(M + !62)Q2. 

(9.4) 

(9.5) 

The values of I for which this cubic has three real distinct 
roots may be obtained from the discriminant of Cardan's 
forrnula. 26 We find that 

1< (M + 1{P)3/6K 2 (9.6) 

and, since !a( = B cos2t - C sin2t ) may be zero, the motion 
will be bounded for 

I <M3/6K2. (9.7) 

A similar analysis may be performed for the case d=i=O, 
a=O, but the result is more complicated due to the extra 
terms. When a$:.O, the stability of the motion is more diffi­
cult to determine because of the nature of the differential 
equation (7.11) determining the invariant. However, for par­
ticular cases it would be amenable to numerical treatment. 

The value of the results obtained here depends upon the 
type of time variation of the field found in the experimental 
situation. If this time variation is one of the types allowed by 
the theory for an exact invariant, it would be most gratifying. 
If it is not, it may be possible to use the results obtained here 
as an approximation to find bounds within which the motion 
will remain. 
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Scattering of a scalar wave from a slightly random surface 
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Scalar wave scattering from a slightly random surface is analyzed by a probabilistic method. We 
make use of the homogeneity of an infinite random surface, that is, the shift invariance property of 
the strictly homogeneous random field. By the group-theoretic consideration of such a shift 
in variance property, the wave solution proves to be a homogeneous random field multiplied by an 
exponential function. Then such a homogeneous random field is approximately solved for a 
slightly random surface to yield a wave solution involving multiple scattering. Several statistical 
properties of the scattering are calculated and shown in the figures. The accuracy of the 
approximate solution is examined in terms of the error of the boundary-value equation. 

PACS numbers: 03.40.Kf 

1. INTRODUCTION 

This paper describes a new formulation of the random 
surface scattering that is a mathematical boundary-value 
problem of the wave equation (see Fig. I). Our formulation is 
different from the small perturbation method,I,2 the Kirch­
hoff approximation, 3 and the diagrammatic approach4

.
5 in 

the multiple scattering theory but is analogous in the funda­
mental idea to the diffraction theory of periodic gratings. 6-8 

For a plane wave incident on a periodic surface, the wave 
solution has the well-known Floquet form, which is a z de­
pendent periodic function ofr, having the same period as the 
surface does, multiplied by an exponential phase factor. On 
the basis of the periodicity, such a z dependent function is 
commonly represented by a Fourier series with Fourier coef­
ficients, so that the problem is reduced to finding such Four­
ier coefficients by solving the boundary condition on the sur­
face. Starting with the periodicity, one can easily obtain the 
optical theorem (the conservation law of power flux) also. 

The formulation proposed here is a stochastic version of 
such formulation for a periodic case, where we make use of 
the stochastic homogeneity and the ergodic property instead 
of the periodicity. In the next section, we assume that the 
infinite surface is described by a strictly homogeneous ran­
dom field of r. By use of the group-theoretic consideration of 
the shift in variance property concerning such a random 
field,9.IO we then show that, for a plane wave incidence, the 
stochastic wave solution can be written by a z dependent 
homogeneous random field of r multiplied by a exponential 
phase factor. Such a form of solution is a stochastic analogue 
to the Floquet form for a periodic surface scattering and is 
generally applicable to the scattering from a homogeneous 
random surface. 

Since the exponential phase factor is uniquely given by 
the phase factor of the incident plane wave, the problem is 
reduced to finding such a homogeneous random field as a 
functional of the random surface. Unlike the periodic sur­
face case, the Fourier series does not work well for represent­
ing such a homogeneous random field. Therefore we employ 
Wiener's nonlinear theory 1 1-14 of the Brownian motion pro­
cess in the probability theory in Sec. 3; formulas concerning 
the nonlinear theory are briefly described in the Appendix. 

Unlike the cluster expansion5 for characteristic functions 
that are deterministic, the nonlinear theory makes it possible 
to represent a stochastic functional in terms of orthogonal 
functionals that are random. Assuming that the surface is a 
Gaussian random field generated by the complex Gaussian 
random measure, which is defined in the Appendix, we ex­
pand the z dependent homogeneous random field in terms of 
the orthogonal functionals associated with the complex 
Gaussian random measure. Then the boundary value prob­
lem is transformed into a set of equations for deterministic 
functions that are coefficients of such functional expansion. 
The equations are solved with a good approximation for a 
slightly random surface to yield a stochastic wave solution 
involving the effect of mUltiple scatterings. The accuracy of 
the approximate solution is then examined in terms of the 
mean-square error with respect to the boundary condition. 

Since the wave solution is represented as a stochastic 
functional, any statistical quantities can be obtained by tak­
ing averages of desired quantities. Moreover, we can apply 
the ergodic theorem to several quantities of the wave field, 
because the solution is written in terms of a homogeneous 
random field. Applying the ergodic theorem to the power 
flux of the wave field, we systematically obtain the optical 
theorem in Sec. 4, which gives the power relation between 
the coherent scattering and the incoherent scattering. We 
calculate several quantities of the scattering such as the com­
plex amplitude of the coherent wave, the angular distribu­
tion of the incoherent scattering, the powerflow of the sur­
face wave, and the optical theorem, which are shown in the 
figures. 

2. FORMULATION OF THE PROBLEM 

Consider scalar wave scattering from an infinite ran­
dom surface as shown in Fig. 1. Let us denote by r = (x,y) a 
vector in the two-dimensional plane R 2 = ( - 00 < x,y < 00) 

and by lJ) a probability parameter describing a sample point 
in the sample space fl p . We assume that the random surface 
is described by a real, strictly homogeneous and isotropic 
random field in the form9- 12 

z = f(TrlJ)), (1 ) 

where Tr is a measure-preserving transformation in flp tak-
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ing w into Trw which enjoys the one-parameter group prop­
erty; 

a and b being vectors in R 2. We further assume Tr to be 
metrically transitive ll

-
14 and that 

(2) 

(3) 

where ( ) denotes the averaging over the sample space, and 
cr the intensity of fluctuation. 

The wave field tf(z,r,w) satisfies the three-dimensional 
wave equation 

[V2 + k 2]tf(z,r,w) = 0, (4) 

in the free spacez> f(T'w) and fulfills the Dirichlet bound­
ary condition 

tf(z,r,w) = ° (5) 

on the surface (1). Moreover, we assume that the wave field 
satisfies the radiation condition. For sufficiently small cr, (5) 
is well approximated by the effective boundary condition2

.4 

tf(O,r,w) + /(T'w) !...- tf(O,r,w) = 0. 
Jz 

(6) 

We will use (6) as an appropriate model of the random 
boundary condition in what follows; however, our formula­
tion can be applied to a more general boundary condition 
without any difficulty. 

To look for a form of the wave solution, we introduce a 
translation operator D under with/(T'w) is invariant.9

,l0 

We define the operator D, which acts on a functional tf(z,r,w) 
of/(T'w), by the relations 

Datf(z,r,w) = tf(z,r + a,T -awl; (7) 

(8) 

(D a translates the variables rand w but does not affect the 
variable z.) 

If tf is a solution satisfying (4) and (6), and the radiation 
condition, D atf is also a solution satisfying the same condi­
tions, because D a commutes with V2,f(T'W) and the 

INCIDENT WAVE 

FIG. 1. Scattering of a scalar plane-wave from a random rough surface 
described by z = f(T'w). Bo: the angle of incidence, (B,'" ):a scattering angle. 
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radiation condition. Since the wave solution is 
to be uniquely determined except for a constant factor, tf and 
D atf are in a linear relation 

D atf(z,r,w) = C (a,w)tf(z,r,w). (9) 

Hence, we regard tf(z,r,w) as the eigenfunction of D a and 
C (a,w) as the eigenvalue9

,lo Ifwe assume that tf has the same 
translation property under D a as the incident plane wave 

tfi(z,r) = - eilK"r - KZ); K z = (k 2 - K6 )1/2 > 0, (10) 

does, then we can easily verify that the wave solution should 
have the form 

(11) 

Here, the first factor in the right-hand side is the eigenvalue 
of Dr, physically representing the phase factor, and the sec­
ond factor is a z-dependent homogeneous random field of r, 
which is invariant under D a. The first term in the brackets 
indicates the incident plane wave having the unit amplitude, 
the second term the specularly reflected wave for completely 
smooth surface, and the third the scattered wave due to sur­
face roughness. Note that (11) is analogous to the Floquet 
solution for the periodic surface scattering, &--8 where the cor­
responding U is a z-dependent periodic function of r having 
the same period as the surface has. 

We have seen that the problem is reduced to finding the 
z-dependent homogeneous random field U. In the next sec­
tion, we will solve for such a random field by use of Wiener's 
nonlinear theory of the Brownian-motion process when the 
random surface is a Gaussian random field. 

3. APPROXIMATE METHOD FOR A GAUSSIAN 
SURFACE 

A. Representation of the wave field 

For concrete analysis we assume thatf(Trw) is a Gaus­
sian random field generated by the complex Gaussian ran­
dom measure (AI) and is represented as the Wiener integral 
(see AS) 

f(T'w) = ( eiArF(A) dB (A,W). (12) 
JR' 

(Hereafter, we often drop w for simplification.) In order to 
makef(Trw) real and isotropic, we impose the conditions 

o « 

F*(A) = F( - A), 

I F(AW = I F(A W; A = IAI = (A; + A~)l/2. (13) 

-O.2~--------------------------~ 

)(. k = 2 

- 0.1 

1'1. 

kO'= rr/10 

-Re(Ao) 
----lm(AJ 

O~ __ -~-:~f~-~-7~~ __ ~ __ ~ __ ~~~~ 
O 30 60 

e.(dczg) 

FIG. 2. Ao vs Bo. [The amplitude of the coherent wave is II + Ao) by (16).] 
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Then the correlation function (A6) of/trw) is reduced to 

Rf(la!) = 21T f" Jo(A lal)1 F(A WA dA, 

where Jo is the Bessel function of the first kind. 
A solution Uto (6) is a functional of/trw); however, it 

is regarded as a functional of dB (A) by (12), and hence it can 
be developed for any fixed z into the orthogonal functionals 
associated with dB (A) as (A13). In order to make the scat­
tered wave eiKorU (z, Trw) satisfy the wave equation (4), we 

rewrite (Al3) as 

U(z,rwJ=AoeiKJ + r A 1 (A)eiAr/k,IA)Z dB (A) 
JR' 

+ r fA2(AI,A2)eiIA, + A,lr /k.IA, + A,)Z 

JR'XR' 
Xh (2) [dB (A.), dB (A2 )J + "', (14) 

where h In),s are the Wiener-Hermite differentials defined in 
the Appendix, andAo andAn (n> 1) are a constant and deter­
ministic functions symmetric with respect to their argu­
ments, respectively, and kz (A) is a positive real or positive 
imaginary function given by 

kz(A) = (k 2 - (Ko + 1..)2)1/2> 0; k 2 > (Ko + Af 

= i((Ko + 1..)2 - k 2)1/2; k 2 < {Ko + Af (15) 

Substituting (14) into (11) completes the stochastic re­
presentation of the wave field. By (A9) the coherent wave 
field becomes 

(¢(z,r,w) = /Kor [ _ e - iK.z + (1 + Ao )eiK.z]. (16) 

Clearly, - (1 + Ao) is the reflection coefficient for the coher­
ent scattering in terms of which we will define the equivalent 
surface impedance Zs below [see Eq. (22)]. 

8. An approximate solution 

Once the An's are obtained, we find U by (14) and in 
turn ¢(z,r ,w) by (11), so that the problem is to determine a set 
of functions An 's now. 

In view of approximate analysis, we define the bound­
ary-value error by the relation 

eb(r,w) = e -,xor[ ¢(O,r,w) + /(rw) :z ¢(o,r,w)]. (17) 

Taking in mind that eb (r,w) is a homogeneous random field, 
we look for that equations for An's which should yield 
(Ieb 12) = O. Using (11), (14), (AS), and (A9), we find 

(leb(r,wW) = lAo + ii ,kz(A)A I(A)F*(A) d 1..12 

473 

+ i,IA 1(A) + iKz [2 +AoJF(A) 

+ 2ii kz(A + A1)A2(A,AI)F*(AI) d 1..112 d A 

+ 2{'xRJIA2(A I,A2) + (i/2)kz(AM1(A.)F(A2) 

+ (i/2)kz(A2)Al(A2)F(AI) 

+ 3i1 kz(A I + 1..2 + A3)A3(A1,A2,A3) 
R' 

XF*(A3 ) d 1..312 d AI d 1..2 + .... (IS) 
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Here, each term in the right-hand side is non-negative. Thus 
putting (Ie b 12) = 0 yields the hierarchy of equations for 
An's: 

(19) 

A 1(1..) + ikz [2 + AoJF(A) + 2i r kz(A + AMz(A,A.) d AI = 0, 
JR' 

(20) 

A2(AI'Az) + (i12)kz(AMI(A1)F(Az) + (i/2)kz(A2 )Al(A2)F(AI) 

+ 3i r k z (A 1 + 1..2 + A3)A3(AI,A2,A3)F*(A3) d 1..3 = 0 

etc. 
Since F (A) is a function of the order of 0.1 by (3), these 

equations mean thatAo andAn (n> 1) are at most of the order 
of cr and U', respectively. Therefore we can solve these equa­
tions by neglecting higher order functions for sufficiently 
small cr. Let us obtain the first order solution involving only 
Ao andA I. Ifwe putAn = 0 for n>2, Eq. (20) gives the solu­
tionA I 

AI(A) = -iKz[2+AolF(A) 

Inserting this into (19) yields 

Ao = - 2Zs/ [I + Zs] 

(21) 

(22) 

where Zs denotes the equivalent surface impedance given by 

Zs = Kz r kz(A)IF(AW d A. 
JR' (23) 

Here, the solution (22) for the coherent wave (16) is similar to 
the results by other methods. 2•4 

Re(Zs) represents energy dissipation of the coherent 
scattering due to the incoherent scattering, and Im(Zs) sug­
gest the existence of the surface wave. Since the real and 
imaginary parts of Zs are non-negative and proportional to 
K z = kcos80 , 80 being the angle of incidence (see Fig. 1), 
Re(Ao) and Im(Ao) are negative and tend to zero as 80-1T/2. 
Figure 2 shows Ao as a function of 80 , where we have as­
sumed the Gaussian roughness spectrum 

IF(AW = (cr~/1T)e-KW (24) 

with K the correlation distance of the random surface. Clear­
ly, a negative Re(Ao) reduces the amplitUde of the coherent 

/\ 
N 

~ 
V 

0.5 

7[/4 

FIG. 3. Mean square value of the boundary-value error. Horizontal: the 
roughness parameter ku. 
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scattering in (16) and also gives a feedback effect onA 1 in (21). 
This is due to multiple scattering. 

In order to check the accuracy of the first order solu­
tion, let us calculate the mean square value of the boundary­
value error; we will discuss the accuracy by another method 
in Sec. 4.A. Inserting (21) and (22) with An = O(n:>2) into 
(18), we obtain 

(Ieb 12) = K; 12 + AoI2(a2 L,lkz(A)F(AW d A) 
+ li,kz(A)IF(AW d A12, (25) 

which depends on Kz , a2, and the roughness spectrum. Fig­
ure 3 plots (Ieb 12) versus ku for normal incidence with 
Bo = O. The error is relatively small for ku < 1T/8 but rapidly 
increases for ku> 1T/8 as ku increasing. Thus the first order 
solution gives a good approximation for a slightly rough 
case. For ku> 1T/8, higher order functions, such asA z and 
A 3 , will yield a resonable solution for the effective boundary 
condition (6). 

4. PROPERTIES OF THE RANDOM SURFACE 
SCATTERING 

A. The optical theorem 

Kz 

k 

From (4) we easily find the identity 

div[Im(t/I*gradt/i/k)] = 0 

K 
_z 11 +Ao12 
k 

(26) 

Integrating this over the columnar volume as shown in Fig. 
4, then applying the divergence theorem, we obtain 

k
l ( Im(t/I*i.t/llz ~ zJ dr + JJ Im(t/I*~t/I) dSc = o. 

Jrrl' az k Js, an 
Here Sc shows the side of the column, n an outward normal 
to Sc' and Zo and / are the height and the radius of the col­
umn, respectively. The first integral and the second one are 
proportional to /2 and /1, respectively. Therefore, we obtain 

(27) 

This means a vanishing power flux in the z direction per unit 
surface area, because the incident power is completely re­
flected by the surface. By (11) the integrand is a homogen­
eous random field and furthermore it is ergodic because rr is 
a metric transitive transformation. 9.11 Hence, the space aver­
age can be replaced by the probabilistic average by virtue of 
the ergodic theorem. Consequently, we obtain for almost all 
UJ 

(28) 

which is the conservation law of power flux, generally appli­
cable to the random surface scattering. 

Substituting (11) and (14) into (28), we obtain the optical 
theorem in terms of An's 

+ ~ f n! ( f···fkz(A) + A2 + .,. + An )IAn (A),A2 , .. ,An W d Al d A2 .. ·d An' 
k n = 1 J(Ko + A. + A, + .. , + A.)' < k 2 

(29) 

The left number is the incident power falling on a unit area, whereas the first term in the right-hand side is the coherently 
reflected power, and the series expansion is the incoherently scattered power from a unit area. This optical theorem gives 
another measure for estimating the accuracy of an approximate solution, because it is an exact relation. Note that the optical 
theorem explicitly relates to propagating waves, where surface waves affect it implicitly. On the other hand, the boundary­
value error in Sec. 3.B directly relates to both of the waves. 

Figure 5 shows the optical theorem for the first order solution. When ku increases, the coherent scattering (curve b) 
decreases and the incoherent scattering (curve c) increases; total power scattered (line a) remains constant equal to the incident 
power, because the first order solution satisfies the optical theorem. 

y 
x 

FIG. 4. Columnar volume for applying the divergence theorem. Sc the side 
of the column. n an outward normal to Sc • Zo and I the height and the radius 
of the column. respectively. 
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FIG. 5. Relative power flux vs ku. a: incident flux and total scattered flux 
b + c; b: coherent scattering; c: incoherent scattering. 
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B. Angle distribution of the incoherent scattering 

The incident plane wave is scattered into various directions. By S (0100) we denote the angle distribution of the incoher­
ent scattering, that is, the average power scattered incoherently from unit surface area into unit solid angle of direction 
0= ((),¢) when the angle of incidence is 00 = (()O,¢O) (see Fig. 1.) Since (29) describes power flow in the z direction per unit 
area, the series expansion in (29) equals the integral of S (0 I 00) times cos() over 2rr steradians 

i s (OIOo)cos()d 0 = ~ I n!f ( ···fkz(AI + A2 + ... + An)IAn (AI,A2,···,An W d Aid A2 .. ·d An' 
2,,- k n ~ I J(K. + A, + .. + Ani' < k' 

Putting K = Ko + Al + A2 + ... + An = (ksin()coS¢,ksin­
()sin¢ ), Ko = (ksin()ocoS¢o,ksin()osin¢o) and hence 
kz(A I + A2 + ... + An) = kcos() by (15). (The azimuth angle 
of incidence is measured from the -x axis, hence Fig. 1 shows 
¢o = 0.) We obtain 

S(OIOo) = k 2cos()! IAI(K - KoW 
+ 2! ( IA 2(K - Ko - A2,A2W d A2 + ... J, 

JR' 
(30) 

where K - Ko is a Bragg vector of the scattering. Inserting 
(21) into this yields 

S(0100)=k 4cos()cos2()012 +AoI2IF(A W; 
A = IK-Kol 
= k [sin2() + sin2()0 - 2sin()sin()ocos(¢ - ¢o)] 112, (31) 

which depends on the difference (¢ - ¢o) as expected from 
the isotropy of the random surface. Figure 6 shows the angle 
distribution of the incoherent scattering for the Gaussian 
roughness spectrum (24). 

C. Power flow of the surface wave 

There is some power flow of the surface wave which is 
written by the integrals in (14) over regions of A'S such that 

(Ko + A1 + ... + An)2>k 2. 

In terms of the first order solution we write the surface wave 
'/Is (z,r,ro) as 

0.2~------------------------------------

J<. k= 2 
o-k = TIl 10 

e.,= 30· 
(P.= o· 

oL_-9o------~~--~O--~--~~~~90 
e (degj 

FIG. 6. Angle distribution of the incoherent scattering. (B,tP I: a scattering 
angle. 
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'/Is(z,r,liJ)=e,Ko< ( A I (A)eiAre - [(K" + AI' - k']';' Z dB (A). 
J(K" + AI' > k' 

(32) 

In view of the isotropy of the random suface there is no 
averaged power in the direction perpendicular to Ko, and the 
average power flux Psf in the Ko direction becomes 

Psj(z) = (11k IKoll(Im['/I~(z,r,liJ)Kograd'/ls(z,r,liJ)]) 

( (Ko + A)Ko IA (AWe - 2[(K" + AI' - k']112 Z d A. 
=J(K,,+AI'>k' k IKol I 

(33) 
Since this depends on z, it is convenient to define the power 
flow of the surface wave Ps by integrating Psf (z) over a plane 
which has unit width and an infinite height as shown in Fig. 
7. Then we obtain 

Ps=( 
J(Ko + AI' > k ' 

(Ko + A)Ko 

2k IKol 
(34) 

Figure 8 shows Ps versus the angle of incidence. Ps vanishes 
at normal incidence because of symmetry and tends to zero 
as ()0~rr/2 because the incident power falling on unit area 
vanishes. 

D. Correlation function of the incoherently scattered 
field 

By R is we denote the correlation function of the inco­
herently scattered field in a plane of z = const. Using the first 
order solution, we obtain 

x 

Ris(a)=e'"Koa ( IAI(AWeiJ..ae-2Im[k~AIlz d A, 
JR' 

z 

FIG. 7. Definition of power flow of the surface wave. 
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0.08r-----------------------------------~ 

N 
E 

6.(deg) 

kcr=1T/10 

90 

FIG. 8. Averaged power flow of the surface wave vs 80 , Vertical: relative 
value normalized by the incident flux. 

which for a large value of z becomes 

Ris(a) = e'XoaK;12 +Aoll r IF(AWeiAU d A. 
J(Ko + A)'<k' 

(36) 

This is a band limited function. Thus the high frequency part 
of IF(AW cannot be obtained from R is ' 

5. CONCLUSIONS 

We have proposed a new formulation of the random 
surface scattering. where we have made use of several con­
cepts closely related with the stochastic homogeneity. such 
as the measure-preserving transformation in the sample 
space. the translation operator D. the nonlinear theory ofthe 
Brownian motion process. and the ergodic theorem. We find 
that the stochastic wave solution can be written in terms of a 
z dependent homogeneous random field and hence the prob­
lem is reduced to finding such a homogeneous random field 
as a functional of the random surface. This fact is to be un­
derstood as the starting point of the random surface 
scattering. 

Assuming the effective boundary condition for a slight­
ly rough case. we concretely obtained such a homogeneous 
random field and then calculated several statistical proper­
ties of the scattering. 

Our formulation is essentially based on the homogene­
ity of an infinite random surface and hence it is applicable 
only to the scattering from such a homogeneous random 
surface. Provided the surface is described by a homogeneous 
random field. however. it can be extended to a mOl,'e general 
boundary condition for electromagenetic waves without any 
difficulty. 
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APPENDIX 

This Appendix summarizes formulas concerning Wie· 
ner's nonlinear theory of the Brownian-motion process. 
Concerning notations and definitions we follow the Appen-

dix in Ref. 9. For detailed mathematical description. see 
Ogura.9 It6. 13

•
14 and Wiener. 11.12 

A. Complex Gaussian random measure 

Let us denote by dA a rectangle at A = (Ax, Ay) having 
an infinitestimal area dAx dAy in the two-dimensional plane 
R 2 = (- 00 <Ax.Ay < oo)andbywaprobabilityparameter 
describing a sample point in the sample space !l p' We intro­
duce the complex Gaussian random measure B (d A, 
w) = dB (A, w) on R 2 which satisfies the conditions: 

(1) the real and imaginary parts of dB (A, w) have an 
identical independent Gaussian distributions with 

(dB (A. w) = O. (dB (AI' w)dB (A2' 
w) = 8 (AI + A2) dAI d A2, (At) 

where ( ) denotes the averaging over the sample space and 
the symbol 8 (AI + A2) dAI dA2 stands for the area d Al if 
Al = - A2 or zero if Al i= - A2; 

(2) for almost all w. dB (A. w) satisfies 

dB *(A. w) = dB ( - A. w). (A2) 

where the asterisk denotes the complex conjugate. 
We define a shift of a sample field dB (A, w) by the 

relation 

dB (A, w)---+exp(iAa) dB (A. w). (A3) 

where a is a vector in R 2. As easily verified. the right-hand 
side is a complex Gaussian random measure satisfying the 
above conditions. so that the shift (A3) generates a measure­
preserving transformation r ft in!lp such that 

exp(iAa) dB (A. w) = dB (A. Taw). (A4) 

Here T a takes w into Taw with one-parameter group proper­
ty: TO = 1 (identity); T 8 T b = r a + b. 

If F(A) is a square-integrable function on R 2. then we 
can define a homogeneous Gaussian random field tby the 
Wiener integral 

t(rw) = l, eiArF(A) dB (A, w). (AS) 

By (AI) this has zero average and the correlation function 

RI(a) = <r(r + 8 w )f*(rw) = l, eiAa I F(AWd A.(A6) 

For simplification we often drop the parameter w in the 
following. 

B. Wiener-Hermite differentials 

We define Wiener-Hermite differentials 
h (n)[dB (Ad. dB (A2) ••••• dB (An) 1. n = O. 1.2, .... associated 
with dB (A) by the relations 
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h (0) = 1, h (O[dB (A)] = dB (A), h m[dB (Ad, dB (A2)] = dB (Ad dB (A2) - 0 (A, + A2l d A, d A2, 

etc. The nth degree Wiener-Hermite differential can be obtained by the recurrence formula 

dB (Adh In - ')[dB (A2), dB (A3), "', dB (An)] 

(A7) 

= h (n) [dB (Ad, dB (A2), "', dB (An)] + i h (n - 2) [dB (A2), "', dB (Aj _ I)' db (Aj + ,), "', dB (An) ]O(A, + Aj) d A, d Aj . 
j=2 (A8) 

By these definitions the Wiener-Hermite differential satisfies the orthogonality relation 

(h (nl [dB (Ai, ), dB (Ai,), "', dB (Ai.) ]h (ml' [dB (Aj, ), dB (Aj,), "', dB (Ajm) ] > 
= onm oij d Ai, d Ai, .. ·d Ai

n 
d Aj, d Aj, · .. d Ajm' (A9) 

where 6 n. equals the sum of all distinct products ofn delta functions of the form 0 (Ai - AJ. ), i = (il> i2, "', in ),j = IjI,j2' "·,jm)' 
if v ~ 

all iv and}p appearing just once in each product, for example 

o ~ = O(Ai, - Aj,)6 (Ai, - Aj,) + 8(Ai, - Aj, )8(Ai, - Aj,)' 

By (A4) the Wiener-Hermite differential is translated as 

h Inl[dB (A, TRw), dB (A, raw), "', dB (A, raw)] 

= exp[i(A, + A2 + ... + An)a]h (nl(dB(A, w), dB (A, w), "', dB (A, w)]. 

C. Orthogonal development of a functional 

(AW) 

If a functional <P (w) of dB (A) has a finite variance, then it has the orthogonal development in terms of the multiple Wiener 
integrals (sometimes called the Wiener-Hermite expansion) 

(All) 

where A 0 and A n are a constant and a deterministic function symmetric with respect to its arguments, respectively. By (A 9) the 
symmetric function An is uniquely given as 

(<P(w)h (n)*[dB(A I), dB (A2), "', dB(An)) = n! AnIAI' A2, "', An) d AI d A2 ... dAn. 

(AI2) 

By (AW) a random field <P(Trw) derived by the measure-preserving transformation is represented as 

<P (T'w) = Ao + n~l L 'x".XR' J .. , J An (AI' A2, "', An )exp [i(A, + A2 + ... An)r]h (nl [dB (A,), dB (A2), ... , dB (An)]· (A13) 

By (A9) we easily obtain the average and the correlation function of «I>(Tfw) 

(<P(T'w» = Ao, (A14) 

< <P (T' +aw)<P '(T'w) = [Ao12 + n~' n{ 'x .. xR' J .. J IAn (A I,A2, .. ·S An) IV{A, H, + ... + Anla d Al d A
2

• .. d An' (AIS) 
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Covariant electrodynamics of a dyon in a medium 
J. Cohn and N. Hong a) 

Department 0/ Physics and Astronomy, University o/Oklahoma, Norman, Oklahoma 73069 
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A covariant formulation of electrodynamics of a dyon in a uniform, isotropic, and transparent 
medium is discussed. Using generalized Maxwell's equations admitting magnetic charge, the 4-
potentials of a dyon of electric charge e and magnetic charge m and the corresponding field tensor 
are calculated. This field tensor is then used to calculate the various stress tensors of Minkowski, 
Abraham, and Marx. And it is found that the dyon behaves like an electrically charged particle of 
"effective" charge e*, where e* = e[1 + (d,u)(m/e)2j1/2, where € and,u are the electric and 
magnetic permeabilities of the medium. 

PACS numbers: 03.S0.De 

1. INTRODUCTION 

The electrodynamics of a particle with both electric and 
magnetic charge (dyons) has been discussed on various oc­
cassions. Beginning with Dirac's proposal of the possible ex­
istence of a magnetic monopole, however, most consider­
ations have involved quantum mechanical treatments. 1 

On the classical side, Rund recently developed a sys­
tematic construction of generalized 4-potentials, to describe 
the electrodynamics of dyons in a vacuum. 2 

The purpose of the present work is to develop a covar­
iant formulation of the electrodynamics of a dyon in a medi­
um. Towards this purpose, we will first express the field ten­
sor in terms of the relevant generalized 4-potentials. Then 
the field tensor is used to calculate the electromagnetic stress 
tensor. Here, we consider three types of macroscopic electro­
magnetic stress tensors, that of Minkowski, Abraham, and 
Marx. 3 It is shown that these electromagnetic stress tensors 
for the dyon case take the same form as those of the electron 
case except that charge e is replaced by "effective" charge e*, 
where e* = e[l + (€/,u)(m/e?j1/2, where m is the magnetic 
charge and € and,u are the electric and magnetic permeabili­
ties of the medium. 

We comment that the motivation for this work was the 
hope of finding some characteristic difference between the 
radiation fields (or stress tensors) of magnetically and electri­
cally charged particles, which might then facilitate the de­
tection of the former. However, in the vacuum case no such 
difference seems to exist, and so we turned our attention to 
the medium case where we do, as mentioned above, find such 
a difference. This will be elaborated upon in the last section 
of the paper. 

2. FIELD OF A DVON 

In this section we intend, first, to express the field ten­
sors covariantly in terms of generalized 4-potentials. And 
then we will calculate the field generated by a dyon moving 
arbitrarily (with speed less than that oflight in the medium) 
in a uniform transparent medium. 

'''Submitted in partial fulfillment of the PhD. degree at the University of 
Oklahoma, Norman, Oklahoma. 

A. Maxwell's equations and 4-potentials 

We begin by assuming the validity of the following gen­
eralized Maxwell's equation in the medium rest frame: 

" B - 4rr,u J Ell E' vX---+-, 
c c 
1· 4rr 

VXE= - -B- -8, 
c c 

V·B = 4rrO', 

V·E = (4rr/E)p, 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

where Band E are the magnetic field and electric field, re­
spectively; € and,u are constant permeabilities of a transpar­
ent, uniform, and boundary less medium; 0' and p are the 
magnetic charge density and electric charge density, respec­
tively; 8 and J are the magnetic current density and the elec­
tric current density, respectively; and c is the speed oflight in 
vacuum. 

One of the authors recently showed that in the electron 
case, i.e., when 0' = 8 = 0, the ordinary Maxwell's equations 
can be expressed as4 

(2.5) 

where 

F!,v=:==F!'v _ (l/au)2Va(VvF!'u _ V!'FVU), (2.6) 

where u is the speed of light in the medium; 
a = [1- (ulcf]-1/2; V!'isthe4-velocityofthe medium;Ptv 

is the antisymmetric field tensor which is in the medium rest 
frame (signified by the naught subscript), 

( 

0, 

F
!,V _ - B3, 
(0) - B2, 

E 1, 

(2.7) 

and 

F*!'Y,y = 0, (2.8) 

where F*!'v is defined as F*!'v=:==~e"vaPFaP; F!v 
-gila gV{3F *a{3; andg"v = (1,1,1, -1). 

Then ji!'v and F *!,V are, in the medium rest frame, given 
by 
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C' 
B3, -B2' - EI'E') 

- -B 0, B), - ~J.LEz (2.9) FI-'V _ 3' 
(0) - -B» 0, Bz, - EJ.LE3 

EJ.LE) , ~J.LE2' ~J.LE3' o (0) 

and 

C' 
E 3, -E2' 

B') -E 0, E), Bz F*!'v _ 3' (2.10) (0) - -E), 0, B3 Ez, 

-B\> -B2' -B3' o (0) 

U sing the same definitions and notations, Eqs. (2.1)-
(2.4) become 

(2.11) 

and 

F*!"V = _ 417' S!", 
,v (2.12) 

c 

where JrO) = (J,cp)(O) and SrO) = (S,co)(O)' 

We now wish to express FI-'V in terms of generalized 4-
potentials ¢>!" = (cf>,U) and tit!" = (\fl, V), which are supposed 
to satisfy the following equations in the medium rest frame: 

O'cf> = - 41TJ.L J, (2.13) 
c 

O'U= _ 417' p, 
E 

(2.14) 

O'l\J = - 417' S, (2.15) 
c 

O'V-- 417' - -(7, (2.16) 
EJ.L 

where O'=V2 
- (EJ.L;~)(a 2;at Z). 

Towards this end we will, firstly, express Band E in 
terms of the potentials. 

By taking the curl of Eq. (2.1), we obtain 

VXVXB = V(V·B) - VZB = 41TJ.L VXJ + EJ.L VxE. 
c c 

(2.17) 

Substitution ofEq. (2.2) for V X E and Eq. (2.3) for V·B yields 

(2.18) 

This becomes, after using Eqs. (2.13)-(2.16) 

0' [ B - { - ~J.L V V + V X cf> - E~ ,j,}) = o. (2.19) 

The argument of 0' is a certain vector, say A, which satisfies 

0' A = O. (2.20) 

Then 

EJ.L . 
B = - EJ.LVV + Vxcf> - - l\J + A. (2.21) 

c 

Similarly, by taking the curl ofEq. (2.2) and using the 
above method, we obtain the expression for E in terms of the 
potentials: 
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1 . 
E= -VU-Vxl\J- -cf>+C, (2.22) 

c 

where O'C = 0. 
Since, from Eqs. (2.21) and (2.22), Band E are left un­

changed by the transformations 

~cf>+VA, 

l\J--l\J + V r, 

1 ' U __ U- -A, 
c 
1 . V __ V- -r, 
c 

(2.23) 

where A and r are arbitrary, we have the freedom of choos­
ing the potentials such that5 

(2.24) 

and 

~J.L . 
V·", + - V= o. (2.25) 

c 

The gauge Eqs. (2.24) and (2.25) can be written in co­
variant form as 

aai(o) = 0 and aa ¢(o) = 0, (2.26) 

where 

iro) = (cf>,EJ.LU)IO) = (¢>I-' - (l/aufVa¢>avl-')(o» (2.27) 

¢fa) = (l\J,EJ.LV)IOI = (tit!" - (l/aufVatltaV!")(OI' (2.28) 

Thus, in any inertial frame, the gauge for the potentials are 
such that 

(2.29) 

We now proceed to show that A and C can be absorbed 
into the gauge transformations, Eq. (2.23). 

From Eq. (2.21), we have 

VXA = VXB - V(V'cf» + VZcf> + EJ.L VX,j,. (2.30) 
c 

Using Eq. (2.1), and substituting 0' + (~J.L;c2)(a2;at 2) 
for VZ, we obtain 

VXA= EJ.L a
2

cf> -V(V.cf»+ EJ.L ~(VX"'+E). 
c2 at 2 c at 

(2.31) 

This equation finally becomes, utilizing Eq. (2.22), 

V X A = - v( V.cf> + E: U) + E: ~ 
EJ.L ac 

=-- (2.32) 
c at 

And similarly, from Eqs. (2.21), (2.3), and (2.16), we obtain 
the relation 

EJ.L . 
V·A = V·B + ~J.LV2V + - V.", 

C 

EJ.L a ( EJ.L· ) = -- V·",+ - V =0. 
c at c 

J. Cohn and N. Hong 
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Thus, we can write 

A= VX~' 

for some vector function ~'. 

Similarly, the curl and div of C are found to be 

VXC= _ ~aA, 
c at 

V·C=O. 

Thus, C can be written as 

for some vector function \)1'. 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

Substituting Eq. (2.34) into Eq. (2.35), and Eq. (2.37) 
into Eq. (2.32), we find that 

and 

EfL . 
VxA = - - V'x1(1' 

c 

Vxc = - ~ VXcj>. 
c 

Therefore, A and C are, in general, of the form 

A £fL .i.' ""V' = - -'" -EfLv 
c 

and 

c= - ~~'-VU 
c 

for some functions V' and U'. 

(2.38) 

(2.39) 

(2.40) 

(2.41) 

Now we observe that A and C are left unchanged by the 
transformations: 

~'-+~' + VA " 

1{J' -+1(1' + V r', 

U'-U'- ~A', 
c 

c 

(2.42) 

Again we have the freedom of choosing these "potentials" to 
satisfy 

and 

vxclt' + £fL lJ' = 0 
c 

VX~' + EfL V' = O. 
c 

(2.43) 

(2.44) 

By taking the curl of Eqs. (2.34) and (2.40), and using 
Eqs. (2.37) and (2.41), we find that 

O'~'=V(v.~,+ £: U') =0. (2.45) 

Similarly, by taking the curl ofEqs. (2.37) and (2.41), and 
using Eqs. (2.34) and (2.40), we obtain 

0'1)1' = V (v.1/I' + c: v) = O. (2.46) 

And by taking the div instead of the curl, we obtain 
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O'V'=o, 

O'U'=O. 

(2,47) 

(2.48) 

Now we substitute A and C into Eqs. (2.21) and (2.22), 
respectively, to obtain 

B= -€pV(V+iV')+VX(cP+i~')- ~(tj,+~,j,'), 
c 

(2.49) 

E= -V(U+1U ')-VX(1f!+N")- ~(~+1~')' 
c 

(2.50) 

since, from Eqs. (2.34), (2.40), (2.37) and (2.41), 

A = Vx~' = - €f.L -¢' - EfLVV' 
c 

=dvx~' - E: ~'-£PVV'} 
and 

C= -V\)1'= - ~cj,'-VV' 
c 

= - ~( V X~' + ! *' + V U ') . 

Furthermore, we observe that the "new" potentials 
( = "old" potentials +! of "primed" potential) obey all the 
equations governing the "old" potentials, that is, Eqs. 
(2.13)-(2.16) and(2.24)-(2.29). Thus, by chOOSing the "old" 
potentials to denote the "new" potentials, we restore these 
equations and have6 

(2.51) 

E = - VU - VX~ - ~~. (2.52) 
c 

We now wish to express the field tensor in covariant 
form in terms of the above generalized potentials. From Eqs. 
(2.51) and (2.52), we obtain 

pl4 = _ EI = au + (a¢3 _ al/!2) + ~ a,pJ , 
ax ay az c at 

= (4; 4.1 - tP 1.4) + E14a{31/1{3.a (2.53) 

p12=B = -€f.J. av + (aifJ2 _ a,p\) _ EfJ- 01/1, 
3 az ax Jy c at 

= (¢ 2.1 _ 4> 1.21 + EfL c I2af3t/;p.a' (2.54) 

which may be generalized to give 

Fij = t/J).i - A. iJ + ell Eijat3,I, • (2.55) 
. 'f' r- 'f'p.et 

(iJ = 1,2,3) 
Fi4 = 4; 4.i _ ¢ i.4 + £ i4at3l/!e.a. (2.56) 

Combining these two equations together, we finally have 

FPV = (4) Vol< _ ,p /-t.,) + I EfL e-'vat3 

+ (l/au)2 VI'(VVcI'Y<z/3 - v!,£vya!3)1 tPfJ.a' (2.57) 

Inversely, it can be easily shown that the expression for 
F!'V in Eq. (2.57) with the gauges given by Eq. (2.29) satisfies 
Maxwell's equations, Eqs. (2.ll) and (2.12). 
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For brevity of notation let us introduce new quantities: 

f I'-v=,p V,I'- _ ,p I'-,V (2.58) 

and 

b *l'-v=",V,1'- _ "'I'-,v. (2,59) 

Then pl'-V can, in general, be written as 

F I'-V =/I'-V _ €fJ-bl'-v - (l/au?Vy(VVbI'-Y - VI'-b vr, 
(2.60) 

where 

b *I'-V = !eI'-vaPbap, 

B. Field of a Dyon 

The potentials,p I'- and ",I'- for a dyon of magnetic charge 
m and electric charge e are the solutions to Eqs. (2.13)­
(2.16). The solutions to these equations for the electron case 
«(7 = S = 0) are found in Cohn's paper.7 Certain portions of 
that paper which are related to our problem shall be re­
viewed, and we shall use the same notation as in that work. 

As in the vacuum case, we define R fo) 
= (x - z, eLit )(0)' where x and z denote the field and parti­

cle locations, and Li t is the time required for the wave in the 
medium to go from z to x. Then we may write R fo) 
= (UI'- + (l/u) VI'-)(O) where Ufo) = (7,0\0) is a unit posi­

tion vector in the medium rest frame, andp is just Ix - zl(o)' 
From the 4-velocity, ul'-, of the particle, new quantities 

are introduced: 

(2.61) 

where 

r = (1 - (u/e)2)-tf2 and A = (u - e)/c3, 

and 

(jl'-=(dff' / dr), (jl'-=(dif' / dr), 

And various quantities are defined for simplicitly offormal­
ism, as 

RI'- =p (UI'- + + VI'-); Rava = -pu; 

AI'-= ~(UI'-+ ~VI'-). 
fJ-p c2 

Using these quantities, the solutions for the electron 
case (which corresponds to just,p 1'-) «(7 = S = 0) are found to 
be 

(2.62) 

and thus 

(2.63) 

where e is the electric charge, A·B ==A aBa' A [I'- B v] 

==!(A I'-B v - A vB 1'-), and all quantities on the right-hand side 
are retarded, 
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Similarly, the solutions to Eqs. (2.13)-(2.16) can be 
found as 

.1.1'- = m if'] 'I' _, (2.64) 
e p ret. 

where m is the magnetic charge of the dyon. 
We also find, from Eqs. (2.58), (2.59), (2.62), and 

(2.64), that 

(2.65) 

Then, the field tensor for a dyon becomes 

FI'-V =/I'-V + (mE/e)/*l'-v _ (l/ac)2(mE/e)yI'-V, (2.66) 

where 

(2.67) 

and where / I'-V is determined by the dyon's retarded kine­
matics according to Eq. (2.63). 

3. ELECTROMAGNETIC STRESS TENSOR 

In this section we will calculate the various electromag­
netic stress tensors-Minkowski, Abraham, and Marx-for 
the field produced by a dyon moving arbitrarily in the medi­
um. We take the tensors as8 

where sUbscripts M, A, and S designate Minkowski, Abra­
ham, andMarx, respectively. Using the definition, Eq. (2.6), 
these can be written as 

1 T MI'-v = -- [pl'-aPa v + (l/au)2(PI'-QPvPV V 
4fffJ- a 13 

- FI'-PFpaVa V~ 

+ J.gII-V(papPaP - (2/a2u2)FaPFa YVp Vy)], (3.4) 

TAI'-v = TA VI'- = T MI'-v + (l/4fffJ-)(l/au?(pl'-apaPvp VV 

- (l/c2)FaPFa YVp Vy VI'-VV), (3.5) 

Tsl'-v=TsVI'-= Ui[TMl'-v __ 1_(l/au)2{VI'-FvaFaPV 
e2 4fffJ- p 

+ WI'-VV (paPPa YVp Vy(l/a 2u2) + !paPFap )}] . 
(3.6) 

Now these tensors will be evaluated by substituting Eq. 
(2.66) into Eqs. (3.4)-(3.6). 

A. Mlnkowskl 

Substituting Eq. (2.66) into Eq. (3.4), we obtain 

T M1'v = 4~}1 [(ff)I'-V + (:E Y {(f*f*YV 
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- (:c YU*y + yf*fv + (:c r (yy)!'v} 

+ (~E) {(ff* + f*f)fLv - (~c fUji + YfrJ J ' 
(3.7) 

where 

(ab fV:=:::.afLaba v + (a
1
u Y(afLQb V/3Va V/3 - afL/3b/3aVa V1 

+ ~v( aa/3ba/3 + a~2 aa/3br/'Va Vy ). 

(a + b fV =afLV + b fLY, 

{(a + b )(c + d )},uv==(ac + ad + bc + bd r. 

(3.8) 

(3.9) 

(3.10) 

The first term in Eq. (3.7) is the contribution of electric 
charge to the tensor, the second term of magnetic charge, 
and the third term of the interference between electric and 
magnetic charges. We now proceed to express the second 
term in terms off ,uv. 

From the definition, Eq. (3.8), U*f*)fLV is 

U*f*fv 

= f*,uaf:" + (a~ YU*f'af*v(3VQ V(3 - f*!,(3f~aVa V1 

+ }$'vv*a/3f:(3 + a:u2 f*a/3 f~Y Va Vy). (3.11) 

Using Eqs. (2.67) and (3.8), we find 
4 2 

(yyfV = ~f*fLa f* v/3 Va V/3 + C
2 

v,uv vf*a/3 ft"Va Vy 
u~ u 

+ ~v C:)f*a/3 f';YVa Vy. (3.12) 

We also obtain, from Eqs. (2.67) and (3.8)-(3.10), 

U*y + y/*r = 2C: f*,ua /* v/3 Va Vj3 - Pf *vaf :/3Vj3 
U 

2 

- C 2 VV f*f'af a*/3V(3 
U 

+ (~c Y VfLV v f*a(3f$YVa Vy 

2 

+ ~ gf''' f*o(3/*·yv V (3.13) 
u 2 (3 0 y' 

By combining Eqs. (3.11 )-(3.13), we obtain 

U* f*r - (~c r U*y + yf*fv + (~c r (yyfV 

= f*fLaf: v - (:c r U*,uaJ*v/3Va V{3 - VfLf*vaf:YVy) 

+ Id'v(f*OfJf* _ _ 2_p "U{3J*YV V) (3.14) 
46 01/3 a 2c2 /3 0 Y • 

To express Eq. (3.14) in terms of[ ,uv, we will use the 
identities: 

J*lwf:" =f,uaf~ + ~vf°(3fa(3; J*o(3J:(3 = - f o(3fa(3; 

J*llaJ*VPVa V(:l 
= c'i ,uafa v + VfLJ vOJa/3Vp + V,! fLafa/3V(3 

+ ! P V,! aPfa/3 - ffLaf v(3Va V(3 + ~V(c'i a/3fa/3 

-2fof3J(3YVa V). (3.15) 
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Then, finally, Eq. (3.14) becomes 

u*J*r - (lIac)\f*y + yf*r + (l/ac)4(YYr 

= (U 2/c2)(ff),uv. (3.16) 

Next, we will consider the last term in Eq. (3.7) which 
represents the interference between electric and magnetic 
charges. Straightforward calculation with the help of the 
identity 

f ,uaf:v = -}$''! aj3f:(3 (3.17) 

shows that 

(ff* + f*ffv - (l/ac)yfY + yffv= O. (3.18) 

Therefore, by substituting Eqs. (3.16) and (3.18) into 
Eq. (3.7), we obtain the Minkowski tensor for a dyon: 

TM,u,,= 4~/t {1+(u/c)2(~Ey}(ff)f'v, 

= {I + (E//t)(:Y} T~(e)' (3.19) 

where we substituted (U/C)2 = l/E/t, and the sUbscript (e) 
designates the tensor for electric charge without any mag­
netic charge present. 

B. Abraham and Marx 

After a somewhat lengthy but straightforward calcula­
tion of the same fashion as for the Minkowski case, we arrive 
at the same result as Eq. (3.19) for both the Abraham and 
Marx tensors. 

Thus, all three tensors for a dyon differ from those of 
the electrically charged particle without magnetic charge by 
a factor of 1 + (Ef/t)(m/e? For all three tensors, explicitly, 
we have 

(3.20) 

In the next subsection, we will briefly consider the 4-
divergences of the three tensors. 

C. Calculation of 4-divergence 

We first note that from the definition of p,u", Eq. (2.6), 

F F-a(3 - F-a(3F 
a/3 ,v - Ct[3,v (3.21 ) 

and 

Using these equations, we find that 

and 

(3.24) 

Tsl'-V,,, = (U 2/C3){(F,udJa - (lI/t)P*fLC<Sa) 
- (lIauf(pa{3Jj3 - (lI/t)F*afJS(3)Vo VI'} 

(3.25) 
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In the sourceless case, therefore, both become identically 
zero, i.e., 

(3.26) 

But TA"'v.v is not identically zero, when there is no 
charge present; this can be shown from the following 
equation 

TA).'v,v = T M"'v,v + (1I41T/J)(lIau?(F",a,v Fa{3Vp VV 

- (2/c2)Fai3,JaYVp Vy V"'V,. (3.27) 

4. DISCUSSION 

In a previous paper, the authors have discussed the en­
ergy-momentum and angular momentum emission rates for 
an electrically charged particle moving arbitrarily in a uni­
form transparent medium with speed less than that of light 
in the medium.9 Comparing that with this paper, we find 
very similar features. The electromagnetic stress tensors un­
der consideration have the same form for both the electric 
and magnetic cases, except that e in the electric charge case is 
replaced by an "effective" charge e* in the dyon case, where 

e* = e[t + (d/J)(mle?Ji!2. (4.1) 

Furthermore, the 4-divergences of the three tensors, in the 
charge free case, behave similarly, i.e., the Minkowski and 
Marx tensors are divergenceless in both cases, and the 4-
divergence of the Abraham tensor is not identically zero in 
both cases. 

Therefore, the energy-momentum and angular momen-
tum emission rates for a dyon moving arbitrarily (whose 
speed is less than that of light in the medium) in a uniform 
transparent medium are the same as those for a pure electric 
charge, except that e is replaced by e*. All the arguments 
discussed in the previous paper concerning energy-momen­
tum and angular momentum emitted by a chaged particle 
are applicable to the dyon.9 We will not repeat them here. 

Despite their similarities, the difference between the 
electric charge and dyon is conspicuous. Since the difference 
arises due to the existence of magnetic charge, let us consider 
the pure magnetic monopole case. By setting e = 0, we find 
that the "effective" charge of a monopole, m *, is 

m* = (€I/J)V2m. (4.2) 

In a vacuum we cannot distinguish the magnetic mono­
pole from the electron qualitatively, in the sense that the 
electromagnetic tensors for them are indistinguishable, ex­
cept for their charges. But in a medium the magnetic mono-
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pole behaves like a particle of medium-dependent charge. 
Thus, the phenomena related to it and its motion would be 
significantly different from those of the electron. If we could 
arrange layers of media and observe certain phenomena such 
as radiation or the motion of a particle moving through the 
layers, it would then be possible to tell the difference between 
the electron and the magnetic monopole. 

The theory developed in this paper does not provide us 
with the tools to analyze the radiation of a charged particle 
moving through an inhomogeneous medium, but we still ex­
pect that the effective charge of the magnetic monopole is 
medium dependent. 1O 

It should be remarked here that, even though the theory 
presented in this paper reveals certain properties of magnetic 
charge, we cannot claim that the tensors considered repre­
sent the real situation correctly. Nevertheless, it is suggestive 
that all three tensors, Minkowski, Abraham, and Marx, 
agree on at least two points: A dyon behaves like a charged 
particle of effective charge e* and there is no interference 
effect due to the simultaneous existence of the two types of 
charge. 

It should be remarked that, if the existence of the dyon 
is assumed, it is possible that ordinary matter may contain a 
certain amount of magnetic charge, and Maxwell's equa­
tions, Eqs. (2.1)-(2.4), may have to be changed 
accordingly. 11 

'See, for example, P. A. M. Dirac, Proc. R. Soc. London, Ser. A 133, 60-72 
(1931); J. Schwinger, Phys. Rev. D 12, 3105-11 (1975). 

2Hanno Rund, J. Math. Phys. 18, 84-95 (1977). 
'For a fuller discussion of the various stress tensors and their merits see I. 
Brevik. Dan. Viden. Selsk. 27. No. 11 (1970); 37. No. 13 (1970). and also his 
preprint Experiments in Phenomenological Electrodynamics and the Elec­
tromagnetic Energy-Momentum Tensor (University ofTrondheim, 1978). 

4Jack Cohn, Ann. Phys. (N.Y.) 114. 467-78 (1978). 
1These gauges are a generalized form of the gauge introduced in, for exam­
ple. J. D. Jackson. Classical Electrodynamics (Wiley. New York, 1967), pp. 
180-181. 

"This result is obtained differently by Rund. see Ref. 2. 
'J. Cohn, see Ref. 4. 
"I. Brevik, see Ref. 3. 
9J. Cohn and N. Hong, to be published in Ann. Phys. (N.Y.). 
lOp. B. Price et 01., Phys. Rev. Lett. 35 (1975). in analyzing the image on a 

Cherenkov detector, used the formula, Intensity a: m2[n' - (ulv)'). 
ilL. L. Vant-Hull, Phys. Rev. 173, 1412-3 (19681, measured the magnetic 

charge on the neutron and the difference of the magnetic charge of the 
proton and the electron. and found them to be less than 2 X 10- 4

' Wb. He 
also found that the magnetic charge of the electron is less than 8 X 10--.19 

Wb. 
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It is shown that it is pos~ible to make a meaningful multipole expansion for the electromagnetic 
fields produced by locahzed charge and current distributions embedded in material media­
provided the media possess certain reasonable properties. The result is similar to the well-known 
~ultipole expansions for localized sources in vacuum hut differs from it primarily because of 
mduced charge and current density contributions to the various multipole coefficients. 

PACS numbers: 03.50.De 

I. INTRODUCTION 

The usefulness of multipole expansions for electromag­
netic fields is well known. They are especially helpful in the 
treatment of radiation from localized charge and current dis­
tributions. In addition they are convenient for characteriz­
ing known fields as well as fields obtained from numerical 
calculations and from empirical results. 

The classic textbook presentation of multipole fields ap­
pears in Appendix B of Theoretical Nuclear Physics by Blatt 
and Weisskopf. ) These authors give numerous references to 
the original literature. A more recent and thorough treat­
ment is given in Classical Electrodynamics by Jackson. 2 Both 
these texts discuss multipole expansions for charge and cur­
rent distributions in vacuum. 

Intuitively, it would seem that multipole expansions 
also ought to exist for source distributions in material me­
dia-especially if the medium becomes linear and of uniform 
character at sufficiently large distances from the source dis­
tributions. For in that case it would appear that the medium 
at large distances would behave like a modified vacuum, dif­
fering from the true vacuum only in the numerical values 
assigned to the constitutive parameters. There would, of 
course, be complications due to induced charges and cur­
rents which would have to be properly taken into account. 

It will be shown in this paper that such a multipole 
expansion does in fact exist for material media. Unfortunate­
ly, it has the unpleasant property of being an expansion of an 
integral equation so that the terms in the expansion involve 
the fields themselves. The utility of the expansion is thus 
somewhat restricted. However, it will be shown that the ex­
pansion terms depend on the fields only in localized regions 
so that its usefulness may be greater than first impressions 
might indicate. In particular the expansion may at least be 
helpful in characterizing the fields produced by sources em­
bedded within material media. 

To establish notation and to prepare the way for the 
derivation of the multipole expansion for material media, 
Sec. II reviews various aspects of the field equations. Section 
III introduces the concept of an asymptotic background or 
"modified vacuum" and then gives the form of the field 
equations as well as the wave equations appropriate for a 
system with an asymptotic background. The derivation itself 
is outlined in Sec. IV. It parallels closely the derivation for 
sources in vacuum as presented in Jackson. Consequently 

only substantive differences are indicated. In making the 
derivation it will be convenient to consider the medium to 
have continuous properties. An extension to discontinuous 
media is then made in Sec. V in conjunction with an interpre­
tation of the effective source densities which contribute to 
the various multi pole terms. SI units will be used 
throughout. 

II. FIELD EQUATIONS 

It will be sufficient to consider harmonic fields having a 
time-dependence of the form 

(1) 

where (jJ is the angular frequency. Maxwell's equations in 
vacuum then become 

V·B=O, 

VXE + j(jJB = 0, 

V X B - iwE/c2 = floJ" 

V·E=pJ€o. 

(2) 

(3) 

(4) 

(5) 

where c is the speed oflight in vacuum, and flo and €o are the 
permeability and permittivity of free space, respectively. The 
subscript t on the charge density p, and current density J, is 
there to emphasize that these are the total source densities. 

Equations (2)-(5) are of general validity and can be in­
terpreted either as microscopic expressions or appropriately 
averaged macroscopic relations. The averaging process has 
been discussed at length by numerous authors.2-5 It will suf­
fice here to simply point out that the continuity and differen­
tiability properties of the macroscopic fields are determined 
by the weight function used to perform the averaging. It will 
be assumed during most of this paper that the weight func­
tion is sufficiently smooth to assure the existence everywhere 
of all necessary derivatives. The usual procedure of allowing 
media discontinuities can be obtained as a limiting case in 
the end. 

In material media it is convenient to isolate from the 
total source densities those parts which depend upon the 
total polarization P and total magnetization M of the medi­
um. These parts are given by 

Pp = - V·P, (6) 

J p = iwP, 

Jm =VXM, 

(7) 

(8) 
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and are called the polarization charge density, the polariza­

tion current density, and the magentization current density, 
respectively. The total source densities then exhibit the 
decompositions 

p, =P +PP ' 

J, =J +Jp +Jm , 

(9) 

(10) 

wherep and J are referred to as the macroscopic charge and 
current densities, respectively. 

It will be assumed that the medium is linear and iso­
tropic, but not necessarily homogeneous. Thus the polariza­
tion, magnetization, and current density can be expressed in 
terms of the electric and magnetic fields by 

P = (E- Eo)E, 

M = (lIJlo - lIJl)B, 

J=Js+uE, 

(11) 

(12) 

(13) 

where J s is the "specified," or field independent, part ofthe 
current density. The properties of the medium are now com­
pletely contained in the three constitutive parameters E, Jl, 
and u. These, of course, are the permittivity, permeability, 
and conductivity, respectively, of the medium. In the case of 
inhomogeneous media they are functions of position. 

Maxwell's two equations containing the sources then 
become 

V'(EE) =p, 

V X (B/Jl) - 1]E = Js 

(14) 

(15) 

where the parameter 1] has been introduced for convenience 
and is defined by 

1] = u + iOJE. (16) 

III. ASYMPTOTIC BACKGROUND 

In order to establish a multi pole expansion for material 
media it is necessary that the specified source density Js be 
localized and that the medium become homogeneous at 
large distances. Thus it will be assumed that there exists a 
spherical surface So (radius Ro) such that outside of So the 
medium is homogeneous and J s is zero. The system will then 
be said to possess an asymptotic background or modified 
vacuum having constitutive parameters equal to those of the 
medium outside So. 

Taking the necessary derivatives in Eqs. (14) and (15) 
and using a subscript 2 to denote parameters associated with 
the asymptotic background, Maxwell's two source depen­
dent equations can now be written in the form 

V·E =PeIEz' 

VxB - ilk ~/OJ)E = JlZJe • 

(17) 

(IS) 

The quantitiesPe and J e are the effective charge and current 
densities defined by 

Pe = - (Ez/1])(V·Js + V1]·E), (19) 

J e = (Jl/Jlzj[Js - V{lIJl) X B + i{ok zIOJJl)E]. (20) 

Furthermore, 

k 2 = - iOJJl{u + iOJE) (21) 

and 

485 J. Math. Phys., Vo1.22, No.3, March 1981 

(22) 

Clearly the effective sources contain contributions not only 
from the specified current density but from medium inho­
mogeneities. It will be seen in a later section that the latter 
contributions are just the familiar induced charge and cur­
rent contributions. 

It is now straightforward to derive the wave equations 
in the usual way, thereby obtaining 

(VZ + k~)E = F, (23) 

(VZ + k~)B = G, (24) 

where 

F = VpJEz + iOJJl2Je (25) 

and 

G = -JlzVXJe • (26) 

IV. MULTIPOLE EXPANSION 

It is evident from Eqs. (25) and (26) along with (19) and 
(20) that outside the surface So both F and G are zero so that 
E and B satisfy the Helmholtz equation for the asymptotic 
background. Furthermore E and Bare divergenceless out­
side So. It thus follows that outside So the fields can be repre­
sented in the form of a multipole expansion 

E = II! - iOJlk ~ )aE{/,m)V X [.t;(kZr)XI.m ] 
I.m 
+ aM(/,m)gl(kzr)XI,m J, 

B = IlaE(/,m).t;(kzr)X I.m 
I,m 
- (lIiOJ)aM(/,m)V X [gl(kzr)Xlm ] J. 

(27a) 

(27b) 

Except for the use of the asymptotic value kz in place of the 
vacuum value and some changes necessitated by the use ofSI 
units instead of Gaussian units, these expressions and their 
derivations are identical to those given in Jackson (pp. 744-
7). In particular.t; and gl are solutions of Bessel's equation 
while X lm is a vector spherical harmonic defined in terms of 
the spherical harmonics Ylm by 

Xlm = - irXVYlm/(/(1 + 1))I/Z. (2S) 

The quantities a E (I,m) and aM (I,m) are referred to as the elec­
tric and magnetic multipole coefficients, respectively. They 
can be expressed in terms of the fields by 

aE(/,m).t;(kzr) = k ~ I/Z JYt" r·E dfl, 
OJ(I (I + 1)) 

fL(1 m)g (k r) = - OJ Jy* r·B dfl 
.,.", I z (/(1+1))1/2 1m , 

(29a) 

(29b) 

where it is understood that r exceeds the radius of So and the 
integral is over all solid angles. 

Equation (29) can be used to express the multipole coef­
ficients in terms of the effective sources. To accomplish this 
the vector identity 

r·V2A = VZ(r.A) - 2V·A (30) 

may be used to cast the inhomogeneous wave equations (23) 
and (24) into the form 
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(V2 + k ~ Hr· E) = r·F + 2Pe1E2' 

(V2 + k ~ Hr·B) = r·G. 

(31a) 

(31b) 

For (damped) outgoing waves at large distances these differ­
ential equations are equivalent to the following integral 
equations: 

r·E(r)= 
1 r e - ik,lr - r'l 

41T 1s Ir - r/l 

+ 2Pe(r')lE2] dV', 

[r.F(r/) 

r.B(r) = - - e / r/.G(r/) dV', 
1 i -ik 2 'r- r'l 

41T as Ir - r I 

(32a) 

(32b) 

where the integrals are over all space. The equivalence is 
easily verified using the well-known identity 

(V2 + k ~) [ e .- ik,lr- r"] = _ 4m5(r _ r/), (33) 
Ir - r/l 

where 0 is the Dirac delta-function. Substituting equations 
(32) into Eqs. (29) and using the identity6 

J
yt" e - ik,:r - r'l dfl 

Ir - r/l 

= - 41Tk2h ;(k2r)j,(kzr')Yt" (e /¢ /) (34) 

yields after some simplification 

ik ~ r 
aE(l,m) = w(/(l + 1))1/2 1/,(k2r)Yrm(r.F 

+ 2Pe1E2) dV, (35a) 

aM(/,m) = - iwk~/2 r },(k2r)Yt"r.GdV. (35b) 
(1(1+1)) Jas 

In these expressions the), and h/ are the spherical Bessel 
and Hankel functions, respectively. The quantitiesh and g, 
in Eqs. (29) have been identified with h/ in obtaining Eqs. 
(35). 

It is now straightforward to substitute for F and G from 
Eqs. (25) and (26), simplify, and obtain the desired expres­
sions for the mUltipole coefficients in terms of the effective 
sources, 

(I) -f12k
2 r y* {1]2 a ['(k)] 

aE ,m = (l (l + 1))1/2 Jas 'm ;'!e ar rlt 2r 

+ k~r.Je},(k2r)}dV' (36a) 

aM(/,m) = - iWf12~~2 r Yt" V·(rxJe )},(k2r) dV. (36b) 
(/ (/ + 1)) Jas 

Taking into account the changes required by the use of SI 
units these results are identical in form to those exhibited in 
Jackson except that no allowance has been made for intrinsic 
magnetization. The presence of the effective source densi­
ties, however, does produce a substantive difference from the 
traditional multipole expansion. It should be noted that al­
though the integrals in Eqs. (36) are over all space, the van­
ishing of the source densities outside So effectively limits the 
integrations to the region interior to So. 

In the long wavelength limit 

Ik2Rol<l, (37) 

Eqs. (36) become 
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(38a) 

(38b) 

where Q'm and M'm are the electric and magnetic multi pole 
moments, respectively. They are defined by 

(39a) 

M'm = -- r'Yt" V·(rXJe ) dV. -Ii 
1+ 1 a.s. (39b) 

V. EFFECTIVE SOURCES 

The discussion to this point has assumed that all quanti­
ties, including the constitutive parameters, are sufficiently 
smooth that all necessary derivatives exist. However, for the 
purpose of interpreting the significance of the effective 
sources it is convenient to consider homogeneous media sep­
arated by sharp boundaries. Such systems, of course, have 
discontinuous constitutive parameters. Nevertheless they 
can be treated as limiting cases of smooth systems by the 
introduction of generalized functions. This must be done 
with care, so that the resulting expressions are all well 
defined. 

For purposes of illustration it will be assumed that the 
system consists of two homogeneous regions separated by a 
simply-connected closed surface S with the specified current 
density confined well within S. Quantities like 1/1] appearing 
in the first term of the effective charge density, Eqs. (19), can 
then be written in the form 

(40) 

where the SUbscript 1 refers to the region interior to Sand 
es(r) is the surface unit step function defined by 

{
I for r outside S 

es(r) = 0 for r inside S . (41) 

The second term in the effective charge density requires 
special attention. If the discontinuous limits of the various 
factors are taken separately the resulting product of general­
ized functions is meaningless. 7 On the other hand, for 
smooth systems the following two forms of the terms are 
obviously equivalent: 

(42) 

The form on the right, however, is well defined in the discon­
tinuous limit. To see this it is convenient to note from Eq. (40) 
that 

V(1I1]) =.::1 (1/1])os(r)/i, (43) 

wheren is the unit outward normal to the surfaceS,.::1 (111]) is 
the change in 1/1] across the surface 

.::1 (111]) = 111]2 - 111]1' (44) 

and Os (r) is the surface delta function. The surface delta func­
tion has the property of converting a volume integral into a 
surface integral so that for an arbitrary function! 

1/(r)8,(r) dV = ff(r) dS. (45) 
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Using Eq. (43) the right-hand side ofEq. (42) becomes 

V(1I11Hl1E) =.d (1I11)15s(r)n·(l1E). (46) 

On and near the boundary Eq. (15) implies that 

V'(l1E) = 0, (47) 

which in tum implies that n'(l1E) is continuous across the 
boundary. The right-hand side of Eq. (46) is thus well 
defined. 

By utilizing the continuity of n'(l1E) and the fact that 
only its value on the boundary is required, Eq. (46) can be 
written in a form which makes evident the significance of the 
second term in the effective charge density. Thus, using E\ 
and E2 to denote the fields just inside and outside the bound­
ary, respectively, 

V(1I17H17E) = 8s (r)n·[(11112 - 1I171)(112E2 + 11\E\)/2] 

= !8,(r)n.[E2 - El + (11112 - 1I11Il(l1E)] 
= !8,(r)n . ..1 E + !V(1I17H17E). 

Hence 

V(1I17Hl1E) = 8s (r)n . .d E. 

From Eq. (5) it is evident that 

n·..1 E =~JEo, 

(48) 

(49) 

where~, is the total surface charge density. Thus the effec­
tive charge density can be written in the form 

Pe = [iwC2/(a\ + iwc\)]Ps + (C2/co)I,8s(r), (50) 

where Ps is the specified charge density defined by 

V·Js = - iwp,. (51) 

The effective current density can be treated in a similar 
fashion. In the first term of Eq. (20) the permeability can be 
written 

/-l = /-l1 + ..1/-l0, (r). 

Then the second term may be rewritten and treated as 
follows: 

-/-lV(lI/-l)XB = V/-lX(BI/-l), 

V/-l X (BI/-l) = .d/-l8s (r)n X (BI/-l). 

(52) 

(53) 

Because Js has been assumed nonzero only inside S, Eq. (15) 
implies that nx (B/,u) is continuous across the boundary. 
The right-hand side ofEq. (53) is thus well defined. 

By following a procedure similar to that used to obtain 
Eq. (48), Eq. (53) can be shown to yield 

V,uX (B/,u) = 8s (r)nX.d B. (54) 

Equation (14) now implies that 

(55) 

where K, is the total surface current density. According to 
Eqs. (10) and (13), K, can be thought of as composed offour 
separate terms: a specified term Ks ' an ohmic term K.a, a 
polarization term Kp ' and a magnetization term Km. How­
ever, the specified current density has been assumed zero on 
and near S so that Ks vanishes. For finite conductivities and 
permittivities the ohmic and polarization terms, being pro­
portional to the finite electric field, also vanish. Hence the 

487 J. Math. Phys., Vo1.22, No.3, March 1981 

only remaining term is the magnetization term. This can be 
verified directly by using Eqs.-(8) and (12) to show that 

Km = fiX.d M = fiX.d B/,uo (56) 

and then comparing with Eq. (55). Thus 

nX.d B =,uoKm (57) 

and 

(58) 

The third term in Eq. (20) for the effective current densi­
ty presents no special problem. It is convenient, however, to 
write 8k 2 in the form 

(59) 

Combining all the various results and simplifying gives the 
following expression for the effective current density: 

Je = (,u/,u2)Js + l.,uol/-l2) Km 8s(r) 
+ [(/-l1//-l2)(a\ + iWEIl- (a2 + iWE2)] (1- Os(r)]E. 

(60) 

VI. SUMMARY 

It is evident form Eqs. (27) and (36) that it is possible to 
make a meaningful muItipole expansion for charge and cur­
rent distributions embedded in a material medium provided 
that the medium can be thought of as being homogeneous at 
large distances and that the "specified" sources are well 10-
calized; i.e. that the system can be thought of as having an 
asymptotic background. The form of the expansion and the 
expressions for the coefficients are the same as those for the 
usual multi pole expansion in vacuum except for the use of 
the constitutive parameters of the asymptotic background 
(instead of those of the vacuum) and the use of effective 
source densities in place of the usual macroscopic source 
densities. 

For homogeneous media separated by sharp bound­
aries the effective charge density has two contributions--one 
from the specified charge density and one from the total 
surface charge density-each appropriately modified by the 
constitutive parameters. The effective current density, on 
the other hand, contains three contributions--one from the 
specified current density, another the surface current densi­
ty arising from magnetization, and one that results from the 
difference between the actual ohmic and displacement cur­
rents and those that would be present ifthe asymptotic back­
ground pervaded all space. It should be noted that all contri­
butions to the effective source densities vanish outside So. 

Clearly the multi pole expansion presented in this paper 
reduces to the conventional expansion when the exterior re­
gion is the vacuum. However, when the exterior region dif­
fers from the vacuum, e.g., sources in an ocean environment, 
the two formalisms are distinct. In fact, in the latter case the 
conventional formalism fails altogether whereas the present 
formalism is still applicable. 

'J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics (Wiley, New 
York,1952). 

Charles P. Frahm 487 



                                                                                                                                    

'J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975). 

JS. R. deGroot and L. G. Suttorp, Foundations of Electrodynamics (North­
Holland, Amsterdam, 1972). 

'G. Rusakoff, Am. J. Phys. 38, 1188 (1970). 
'P. N. H. Robinson, Macroscopic Electromagnetism (Pergamon, New York, 
1973). 

488 J. Math. Phys., Vo1.22, No.3, March 1981 

6G. Goertzel and N. Tralli, Some Mathematical Methods of Physics 
(McGraw-Hili, New York, 1960), p. 179. Also see Ref. 2, p. 756. 

7M. 1. Lighthill, Fourier Analysis and Generalized Functions, Student Edi· 
tion (Cambridge U. P., New York, 1964), p. 19. 

Charles P. Frahm 488 



                                                                                                                                    

Energy-particle-number inequality in nonlinear complex-scalar field theory a) 

Gerald Rosen 
Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104 
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For a self-interaction energy density U(ltI'I2) that is positive-definite, monotone-increasing with 
increasing ItI'12, and concave-saturating, it is shown that the total field energy E and particle 
number N satisfy the general inequality E> (function of 5) )N )(3 - 5 )/2(2 - 5) in which the positive 
parameter 5 :::=min [d In U ( p)/ d lop] is less than unity. 

PACS numbers: 03.50.Kk 

I. INTRODUCTION 

In recent years there has been renewed interest in singu­
larity-free finite-energy solutions to nonlinear complex-sca­
lar field theories with Lagrangian densities of the generic 
form 

(1) 

Particular attention has been given to self-interaction energy 
densities U (I tl'12) that are positive-definite, monotone-in­
creasing with increasing ItI'12, and concave-saturating 

U(O) = 0, U(p»pU'(p»O for allp> 0, (2) 

and p U -I U' nondecreasing with increasingp. As originally 
intimated by the present author l and demonstrated by Rotr­
man2 and Morris. 3 the concavity conditions in (2) are suffi­
cient to guarantee existence of singularity-free localized par­
ticlelike solutions to the field equation 

¢ - VZtI' + U'II tI'/2)tI' = 0, (3) 

which follows from (1). Both the (constant) energy 

E= Jr/zi,12+ )V¢)z+ U!ltI') 2)] d 3x 

and (constant) particle number 

N = tj(tI'*zi, - zi,*tI') d 3X 

(4) 

(5) 

are finite quantities for these particlelike (soliton) solutions. 
It is noteworthy that the conditions in (2) imply that 

I >s=min[dln U(p)/dlop] >0, (6) 

where (1 - 5) is a measure of the concavity manifest in U. 
The ditrerentiaIinequality d In U ( p)/ d Inp >5 can be integrat­
ed to yield a lower bound on the self-interaction energy den­
sity. namely 

U(p»m4- Z5pS forallp>O, (7) 

where m (units em -I with fz = c = I) is an additional posi­
tive constant parameter associated with U. Assuming that 
the self-interaction energy density obeys the conditions in (2) 
and hence admits a lower bound of the form (7), then the 
constants ofthe motion (4) and (5) are related by the energy­
particle-number inequality derived in the following and ex­
hibited in (15). 

"Work supported by NASA grant NSG 7491. 

II. DERIVATION OF THE ENERGY-PARTICLE-NUMBER 
INEQUALITY 

Consider smooth and localized tI' such that the integrals 

l k =fltl'lk d
3
X (8) 

exist for 25 ..;,h:;6. Then the Schwarz inequality applied to (5) 
yields 

Hence, by evoking the Sobolev inequality4--6 

JI Vtl'I2 d 3X >3( ; r/3

(16 ) 1/3, 

(9) 

(10) 

and making use of (7), it follows that the energy (4) has the 
lower bound 

E>~N2(12)-1 + 3(17"/2)4/3(16)1/3 + m4-2s1zs' (11) 

In combination with (II), the HOlder inequality for 5 < 1 

(12)3 - 5";' (lz5 )2(16)1 - S, (12) 

implies that 

E>~NV2)-1 + 3(17"12)4/3(16)1/3 
+ m4 - 2s (1

2
)(3 - 5 )12(1

6
) - (I - s)l2 

=F(/z, 16»min F(lz' 16)' 

Thus. by solving the minimization equations 

(13) 

(14) 

algebraically for 12.16 and substituting the latter values into 
F (12,16), the final member in (13) yields the general inequality 

E>(2)1[(l - 5) - 3(t - 51/4 12 - ';1] 

X(2 - S )[(3 - S)-(3 -5)/4(2 -51] 

X 1f' - 5)/(2 - 51[ IN 1(3 - 51/2(2 - s)]m. (15) 

III. DISCUSSION 

In view of the sharpness4
,5 of the Sobolev ineqUality 

(JO), the right side of (IS) can be expected to be close to the 
minimum admissible energy for any prescribed value of IN I. 
The exponent (3 - 5 )/2(2 - 5) in (15) gives a power-law de­
pendence on IN I somewhat weaker than linear; this is the 
hallmark of field-theoretic "binding" in a minimum-energy 
solution to (3) which involves two or more solitons, presum-
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ably in a bound-state configuration. More pronounced bind­
ing is generally allowable between a soliton (N) 0) and an 
antisoliton (N < 0), with N closer to zero in the composite 
solution. 

To illuminate the numerical content of (15), consider 
the special cases of possible physical interest: 

5~:E>23/2X3-3/8X1T1/2INI3/4m 

= 3.32047 IN 1
3/4m 

5 =!: E>21/6X3X5-5/12X1T1/3IN 1
5/6m 

= 2.522 16 IN 1

5/6m (16) 

5 =~: E>2-3/IOX3-9/IOX5X1T1/5 INI 9/lOm 

= 1.89969 IN 1

9/10m 

5-1: E> IN 1m. 
As in (IS), the numerical coefficients that appear in (16) de­
crease with increasing values of 5; the 5-1 limiting case 
[fourth entry show in (16)] is patently consistent with linear 
theory i.e., U (p) = m 2p, box normalization for the plane­
wave solutions, and strict superposition. 

Although the inequality (IS) is derived here in the con­
text of classical field theory, this result also applies to certain 
nonlinear complex-scalar quantum field theories. For appli­
cability of (15), the Hamiltonian operator H must be normal­
ordered to give (H ) vac = 0 and contain suitable counter 
terms which serve to cancel self-interaction fluctuations and 
thus engender a lower bound on the (vacuum-based) energy 
expectation values of the form obtained by combining (4) and 
(9), 

E (H»! N2(JltPI 2d3x)-1 

+ f [I VtPI 2 + U(ltPI2)] d 3x. (17) 

In (17), tP denotes a disposable parameter- or variational-
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function in the representative state functionaI,7 and the ki­
netic energy of the field is bounded from below as a conse­
quence of the uncertainty principle, as in particle mechan­
icS.5 ,8 The values of N in (17) are restricted to the eigenvalue 
spectrum N = 0, ± 1, ± 2, ... of the self-adjoint operator 
corresponding to (5). For stationary states that feature N 
quanta in a single dynamical mode of the field, (17) is likely to 
hold with the equality sign. Thus, for example, the precise 
energy for linear-theoretic monochromatic "beam" states 
(with all quanta having the same particle-character and the 
same wave vector k) is derivable by minimizing the effective 
energy with box normalization 

Eetf= ! N 2(f)tPI2 d 3X) -1 + L(iVtPI 2 + m21tP12) d 3X, 

(18) 

oEelf = 0 => Eetr = (i k 1
2 + m2)1/2INI. 

The minimization procedure employed in (13) to get (15) is 
clearly analogous to the minimization of the effective energy 
in (18). 

IG. Rosen, J. Math. Phys. 9, 996 (1968). 
2E. H. Roffman, Bull. Amer. Math. Soc. 76, 70 (1970). 
3T. F. Morris, Phys. Lett. B 76,337 (1978). 
4G. Rosen, SIAM J. Appl. Math. 21, 30 (1971). 
'E. H. Lieb, Rev. Mod. Phys. 48, 553 (1976). 
6G. Ta1enti, Ann. Mat. Pura Appl. 110, 353 (1976). 
7See, for example, G. Rosen, Path Integrals and their Applications in Quan­
tum, Statistical, and Solid State Physics, edited by G. J. Papadopoulos and 
J. T. Devreese (Plenum, New York, 1978), pp. 201-235. 

"G. Rosen, Phys. Rev. A 20,1287 (1979). 
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Measurement in stochastic mechanics a) 
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Stochastic mechanics is an explanation of nonrelativistic quantum phenomena in terms of 
stochastic differential equations. In this note a simple example of a measurement is constructed 
and the behavior of the sample paths of the corresponding stochastic differential equation is 
examined. The sample demonstrates that stochastic mechanics provides a natural explanation of 
the "reduction of the wave packet." 

PACS numbers: 03.65.Bz 

I. BASIC THEORY 

Let us begin by considering the Schrodinger equation 

i at/! =! i a2~ + V(t)t/J 
at k= I aXk 

= - ~V2t/! + Vet )t/J. (1) 

Heret/J = t/J(X I ,X2, .. ·,xn;t) = t/J(X;t )isthewavefunction; V(t) 
is the operation of multiplication by the real valued function 
V(X I ,X2,·.,xo ;t); and V is the vector operator 

(a~1 'a~2 , ... , a~n ). 
We have set fz and all masses equal to I for simplicity. 

Let us write t/J = exp(R + is) and define the vector val­
ued function 

(2) 

We assume t/J is sufficiently smooth for this to be done. 
Note that b • is the sum of the real part and the imaginary part 
(without the -V -1) of the logarithmic gradient VI/J/t/!. 

Then it is easy to verify that p(x;t ) = I ¢(x;t) 12 which is 
interpreted as a probability density in quantum mechanics, 
satisfies 

(3) 

and is thus the probability density of a solution to the sto­
chastic differential equation 

dx(t) = b -(x;t ) dt + dw(t ). (4) 

Here wet ) is the Wiener process, normalized so that the vari­
ance ofw(s2) - W(SI) is n IS2 - sll, i.e., the probability densi­
ty of W(S2) - w(s I) is 

(21T1 s2 - 5 11) - n/2 exp( _ x
2 

). 

IS2 -811 

We refer to b + as the mean forward velOcity of this process. 
In stochastic mechanics we consider a quantum me­

chanical system to have a definite, though unknown, posi­
tion at each time. The time evolution of this position is gov­
erned by the probabilistic law (4). 

"'This work was partially suppDfted DY an NSF graduate fellowship and by 
NSF grant MCS·7906633. 

II. AN EXAMPLE OF A MEASUREMENT 

Consider a free particle of mass I with the following 
(un-normalized) wavefunction at time 0: 

t/J(x;O) = exp[105ix - (x + 106)2J 

+ exp[ - 105ix - (x - 106)2]. (5) 

The wavefunction is a superposition of two Gaussian wave 
packets centered at + 10 and moving with velocities ± 10 
(the widths of the wave packets are not drawn to scale): 

/1~' , 
o 

-10' !l 
+-/,l 

At t = 20, the two wave packets have widened somewhat 
and exchanged positions: 

-
1°il +-, 

o 

/1+ 10' 

./ ,"---->-

It is interesting that while it appears that the two wave 
packets passed through each other, in the corresponding sto­
chastic process the particle reverses direction with probabil­
ity greater than !. 

This is seen by an easy symmetry argument. Note that 
t/J(x;O) = t/J( - x;O) and hence I/J(x;t ) = t/J( - x;t ) for all t and 
all x. It follows that b +(x;t) = - b +( - x;t) where b + is the 
mean forward velocity of the corresponding stochastic pro­
cess. Therefore, if the particle is at the origin at time t', it is 
equally likely to be at x or - x at time t> t '. 

Almost all sample paths of the process are continuous. 
After throwing out the discontinuous paths, we divide the 
paths into two sets: 

(l) Those paths that pass through the origin for some t, 
0<;[<;;;20. Let 11 denote the measure of this set, 0 <11 < 1. 

(2) Those paths that don't pass through the origin for 
0<;;;1<;;;20. The measure of this set is 1 - f-L. 

The probability that the particle reverses direction (i.e., 
that the positions of the particle at times 0 and 20 have the 
same sign) is ~ 11 + I -11 > ~ because half the paths in the 
first set and all the paths in the second set have this property. 

This result seems to contradict classical physics and o~r 
experience, for a free particle has never been observed to 
exhibit such strange behavior. But in stochastic mechanics, 

491 J. Math Phys. 22(3). March 1981 022-2488/81/030491·04$1.00 9 1981 American Institute of Physics 491 



                                                                                                                                    

if the particle is observed (i.e., its position measured) then 
this strange behavior disappears. Specifically, we consider a 
measurement by interaction with a second particle, also of 
mass I, with the (un-normalized) wavefunction at time 0: 

tf;( y;O) = exp( - y2). (6) 

The two-particle system has wavefunction: 

tf;(x,y;O) = exp( - y2)[ exp[105ix - (x + 106)2] 

+ exp[ - I05ix - (x - 106)2] j. (7) 

If there were no interaction between the two particles 
(i.e., zero potential), then no measurement would be made 
and each particle would move as if the other didn't exist. In 
fact, the wavefunction would factor at all times t as 

tf;(x,y;t) = tf; I (x;t )tf;2( y;t ), (8) 

where tf; I and tf;2 are solutions of the free one-dimensional 
Schrodinger equation, and the mean forward velocity, now a 
2-vector, would be 

a 
b +(x,y;t ) = ([ Re + 1m] - logtf;(x,y;t ), ax 

a 
[Re + 1m] - logtf;(x,y;t » 

ay 
a 

= ([Re + 1m] -logtf;lex;t), ax 
a 

[Re + 1m] -logtf;iy;t »). 
ay 

(9) 

Here [Re + 1m] is the sum of the real and imaginary parts: 
[Re + Im)(a + ib) = a + b. Thus the mean forward velocity 
in the x direction is independent of the y coordinate and is the 
same as the mean forward velocity of the I-particle system 
given by (5), and the mean forward velocity in they direction 
is similarly the same as in the I-particle system given by (6). 

Now let the particles interact with the potential 

(10) 

in the limit a-O+. The function X(O,a) is the characteristic 
function of the interval (O,a). The effect of this potential is 
approximately to give the particles a velocity increment of 
103 towards each other, since the particles are separated by a 
distance of approximately 106

. This is only a one percent 
change in the momentum of the first particle. 

To solve explicitly, we solve separately for 

exp( - y2) exp[105ix - (x + 106)2], (11) 

(12) 

and then add the two solutions. The solutions are effected by 
the change of variables R = (x + y)/2, r = x - y. The wave­
functions are then Gaussian wave functions in quadratic 
central potentials. 

The wavefunction (11) is, omitting a constant factor, 

exp[ -2R2+(l05i-2XIOO)R ] 

( 
- r2 105; - 2 X 106 

) 
Xexp --+ r . 

2 2 
At time t = 0+ (after the impulse) the wavefunction is 

exp[ - 2R 2 + (l05i - 2 X 100 )R ] 
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(13) 

X~p ~+ r . ( 
- 1 + 1O-3j 105i -2x 106 

) 

2 2 
At t> 0, the wavefunction is 

exp{ (- ~ - it}-IR 2 + (105 i - 2X 106 )(1 + 2it)-IR 

+ [ _ ( 1 + ~0-3i) - I _ 4it ] - I r2 

+ ( 105i - ;'X W\) [1 + 2it (1 + 1O-3i)] - Ir} 

( ( (
1+10-3; 

= exp :I( - ! - it) -I + - 2 

X (x2 + y2) + {H - ! - it) - I - 2 

[ (
1+10-3)-1 .]-I} X - -41t xy 

2 

+ 10
5
i - 2 X 10° {( 1 + 2it ) - I 

2 
+ [1+2it(I+10-3i)] I}X 

+ 10
5
i - 2x 10

6 
{(1 + 2it)-1 

2 
- [1 + 2it(1 + 1O-3i)] -I} y). 

(14) 

( 15) 

To this must be added the solution for the other half of 
the wavefunction (12). Omitting the same constant factor, 

this is 

exp({!(-~-it)-I+ [- C+~0-3i)-' - 4itr '}(X2+. 

+ {!(-!-it)-1-2[-( 1+~0-3i)-'_4it)-I}Xy 

105i-2xl0° {(1 +2it}-1 + [1 +2it(1 + 1O- 3i)1 I}X 

2 

10
5
i -- 2 X 10° {(l + 2it)-' _ [I + 2it (1 + 10 3i) 1 - I} y). 

2 
(16) 

The wavefunction is the sum of (15), which is a wave 
packet centered at (-106 +105 t + 103t, -103t ) and mov­
ing with velocity (lOs + 10\ _103

), and (16), which is a 
wave packet centered at (106 -lOSt - 103t, 103t ) and mov­
ing with velocity ( - 105 

- 10" + 103
). 

Let us analyze the first wave packet with the change of 

coordinates 

Ii = !(x + y + 10° + 10
5t), (l7a) 

(17b) 

In this coordinate system the first wave packet is centered at 
(0,0). The mean forward velocity in this coordinate system is 

b ~d~,?;t) 

{ 
4t-2 /'- -2(1+ 10- 3 )+4(1 +lO-6 t ) '} 

- R r , 
- 1 +4(2 '1-4xlO-'t+4(1 + 10 ")t 2 

(18) 

if we ignore interference from the second wave packet. 
From the original wavefunction (7) and the change of 
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variables (17), we see easily with the use of a table of the error 
function that, if,!!Ie x coordinate of the system is negative at 
time 0, then the R coordinate at time 0 has absolute value less 
than 1.5 with prObability ;>0.9999. Also, using a table .ofthe 
error function and the following inequality for the Wiener 
process w: 

Prob. ! w:3t,s such that 0.;;;t,s.;;;8 and 
Jw(t) - w(s)J > 2E"j 

.;;;2 Prob. {Jw(8) - w(O)J > ;}, (19) 

we find that the Wiener process contribution to R is, with 
probability at least (0.9998)3, less than: 

3 forO.;;;t.;;;~, 

9 for !.;;;t < 5, 

16 for 5.;;;t.;;;20. 

[The inequality (19) is esssentially Lemma 3 in Appendix A 
of S]. A-

Let us now assume that the R coordinate is .;;; 1.5 in 
absolute value at time 0 and that the Wiener process contri­
bution to Ris less than 3 for O<t.;;;!, less than 9 for !';;;1.;;;5, 
and less than 16 for 5.;;;t.;;;20. Let us further assume that the 
total contribution to R from the perturbation of mean for­
ward velocity caused by interference with the second wave 
packet is less than! for 0';;;1';;;20. This assumption will be 
checked later. 

Now for O';;;I.;;;k the mean forward ~elocity 
[(41 - 2)/( 1 + 4t 2)lR tends to decrease JR J, w~ile for 1 > ! it 
tends to increase IR I at a rate proJ?ortional to IR I. The worst 
possible (i.e., largest) values for IR I under the above assump­
tions are 

1.5 + 0.5 + 3 = 5 

(f5 4t 2 ) (5 + 9) exp - 2 dt < 82 
1/2 1 + 4t 

for t.;;;5, 

(i20 
4t 2 ) (82 + 16) exp - 2 dt <400 

5 1 + 4t 
for 1.;;;20. 

Thus, assuming that the x coordinate of position is n~ative 
at time 0, and assuming that the total contribution to R from 
the perturbing effect of the second wave packet is less than !, 
the probability is greater than (0.9999)(0.999W that 
IR I < 400 for t.;;;20. Similarly, if we assume that the perturb­
ing effect of the second wave packet contributes less than 1 to 
P, then the probability is greater than (0.9999)(0.9998)' that 
IPI < 800 for 1.;;;20. Thus the pro~bility is grea~er than 
(0.9999)2(0.9998t> 0.996 that IR 1<400 and IrJ < 800 for 
0.;;;t.;;;20. To confirm this result, we need only check the as­
sumption that the perturbation in mean forward velocity 
caused by the second wave packet contributes less than! in 
the R coordinate and less than 1 in the P coordinate. 

Both wave packets are defined as exponentials, so we 
must find the perturbation 

[Re + Imll V log[exp(ad + exp(a 2)] - V 10g[exp(al)]J 

= [Re + 1m]! V 10g[1 + exp(az - aIlJi 
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+ j exp(3a2 - 3a l )· .. ]]) 

when Re(a d > Re(a2 ) 

= [Re + Im][(exp(a 2 - a l ) - exp(2a2 - 2ad 
+ exp(3a2 - 3ad .. ·)(V(a2 - a I))] 

[Re + 1m] [ exp(a2 - a l ) V(a2 - al)] . (20) 
1 + exp(a2 - ad 

In the case at hand, a l is the exponent in (15) ~nd a2 is 
the exponent in (16). Weare working in the region JR J < 400 
and JPI < 800, which means that in the x-y plane, the dis­
tance from the center ( _106 + lOSt + 103/, 103t ) of the 
wave packet (15) is at most 800\12 < 1200. Now the closest 
approach of the centers of the wave packets (15) and (16) is 
approximately a distance of 19,800. Trivial estimates show 
that Re(a2 - al)< -100, and also that IV(a2 - al)1 < 107

• 

Thus the perturbation (20) is indeed negligible. 
What we have shown is, that if the x coordinate of the 

system is negative at time 0, then the probability is greater 
than 0.996 that the position of the system lies within a dis­
tance of 1200 in the x-y plane from 
( - 106

1 + lOSt + 103
/, - 1031) for 0.;;;t.;;;20. In particular, 

the probability is greater than 0.996 that the first particle 
does not reverse direction. The measure on paths looks very 
much like that attributable to the "reduced" wave packet 
(15) because the perturbing effect of (16) is, with probability 
greater than 0.996, less than exp( -1(0). 

III. ANALYSIS OF THE EXAMPLE 

In stochastic mechanics, the dynamics of a system is 
given by a stochastic differential equation and is thus a Ma~­
kov process. The system has no "memory" of the past. It IS 

this property which is responsible for the strange behavior of 
the sample paths of the stochastic differential equation cor­
responding to the single particle system considered.i~ the 
previous section. The particle, upon reaching the ongIn, has 
no memory of which direction it came from, and is just as 
likely to reverse direction as to continue in the same 
direction. 

In a two particle system, it is the position of the two 
particles taken together that constitute a Markov process. It 
does not follow, and indeed is generally not true, that the 
position of one particle constitutes a Markov process. (A 
sufficient condition for a position of each particle to consti­
tute separately a Markov process is that the corresponding 
wave function factor as in Eq. (8) at all times.) The position 
of one particle is not a Markov process because the "mem­
ory" of its past is contained in the present position of the 
second particle. . 

In the two particle system presented earlier, for exam­
ple, the first particle is, with high probability, near either 
- 106 or + 106 at time 0. Attime 106

/( 10' + 10'), the parti­
cle is with high probability near the origin. However, if this 
particle was near - 106 at time 0, then the second particle 
(the "measuring device") is near - 104 [or more precisely, 
- 10' X 10°/(105 + 1O'}] at time 10, and if the first particle 

was near + 106 at time 0, then our "measuring device" is 
near + 104 at time 10. The mean forward velocity of the 
particle depends not only on its own present position, but 
also on the present position of the "measuring device," 
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which in turn depends on the past position of the measured 
particle. 

Furthermore, in the stochastic process corresponding 
to the wavefunction given by (15) and (16), we saw that, if the 
measured particle were to the left of the origin at time zero, 
then, to a very good approximation, its future would evolve 
in accordance with the stochastic process corresponding to 
the wavefunction (15). Thus, to compute the probability den­
sity in the future, conditioned upon the knowledge that the 
particle was to the left of the origin at time zero (which may 
be ascertained by our measurement), we need only to consid­
er the "reduced" wave packet (15) instead of the full wave­
function (15) plus (16). The perturbing influence of the wave 
packet (16) still exists; equation (20) and the discussion fol­
lowing show however that this influence is negligible. It is 
negligible because we have made. a "macroscopic" measure­
ment. At time t = 0, the measuring device (the second parti­
cle) is located near + 104 or - 104

; it is precisely this macro­
scopic difference between + 104 and - 104 that accounts 
for the negligible perturbing influence of the wave packets 
upon each other. 

494 J. Math. Phys., Vo1.22, No.3, March 1981 

The reduction of the wave packet when a macroscopIc 
measurement is made has been the subject of much discus­
sion and controversy among physicists. Schrodinger himself 
was unhappy with the situation, and criticized the theory he 

helped found. 6 It is intriguing that something so difficult to 
explain in quantum mechanics admits so straightforward 
and natural an explanation in stochastic mechanics. 
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Here the results of other work on quantum mechanical Hamiltonian models of Turing machines 
are extended to include any discrete process Ton a countably infinite set A. The models are 
constructed here by use of scattering phase shifts from successive scatterers to tum on successive 
step interactions. Also a locality requirement is imposed. The construction is done by first 
associating with each process T a model quantum system M with associated Hilbert space :Jr M 

and step operator UT • Since UT is not unitary in general, M,:Jr M' and UT are extended into a 
(continuous time) Hamiltonian model on a larger space which satisfies the locality requirement. 
The construction is compared with the minimal unitary dilation of U T" It is seen that the model 
constructed here is larger than the minimal one. However, the minimal one does not satisfy the 
locality requirement. 

PACS numbers: 03.65.Bz, 03.65.Nk 

I. INTRODUCTION 

In recent work,l hereafter referred to as I, quantum 
mechanical Hamiltonian models of Turing machines were 
constructed. The constructions were such that the model 
systems depended both on which machine was being consid­
ered and on the number of computation steps for which the 
model was valid. Also, the Coleman approximation2 which 
makes the kinetic energy linear in the momentum was used. 
The construction also depended on the fact that each Turing 
machine corresponds to a step transfer function on a counta­
bly infinite set A of instantaneous descriptions or overall ma­
chine states.3 Although T could be many-one and into, the 
fact that it was restricted to (standard) Turing machines al­
lowed for some simplifications in the model construction. 

Now most maps T from A to A do not correspond to 
Turing machines, thus it is natural to ask if the work ofl can 
be generalized both by removal of the Coleman approxima­
tion and to apply to any abstract discrete process with step 
transfer function T:A_A. From now onA denotes an arbi­
trary countably infinite set of process-system states or 
descriptions. 

The purpose of this paper is to show that such a general­
ization is possible. In particular, it will be seen that for any 
abst~act discrete process T on A where T can be many-one 
and mto, one can construct a quantum-mechanical Hamil­
tonian model of the process. The construction is carried out 
in much the same spirit as is that applied to various models of 
the measurement process. 2.4.5 

In essence, what is done here is to first associate to each 
process T, a model process described by a discrete semigroup 
of operators on a Hilbert space:Jr M' The model is then ex­
tended and expanded into a larger system whose continuous 
time evolution is described by a Hamiltonian. In the ex­
tended model, the discrete stepwise nature of the process 
modeled is reflected in the fact that the part of the model 
state which corresponds to the process system is essentially 

a' Present address. 

stationary for a finite time interval when it describes a com­
pleted model-process step. The importance of this stationar­
ity in models of the measurement process has been empha­
sized by Emch.4 

Section II discusses two general features of the mod~l 
construction, the use of scattering phase shifts to tum on and 
off successive step interactions in the model, and the require­
ment oflocality. In essence, this requirement says that if the 
model system is in a state corresponding to a process state C/>. 
at stagej, then as the system evolves towards a state C/>. 1 ] 

d
· J+ 

correspon mg to the process state at stagej + 1, the system 
state must have nonzero components only in the subspace 
spanned by C/>j and C/>j + 1 • In particular, it must not include 
states which the model process will not reach until several 
steps in the future or which the model process has already 
passed through several steps previously. 

Section III discusses in detail the use of scatterings from 
fixed centers to tum on successive model-process interac­
tions. The scattering phase shifts which tum on the succes­
sive model-process interactions are calculated in the eikonal 
approximation. 6 One-dimensional scattering is assumed. In­
equalities which the various model parameters must satisfy 
are discussed. 

Section IV describes a model extension which is suffi­
cient for the inclusion of processes whose step functions T 
can be many-one and into, and which satisfies the locality 
requirement. Each step of the original process is expanded 
into three successive steps, record, T process, then shift in 
the expanded model. In essence, as the extended-expanded 
model evolves, it generates a history of its evolution. Explicit 
expressions in terms of simple operators are given for the 
interaction operators for each of the types of steps and are 
used to generate an overall model Hamiltonian H fn for de­
scribing 3n model steps. The Schrodinger evolution of the 
model is discussed. It is seen that the model does in fact do 
what is claimed, namely, describe the expanded process and 
satisfy the locality requirement. 

The dilation theorem ofSz. Nagy7 as applied to the 
model processes is discussed in Sec. V. The minimal unitary 
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dilation of a model process operator U T is constructed. The 
resultant model describes successive steps of the model T 
process, however the locality requirement is not satisfied. 
Finally, Sec. VI discusses some further aspects of the con­
structions of this paper. 

II. GENERAL CONSIDERATIONS 

A. Phase shifts as interaction parameters 

The models will be constructed here using the following 
idea. Consider a discrete reversible process on a countable 
set A which is represented by a bijection T:A-A. That is, 
given some a in A as the overall state or description of the 
process at stagej,T(a) gives thestateatstagej + 1 and Tl(a), 
the state at stagej + I. Since Tis a bijection 1 can take any 
value in Z, the set of integers. The extension to processes for 
which Tis not a bijection will be done later in Sec. IV. 

Let 7t" M be a separable Hilbert space of a system M and 
let a t---+-t/J:/ be a one-one correspondence of A onto an orthon­
ormal basis set I t/!:/laEA ) which spans 7t" M' Then one can 
define an operator U T in B ( 7t" M)' the set of all bounded 
linear operators over 7t" M by 

U Tt/!:/ = tfIt(a) (1) 

for aUa inA. Since Tis a bijection, UT is unitary. LetH' be 
some self-adjoint operator which satisfies 

(2) 
where K is a real number. 

It is desired now to construct a Hamiltonian system 
which starts with M in state t/!: and ends up and remains 
with M in state tfIt(a)' This is done here by adding another 
system wand a fixed center C and using the scattering ofw off 
the fixed scattering center C to tum on the interaction H'. 
The incident momentum ofw and the w-c interaction poten­
tial strength and range are adjusted so that the total scatter­
ing phase shift given by the eikonal approximation6 equals 
K. 

Here and in what follows the term "M system state" 
refers to those parts of the overall M + w system state which 
lie in 7t" M' It will always be clear to which component in any 
expression the discussion is referring. Of course, the real M 
system state can only be obtained as a trace of the M + w 
system state over the system w Hilbert space. 

Successive steps are included by replacing c by a se­
quence C of widely spaced fixed scattering centers. The spac­
ing between the centers and the range of the interaction be­
tween wand each system c of C are such that the scattering 
from the jth system cj of C is essentially complete before w 
moves into the range ofthej + 1st scatterer in C. Since w is 
described by a moving wave packet, one has the following 
picture: if theM system is started in state t/!:, it will evolve to 
tfIt(a) while the w wave packet is within the interaction range 
of Ct. The M system state will remain (essentially) stationary 
in state tfIt(a) during those times for which the w wave packet 
is (essentially) outside the interaction range of C1 and C2' The 
M system state evolves away from ifI1.(a) and towards ifI1.ta) as 
the w wave packet begins interacting with C2, and so on. Fig. 
1 shows M, C, and w at a stage when the w system wave 

496 J. Math. Phys .• Vo1.22, No.3, March 1981 

M 

... 
" 

FIG. I. A schematic representation of the model. The small circles repre­
sent the scattering centers of C at fixed positions x "X2 ... xn • r denotes the w-e 
interaction range. The w wave packet of width .dx is shown between two 
centers of C and moving to the right with velocity Va. The form of M is 
arbitrarily denoted by a rectangle. 

packet is essentially between scatterers. 
To keep the model as simple as possible without losing 

essential details, the w-C scattering will be described in one 
dimension only. Extension to three dimensions is 
straightforward. 

B. Localization and extension 

The construction just described can be represented as 
follows. Let/(x,vo,! ) represent the w-wave packet amplitude 
with group velocity Vo at position x at time t. Assume that 
/(x,vo,O) is peakedatxo which is distant from the centers ofC, 
and that the spread .Jx does not change during the time 
interval of interest. The centers in C are sufficiently widely 
spaced so that at any time w interacts with at most one center 
of C. For each posi tion x let £S (x) denote the accum ulated w-C 
scattering phase shift. (The dependence of £S (x) on the mo­
mentum of w is ignored in this discussion as it is small in the 
eikonal approximation.) Then if M is initially in state t//;! at 
time 0, the overall system state at time t for w at position x is 
given approximately by 

l/f')'! + W(x,t ) ;:::;/(x,vo,t )t//;!(x) , (3) 

where t//;!(x) = exp[i8(x)H']t//;!. If H' is such that Eq. (2) is 
satisfied, one has 

l/f')'!(x);:::; I d~. (8(x))tfrZ! , (4) 
a'EA 

where the coefficients d~, (8(x)) are in general different from 
o if 8 (x)=!=jK for all integers j. If 8 (x) = jK then 
ct:,. UK) = I if a' = Tj(a) and 0 otherwise. 

Now the model parameters can be adjusted so that there 
exists a sequence of nonoverlapping time intervals of width 
.J centered about the times 10,11, .... 1" such that for all I in the 
interval [Ij -.J /2, Ij +.J /2],8 (x) = jK for all x for which 
/(x,vo,1 1 is appreciable. Thus for these times, one has 

1fI:! + W(x,t 1 ;:::;/(x,vo,t )¢iJ(a) . 

However, the description given is not "local" in the fol­
lowing sense: Let I lie in an interval 
[tj +.J /2, tj + I -.J /2] forsomej < n. Then/(x,vo,t 1 is ap­
preciable for values of x at which w interacts with center 
cj + I of C. For such x,jK < £S(x) < (j + l)K and t//;!(x) is sup-

Paul Benioff 496 



                                                                                                                                    

posed to describe M in transition from f:/.Jla) to f:/.J + 'la)' For 
any such x, e.g., x = vot + xo' Eq. (4) shows that ~(x) 
evolves from a state which is localized at f:/.il a ) when 
[tj -.::1 12<:,t <Jj +.::1 12] to an "unlocalized state" [that is 
d:, (0 (x)) =1=0 for many a' for values ofx for which/(x,vo,t) is 
appreciable]. As t increases and w completes interaction 
with cj + 1,0 (x)z(j + I)Kfor aU x for which/(x,vo,t) is ap­
preciable, and the unlocalized state ~(x) relocalizes at 
rfJ'ii+ 'la) as all other components in the sum of Eq. (4) 
disappear. 

This is unsatisfactory because it means that if one were 
to interfere with the model process at such times by measure­
ment to determine what state the M system was in, one might 
find that it was in some state tfI:! which the undisturbed mod­
el process will not reach until many steps in the future, or if 
j> 1, one might find on measurement that Mis in a state in 
which it has already been several steps earlier. 

One would like the model to be such that interference 
by measurement does not destroy the model representation 
to this extent. It would be more satisfactory if measurements 
made during times in which w was interacting with cj + 1 

gave the result that M was either in state ~(a) or in state 
~+ '(a) and no other. 

More generally, for all times t for which w is interacting 
with cj + I with O<:,j < n, one requires that for all x for which 
/(x,uo,t) is appreciable,!' 

(5) 

for each a inA for which Tj(a)=I=Tj+ I(a). Here y(o(x)) and 
A (o(x)) are a-independent coefficients such that 
r(jK) =,1, ((j + 1)K) = 1, r((j + 1)K) =,1, (jK) = 0, and 
y(c5(x)) =1=0=1= A (c5(x)) ifjK < c5(x) < (j + 1)K. Also 
ly(S(x)W + 1,1, (o(x)W = 1 is required as a normalization 
condition. 

The problem with a model which satisfies a locality 
condition such as that given by Eq. (5) is that any operator VE 

withjK <E <U + l)KforO.;J<n - 1, whichforeachainA 
satisfies 

VE ~ = Y(E)~i(a) + A (E)rfJ'ii + '(a) 

is not in general unitary. [To see this note that 
(tfI:i(a) , V! VE~) =1= 0 in general]. Thus it would appear that 
one cannot both keep the locality requirement and construct 
a Hamiltonian model of the w + C + M interaction as out­
lined above. 

It turns out, though, on closer inspection that if Tis 
such that T2 = 1 then V" is unitary provided that 
A ·(E)Y(E) + A (E)Y·(E) = 0, This result can be obtained from 
Eq. (4) by noting that, in general, only those coefficients 
d~, (S(x)) are different from 0 for which a' lies in the T-invar­
iant irreducible subset of A which contains a. (This is dis­
cussed in more detail in Sec. V and the Appendix.) T2 = 1 if 
and only if all such subsets contain at most two elements. 

This result suggests that one might satisfy the locality 
requirement by adding auxiliary systems to M and thereby 
extending A to A X X, where X is the set of states of the auxil­
iary systems. Then if necessary, one expands Tby construct­
ing one or more types of processes T/ on A xX such that for 
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each i, T; = 1, Ti is a bijection, and the action of 
T m (T rn _ d ... ( TI ( - ) ... )) on selected elements of A X X corre­
sponds to the action of T on A. It will be seen in Sec. IV, that 
this is indeed possible for m = 3 and furthermore that in 
such an extension, T can be many-one and into. 

III. USE OF SCATTERINGS TO TURN ON MODEL 
INTERACTIONS 

A. One scattering 

To investigate scattering from one fixed center C is re­
placed by one scattering center c fixed at position xc. The 
w + C + M system Hamiltonian is given by 

H=Ho+ V(x-xc)H', (6) 

where Ho is the free Hamiltonian. V(x - xc) is the interac­
tion potential between wand C with w at position x and is 
such that f":. 00 V (y) dY~r_ r V (y) dy is finite. r is the range 
ofV. 

A restriction on the model systems M considered in this 
paper is now imposed. This is that they be such that all inter­
actions between the component particles of M are included 
in H '. Such models include noninteracting lattice systems of 
particles with or without spin. As a result, the free Hamilton­
ian Ho includes a term for the kinetic energy of w only or 

Ho(x) = - fJ2a2/2max 2
, (7) 

where m is the mass of w. 
The initial state ¢(O) of the w + M system at time t = 0 

is taken to be a wave packet for w which is far removed from 
c, and an initial state f: for M. That is 

¢(x,O) = ¢W(x,O)~ , (8) 

where 

(9) 

and ¢ (k - ko) is a normalized momentum space wave packet 
centered about ko• ¢W(x,O) is a coordinate space wave packet 
centered at x = Xo at time O. 

Let .::1x(O) be the x space spread of ¢W(x,O) at time O. 
Then one requires that at time 0 essentially no scattering has 
occurred or that the wave packet be essentially outside the 
range of interaction with c at xc' This gives the requirement 
on Xo that 

xo<xc - r - .::1x(O)/2. (10) 

At any time t, the overall state ¢(x,t ) is given by9 

¢(x,t) = J dk e - iE,l/lirp (k - ko)¢ + dx)e - ikx" • (11) 

Here Ek = fJ2k 212m is the total energy of the system and 
¢ + k (x) is the scattering solution of the Schrodinger Hamil­
tonian ofEq. (6) with incoming plane waves exp(ikx) for w 
and M in state ~. From now on we set Xc = O. 

¢ + k (x) is given by the Lippman-Schwinger equation as 

¢+dx ) 

= e
ikx¢: + (2m/fJ2

) J: 00 G + dX,x')V(x')H'¢ + dx') dx' , 

(12) 
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where the one-dimensional outgoing Green's function 
G + k (x,x') is given by 

G+dx,x') = (iI2k)eiklx-x'l , (13) 

To obtain the eikonal approximation solution, one de­
fines 8 + k (x) by 

8 + k (x) = e - ikx¢ + dx) . 

This gives, from Eqs. (12) and (13) 

8 + k (x) = VI:! + (mi/fl2k) 

(14) 

X L"" e'k 1x-x'l-ik(X-X')V(x')H'8+dx')dx' ,(15) 

which can also be written as 

8+ k (x)= VI:! + (mi/fl2k){oo V(x')H'8+ k (x')dx' (16) 

+ (mi/fl2k) f" e- 2'k(x-x')V(x')H'8+ k (x')dx'. 

The eikonal approximation is obtained by neglecting 
the far right-hand term ofEq. (16). This gives 

8 + dx)~VI:! + (mi/fl2k) f~ 00 V(x')H'8 + dx') dx' . (17) 

This approximation is valid if V (x')H' 8 + k (x') changes little 
over a distance 11k, which is the case if 
I V(x' + 11k) - V(x')IE k- 1<1 for all X'.6 We thus require 
that ko be large and the wave packet function ¢ (k - ko) be 
fairly narrow (.dk /ko<' 1) so that the eikonal approximation, 
which is a high-energy approximation, hold for all values of 
k which have appreciable components in Eq. (11). 

The requirement is now imposed that H' be bounded. 
Under this requirement, Eq. (17) is immediately solved to 
give 

8+dx)=exp[;~f~oo V(X')dX'H']VI:!, (18) 

which gives 

¢ + dx) = exp [ ikx + (milfl2k) f~ 00 V (x') dx'H ,] VI:!. (19) 

Since V (x) is negligible for values of x outside the range 
interval [ - r,r), one can use the fact that r_ 00 V (y) dy 
~S~ "" V( y) dy for all x > r to obtain 

.1. (x) = eikxeiDH'lk .IM 
'f/+k 'fa , (20) 

where 

D = (m/fl2) J~ 00 V(x') dx' . (21) 

From Eqs. (11) and (19), one sees that for a given time 
t,¢(x,t) is appreciable for those values of x in the interval of 
width .dx(t ) centered at Xo + vot . .dx(t ) is the coordinate 
space spread of the w system wave packet at the time t and 
Vo = AAoIm is the group velocity of the packet. The small 
effect of the scattering phase shift on the determination of 
the value of x at which the phase of ¢(x,t ) is stationary has 
been neglected. 

Thus for all time t such that 

Xo + vot - .dx(t )l2>r , (22) 
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¢(x,t ) is appreciable for only those values of x for which Eq. 
(20) is valid. For such t, one can use Eq. (20) in Eq. (11) 
instead ofEq. (19). Furthermore, it is easy to arrange the 
model parameters so that .dx(t )~.dx(O) for all t during 
which w is interacting with e. Thus, one can replace .dx(t ) by 
.dx(O) in Eq. (22). 

One now recalls that the desired goal of the above mod­
el construction is that the completed w-e scattering should 
correspond to one step of the process. To this end, the range 
and strength of the potential Vand value of ko must be such 
that 

D/ko =K, (23) 

whereK is the constant appearing in Eq. (2). Then using Eqs. 
(1), (2), and (20), one has 

¢ + k" (x) = e'k"xif!:!.(O) , (24) 

which is the desired result. 
However, account must be taken of the fact that ¢(x,t ) 

is a wave packet with momentum dispersion .dk and there 
are appreciable contributions to ¢(x,t ) for values of k in 
(ko - .dk, ko +.dk), where .dk> 11 .dx(O). (t is such that 
.dx(t )~.dx(O).) In order to minimize these components.dk 
must be quite small. 

To get an estimate of the magnitude of these unwanted 
components one notes that for k close to ko with 8 = ko - k 

ei(Dlk)lf' = e'Klf'e'DKH'/k~e'KH'(I + i8KH'/k) (25) 

for sufficiently small 8, that is for 8 such thatK811H '1IIk<l. 
One can thus get an upper estimate of the magnitude of these 
components by replacing ¢ + k (x) in Eq. (11) by 

¢ + k(X) ~eikxeiKH'(l + i.dkKH'lko)VI:! 

= e'kx(1 + i.dkKH'lko)if!:!.(a) . (26) 

Such a replacement is valid if .dkK IIH' III ko<' 1. This inequal­
ity is easily satisfied since the eikonal approximation re­
quires that.dk /ko<1 andH' can be chosen so thatK IIH 'II is 
of order unity. From Eq. (26) one sees that the upper estimate 
of the magnitude of the unwanted components satisfies 
(K.dk /ko)IIH 'if!:!.(alll <. 1Iif!:!.(alli which is the desired condition. 

B. Successive scatterings 

The results obtained so far describe a model for one step 
of a process. The model can be extended easily to correspond 
to n steps of a process. To this end, one first replaces the fixed 
scattering center e by a one-dimensional lattice C of n fixed 
scattering centers with thejth center fixed at position x j • 

Each center can be regarded as a spinless system fixed at xj • 

Initially, the system w is localized well to the left of the left­
most center at x \. w moves along the C lattice interacting 
with the scattering centers until it passes out of range of the 
rightmost center atxn • The spacing of the centers is arranged 
so that w interacts with at most one center at a time. 

The overall Hamiltonian for the w + C + M system is 
given by 

n 

H=Ho+ L V(x-xj)H', (27) 
j= 1 

where V (x - x j ) is the interaction potential between wand 
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the jth system of C. As before, the overall system states at 
times 0 and t are given by Eqs. (8) and (11). 

t/J + k(X) is given by Eq. (12) with appropriate changes 
made in the interaction potential: 

tP + k (x) = eikxI/I: + (2mllf) f~ 00 G + k (x,x') 

n 

X L V(x' -xj)H'tP+dx')dx', (28) 
j= 1 

with G + dx,x') given by Eq. (13). 
To obtain a solution of Eq. (28) as a sequence of eikonal 

scatterings from the successive centers of C, one must re­
quire that at no time is w interacting with more than one 
center. This is conveniently satisfied by letting the adjacent 
systems ofChave a constant spacingd = XJ+ 1 - Xj and set­
ting x I = d and requiring that 

d>~x{O) + 2r (29) 

and that there be essentially no wave packet spreading dur­
ing the time the w-C scatterings are occurring. This means 
that there be no spreading for all times t<Jn , where 

tn = ( - Xo + nd + ..::ix(O)/2 + r )Ivo . (30) 

Note that with XI = d, ~ = jd for eachj.,;;n. 
Under this requirement, one can solve Eq. (28) using the 

eikonal approximation to give 

t/J + k(X)~ exp(ikX + (imlfj2k) J: '" V(x' - n(x)d) dX'H'] 

xexp(iDH'lklnIX)-II/I:. (31) 

nIx) is defined as follows: At position x, w is either interact­
ing with some system of C or it is not. If it is, nix) = place 
label, I, of the system with which it is interacting. If w is not 
interacting, then nix) = place label, I, of the system with 
which w has just finished interacting. That is, 

nIx) = I i~ x >/d - rand x<(l + l)d - rand i<n}. 
n If x>nd - r 

(32) 

Equation (31) can be obtained as the iterative solution of 
Eq. (28) under the restriction of Eq. (29) and use of argu­
ments similar to those used in Eqs. (16)-( 19). [The iteration 
converges since H' is bounded.} On an intuitive basis, Eq. 
(31) can be understood as follows: for any position x of w, 
such that d + r.,;;x < 2d - r, the scattering from the first cen­
ter can be regarded as complete. For any such x, t/J + k (x) is 
given by Eq. (20). Now the scattering from the second center 
atx2 = 2d can be described by Eq. (12) with V(x' - xz) re­
placing V(x') and the outgoing solution, Eq. (20) replacing 
exp(ikx)1/I: as the incoming state in Eq. (12). Following the 
solution ofEq. (12), one gets for all x > XI + r, a solution 
similar to Eq. (19) or 

tP + dx) = eikxeUmlll'k) f: '" V(x') dx'H'eiDH'lk tII:. (33) 

This solution is good for all X for which 
XI + r<x <X3 - r. In particular, for X such that 
X2 + r.,;;x <X3 - r, t/J + k(X), given by Eq. (33) with the upper 
limit of the X integral replaced by r (or 00), describes the 
completed scattering off the second system. By iteration of 
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this description, one can arrive at the solution given by Eq. 
(31). 

If x is such that x - n(x)d> r, then the upper limit x of 
the integral in Eq. (31) can be replaced by r (or 00) to give 

tP + dx)~eikx(eiDH'lk )nlx)1fI: . (34) 

This describes the situation when w at x has completed scat­
tering from the first nIx) C systems and has not yet interacted 
with the nix) + lst C system. If x is such that x - nd> r, 
then n(x) in Eq. (34) is replaced by n. For all such x, the 
scattering is finished. This happens for all times t> tn' Eq. 
(30), for which the overall state evolves with no further 
interaction. 

Finally, one can extend this quantum mechanical mod­
el to take into account the possibility that the interaction 
Hamiltonian H' for M is stage-dependent, i.e., H' = H;. 
Such a model corresponds to a discrete process on A for 
which the bijection ~:A __ A, which gives the process trans­
formation from stagej to stagej + 1, isj-dependent. Such 
models were also used in I, in which quantum mechanical 
models of Turing machines were constructed. 

In this case, one replaces 1:)'= I V(x' - xj)H' in Eqs. (27) 
by 1:jn= 1 V(x' - xj)H;. The solution is carried out in the 
same manner as that which gives Eq. (31), with the exception 
that the ordering of the H; must be preserved since H; and 
H; with I 1-= j may not commute. Taking this into account, 
one obtains the solution as 

t/J + dx)~expUkx + (imllfk) 

X f: 00 V(x' - n(x)d) dx'H' nix) J 
X exp(iDH' nix) _ Ilk) exp(iDH ' nIx) _ 21 k ) 

···exp(iDH' Ilk)1/I: , (35) 

which replaces Eq. (31) as the eikonal approximation solu­
tion. Note that even though the process operator ~ and the 
corresponding operator H; are stage-dependent, the Hamil­
tonian for the extended system M + C + w obtained by re­
placingH' in Eq. (27) by H;, is stage- and time-independent. 

C. Limitations on Input parameters 

It is worthwhile to take a closer look at the limitations 
on the input parameters which are necessary for Eqs. (31), 
(33), and (34) to be good approximations. One requirement 
was that the w-particle wave packet not spread appreciably 
during the scatterings from the n centers of C. If one assumes 
that w is free and is described by a minimum wave packet at 
time 0 (the former is satisfied in that the eikonal approxima­
tion requires that the potential be small in comparison to the 
initial energy and the latter means that the time derivative of 
(x2> - (x> 2 = 0 at time 0), then the spread at time t is relat­
ed to the spread at time 0 bylo 

..1x(t) = [(..1X(0))2 + (f!.::1kt Im)2] 1/2. (36) 

The requirement ..1x(t )~x(O) gives, on expanding the 
square root and rearranging, t«V2)m~x(0)/(f!.::1k). 

This must hold for all times during which scattering 
occurs up to tn' Thus by Eq. (30). one has with Vo = likolm 
and Eq. (29). - Xo + (2n + I )(.Jx(O)/2 + rl«V2)ko'1x(0)/..1k 
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or 

n< [~2ko-dx(0) + xo-dk ]/(.1x(O) + 2r).1k , (37) 

wherexo is the position of the center of the w wave packet at 
timeO. 

Thus, there is an upper limit on the number of model 
steps which can be carried out before the w packet spreads 
enough to give interference between the scattering from the 
different centers. This requirement on n can be relaxed by 
letting the spacing between thejth andj + lth centers ofC 
increase asj increases. That is one that simply requires 
Xj + I - Xj >.1x(t ) + 2r instead of Xj + 1 - Xj = d and re­
laxes the requirement that .1x( t ) :::::.1x(O) . This has the effect 
that the time it takes the jth model step to be completed 
increases as j increases. 

Another limitation on n comes from the momentum 
space spread in the w wave packet and resulting unwanted 
components of the scattering solution t/J + k (x). To obtain this 
limit, onereplacest5lkinEq. (25)by.1k IkoasinEq. (26), and 
then uses the result in Eq. (34) to get for nIx) = n, 

¢ + dx}_eikx[(l + i.1.kKH 'lko)eiKH']n1/!:!. (38) 

The leading unwanted term in the expansion ofEq. (38) 
is i(n.1kKH 'lko)(exp[iKH '])"1/!:!. In order that this be small 
in comparison to [exp(iKH ')] n1/!:! it is sufficient to require 
that 

n.1kK/lH'H Iko<l, (39) 

which gives another upper limit on n. 
It is of interest to replace the model parameters with 

actual values which satisfy the various limitations. To this 
end, let w be an incident 0.25 Mev proton which gives 
k()~ 1012 cm --I. Let.1k = 105 cm -I which gives 
.1x(O» 10-5 cm. Let K = 1 and r = 10-5 cm. Define the 
average strength Vo of the interaction potential by 
2rVo = f'_, V(y) dy. One then has from Eqs. (21) and (23), 
that VoIEo~ 10- 7 < 1. Thus, the conditions for the validity 
of the eikonal approximation can be satisfied. Set d = 10- 3 

cm, which satisfies Eq. (29), and n = 106
• Then Eq. (37) 

(lxol < 1) is satisfied and Eq. (39) is satisfied if one can arrange 
the model so IIH' 11- 1. The total length of the C lattice is 
1O{)X 10- 3 cm = 10 m. A 0.25 MeV proton travels this dis­
tance in about 10-6 sec which means that each model step is 
carried out in about 10- 12 sec. These calculations refer to the 
parameters of the w + C scattering only and take essentially 
no account ofthe possible limitations of the H' interaction in 
the M system. 
IV. MODEL EXTENSION 

A. The extended system 

As was noted before, in order to include models of pro­
cesses for which the transfer function Tis not one-one ontoA 
and to satisfy the locality requirement, one must extend the 
system. What is done here is to add auxiliary systems and 
expand the interaction so that the added systems function 
essentially as a recording system to record the successive 
steps of the T process. In more detail, let R be a tape with an 
infinite number of cells labelled by integers in Z, and which is 
such that all cells are initially blank. Let h R be a recording 
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head which is initially at R lattice position 0 and let the 
process system M be in some state a in A. The original pro­
cess step corresponds to three steps in the expanded system 
as follows: first, record into the R cell scanned by h R' the 
process-system state; next read the R cell scanned, and carry 
out on the process state, the T change operation correspond­
ing to what was read in the scanned R cell. Thus, if a is read 
in the R cell scanned by h R carry out the transformation V" 
on the process-system state. Va: A-..A is a map such that 
Va (a) = T(a), Va (T(aJ) = a, and Va (a') = a' otherwise. Va 
exchanges the process-system states a and T(a) and leaves 
others alone. If the R cell scanned by h R is blank, then Vb is 
the identity map on A and nothing happens. Finally, shift h R 

one cell to the right. 
If the process system is initially in state a then repetition 

of the above steps in the order given generates the record a, 
T (a) ... T "(a) ... in successive cells of R as h R moves down the R 
tape and as the process system simultaneously evolves step­
wise through successive states a-..T(a)-.. ... ~T"(a)-.. .... 

The added systems Rand h R can be modelled as fol­
lows: R is represented by a Z lattice of systems rj for each) in 
Z. To each rj is associated a Hilbert space 2'j which is 

spanned by an orthonormal basis set I ¢; JaEA I ul t/J~ I· 1/;; is 
the state of rj corresponding to the symbol a being recorded 

in the }th cell of R and t/J~ is the state corresponding to a 
blank in the}th cell of R. 

The Hilbert space :Jr R of the lattice is the space 
spanned by all infinite product states VI: of the form 

VI: =® t/J~jl ' (40) 
jEZ 

where r is any function from Z to Au {b I A b such that 
r(j) =I- b for at most a finite number of} values. Let (A ~)b 
denote the set of all such functions. :Jr R is the incomplete 
tensor product subspace of the infinite tensor product space 
® jEz:Jr" and is separable. 11 

The recording head h R is represented in the model by a 
spinless system whose states lie in the Hilbert space 
:JrhK = {2(Z), the space of all square-summable functions on 
Z. The extended model system Hilbert space 2' is separa­
ble, where 

(41) 

From now on M, R, and hR will denote either the extended 
process systems or the corresponding systems in the quan­
tum mechanical model. It will be clear from context which is 
being referred to. The overall w + C + M + R + h R system 
Hilbert space is given by 

:Jr = 2 w ®:Jr' , 
where oW' w = L 2(R,dx). C is represented as a lattice of fixed 
scattering centers, or systems whose state does not change, 
so no Hilbert space is needed for C. 

Figure 2 represents the overall system. The w-wave 
packet and the positions of the C scattering centers are 
shown. The lattice position of M is arbitrary. 

In order to use this model with the results of Sec. III, 
one requires that Eq. (7) represent the free Hamiltonian of 
the w + C + M + R + h R extended system. This means 
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FIG. 2. A schematic representation of the extended model. wand the cen­
ters of C are the same as in Fig. I. M is denoted by the elongated rectangle, 
the lattice systems r

J 
of R by smaller vertical rectangles and h R by a larger 

circle. An explicit representation of M and each " can be given by letting M 
and rj be Nlattices of spin ~ systems where M extends to the right and the" 's 
extend down. The w wave packet lies in between and out of range of C2 and 
c3• 

that all systems in R must be noninteracting and that all 
states tf!:: of M must have the same energy. Also, since the 
Hilbert spaces 3Y'M and 3Y'r for eachj in Z are separable, one 
cannot represent M and ea~h rj by a spin system as this re­
quires that 3Y'M and 3Y'r be finite-dimensional. 

One way to satisfy these requirements explicitly is to let 
the model systems M and rj be infinite N lattices of noninter­
acting spin 1/2 particles. Let the Hilbert spaces 3Y'M and 
3Y'r be spanned by all infinite product states <P.< of the form 

J 

d.. ./,1/2 '1"" = .19 'i''<(jJj' 
lEN 

where ¢I~: and ¢I"-: are respective spin up and spin down 
eigenstates for the (j + 1 )th lattice particle and A. is any 
+ , - sequence such that A. (j) = + for at most a finite 

number ofj values. Let the set of such sequences be denoted 
by U +,-jNk 

A bijection (or one-one coding) from A onto 
({ + , - IN)b can be constructed as follows: Let a-+l (a) be 
any bijection from A onto N. These exist since A is countably 
infinite. For each n in Nlet e (n) be the inverted binary repre­
sentation ofn. That is,~, 1-+1,2-+01, 3-+11, ~1, 
5_10 1, and so on. Let + correspond to 1, and - to 0; then 
each e (n) becomes a finite + , - sequence. Extend e (n) to an 
infinite sequenceJ.L(n) in (I +, - IN)b by adding an infinite 
sequence of - 's only to the right-hand end ore (n). Thus, for 
example, 4 becomes - - + - - - .... The desired bi­
jection is then a-+p(l (a)}. 

From this one sets 

tf!:: = <1>1'(1 (all 

for each a in A. Since a-+J.L(1 (a)) is a bijection, the 
{<I>f.1(I(a)) !aEA I span cW'M' 

¢; and 3Y'r
j 

are constructed in a similar way where y 
denotes an element of A b • The only difference is that one 
requires a bijection from Ab onto ({ + , - } N)6' This is con­
veniently given by a-+J.L(1 (a) + 1) and b-+J.L(O). The other de­
tails are the same. Note that for this example R is a Z lattice 
of noninteracting systems each of which is an N lattice of 
spin! systems. Thus 3Y'R = ( 19 jEz3Y'r,)b is an incomplete 
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tensor product of the £'r, and each Jlrrj = ( 19 jENJlrlj)b js an 
incomplete tensor product of the two-dimensional space 

Jlr1/2· 

B. The elementary operators 

One must now define the necessary elementary opera­
tors which are used to build the interactions. For each a in A, 
define the projection operator Pa on 3Y'M by 
Pa 1/!:J = tf!::fja,a" Also define the operator Ua on 3Y'M by 

= t/t!la) 

=1/1: 
=1/1: 

if a' = a } 
if a' = T(a) . 

otherwise 

(42) 

Also, define Ub = 1, where b denotes the blank. Ua ex­
changes 1/1: and ifI'f(al and leaves the other basis functions 
alone. Note that Ua is well defined even if T is many-one and 
into. Also Ua is both unitary and self-adjoint. 

For each real number fj define U~ by 

U~ = eitiHa , (43) 

where Ha is any self-adjoint operator which satisfies 
exp(iKHa) = Ua • One clearly has for each a for which 
a#T(a) 

U ~ 1/1: = a(fj)~ + (3 (fj)t/t!(al ' (44) 

where a(o ) and (3 (fj ) are possibly a-dependent coefficients 
such that a(O) =(3(K) = 1, a(K) =(3(0) = 0, ja(fjW-
+ I (3 (fj W = 1 and a*(8 )(3 (fj ) + a(S )/3 *(fj ) = O. One also has 
V ~ t/t!(al = a(fj)t/t!(al + (3 (fj)~. For all a' such that 
Va 1/1: = 1/1: [including those a' for which a' = a = T(a)], 
one has U~VI: = y(fj If:, where jr(fj)) = 1 and 
y(O) = y(K) = 1. 

There are many possible choices for Ha which satisfy 
the above conditions. As regards the model aspects of con­
cern here, it does not matter which choice is made other than 
the requirement that all the Ha have an a-independent 
bound. To make the presentation simpler, it will also be re­
quired thatHa is such that a(fj ) and(3 (fj ) are independent of a 

and r(fj ) = 1 for all 8. A choice which satisfies this require­
ment is 

1 

Ha = L (1TI /K)P~ , (45) 
l=O 

whereP~ = ¢~)(¢~ and ¢~ = (V2)-1(1/I: + (- 1)ll/1;a)) jf 
a# T(a) andHa = 0, if a = T(a). With this choice ofHa , one 
has a(o ) = {I + exp(i1Tfj/ K ))/2 and 
(3 (fj) = (1 - exp(i1TMK ))/2. 

Another possible advantage of this choice of Ha is, in 
brief, as follows: If one considers the density operator state 
Pa(fj) = V~~)(~U~t, Eq. (45) gives the result that there 
are no values of 0 such that 0 < fj < K for w hieh 
Pa(o) = PTlal===-7f:!(a))(7f:!(a)' Thus as the model system 
evolves under one w-e scattering in C, there is no cycling of 
Pa(fj) betweenpa andpTla) and back as fj increases from 0 to 
K. This lack of cycling is consistent with the locality require­
ment discussed in Sec. II because it means thatpa Ifj) arrives 
at PTla) for the first time only at the completion of one w-e 
scattering. Other choices of B", e.g., Ba = (2n1T/K )P~ 
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+ ((2m + 1)1T/K)P! with nj:m, give such cycling. 
For each a inA and k in Z define the projection operator 

Pak on:7l" R by Pak 1/1: = I/I:by(k 1,0 where for each function y 
in (A tlb' 1/1: is given by Eq, (40). Also define the operator Vak 
by 

(46) 

where y' is such that y(j) = y'(j) for alljj: k and y'(k) = arb J 
ify(k) = b raj, and y = y' ify(k )=l-a,b. Vak acting on 1/1: 
changes at most the k th factor of 1/1: and that only if y(k ) = a 
or b. In this case, it interchanges Ill: and r/I~k. Vak is both 
unitary and self-adjoint. 

For each real number b, define V~k by 

U
o _ ioH a , 

ok - e , 

where Hak is any self-adjoint operator which satisfies 
exp [iKHak ] = Vak . Then one has for each y for which 
y(k) = a or b, 

U ~k 1/1;: = a(b )1/1;: + f3 (b )1/1 ' 

(47) 

(48) 

where 'lt~ ) and!3 (0 ) are possibly y-dependent coefficients 
which satisfy the conditions given for Eq. (44). Also let 
V~k 1/1;: = 1/1;: ify(k )j:a,b. 

As was the case for Ua , there are many possible choices 
for H ak • However, one does require that IIHak /I < m for some 
m for all a and k. A possible choise for H ak , which satisfies 
the conditions already discussed for Htl and is nonzero only 
in the component space :7I"r, of :71" R' is defined by 

I 

Hak = I (1TI/K)P~k' (49) 
1=0 

where P ~k = r/I~k) (r/I~k and r/I~k = (V2)-I(r/I~' + ( - 1 )lr/l~') . 
One also needs the projection operator P f defined on 

:71" R for each k in Z by 

Pf = I'P: " (50) 
yE(A fJ" 

where P~ = 1/1:) (1/1:, Eq. (40)), and the prime on the sum 
means that it is restricted to those y in (A ~)b for which 
y(k ) =I- band y(j) = b for allj > k. P f projects out all record 
expression states for which the last (in the direction of in­
creasing Z) non blank record cell is at position k. 

In a similar fashion, one defines on :7I"h", the projection 

operator Pk = r/lZ") (r/I~R, where r/lZ" is the state in /2(Z) which 
corresponds to h R being localized at lattice position k. Also, 
let Hk and U,,+ 1 be such that 

(51) 

where [' = k + l[k], if 1= k [k + 1] and I = I' otherwise. 

V k+ 1 exchanges r/lZ" and r/I:"+ I and leaves all other states in 
the basis alone. U "t- I is both unitary and self-adjoint. Let H k 

be given by Hk = };l=o (1TI /K)P~, whereP~ = r/lU (r/I~ and 

r/I~ = (V2)-1 (r/I~R + ( - 1)lr/lZ"+ I)' 
As was done for Va' define V ~ I by 

V k15 iSH, 
+1 =e (52) 

for each real number b. This gives 

Uk: I r/lZR = a(b)r/lZ' + /3 (b)r/lZ"t- I , (53) 
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wherea(o) and/3 (0) satisfy the conditions given for Eq. (44). 

Clearly Uk: I r/l7" = r/l7"ifl =l-k,k + 1. Alsoa(b )and/3 (0 ) are 
independent of k. 

C. The step Interaction operators 

The operators defined so far can be used to define over­
all record, process, and shift step operators as follows: De­
fine the recording step operator VI on J¥" by 

U1 = I Pa ® Vak ® Pk , 

aEA 

kEZ 

(54) 

where Vak is defined by Eq. (46). U I corresponds in the mod­
el to recording the state of the process into that cell of R 
which is scanned by h R provided that the cell scanned is 
initially blank. VI acting on a state of the form 

til: ® 1/1: ® r/lZR, where y(k) = b converts it to til: ® r/I~, ® r/I~R, 
where y'(k) = a and y(j) = y'(j) for allj=l-k. VI is clearly 
unitary since Vak is unitary and };aPa = 1 = };kPk' Also UI 

is self-adjoint since V;k = 1. 
Define the process-step operator U2 by 

U2 = I Vy ®Pyk ®Pk , 

yEAh 

kEZ 

(55) 

where Vak is defined by Eq, (46). VI corresponds in the mod­
el to recording the state of the process into that cell of R 
which is scanned by hR provided that the cell scanned is 
initially blank. UI acting on a state of the form 

til: ® 1/1: ® r/I~H, where y(k ) = b converts it to til: ® 1/1:. ® r/I~H, 
where y'(k) = a and y(j) = y'(j) for allj=l-k. VI is clearly 
unitary since Vak is unitary and I.aPa = 1 = I.kPk • Also VI 
is self-adjoint since U;k = 1. 

The shift operator U3 is defined on:7l'" from Eqs. (50) 
and (51) by 

U3 = I l®pf®U"t-I' (56) 
kEZ 

V3 corresponds to shifting the head to a fresh record cell 
provided it is scanning the last filled record cell, U3 acting on 

a state of the form 1/1: ® 1/1: ® r/lZR, where y(k ) =I- b and for all 

j> k, y(j) = b converts it into r/I,! ® 1/1: ® r/lZR+ I . Since U k+ I is 
unitary and self-adjoint and };kP~ = 1, V3 is both unitary 
and self-adjoint. 

Using the definitions of Hak , Ha , and Hk already giv­
en, one can define three interaction operators Hit H 2, and H3 
by 

and 

HI = I Pa ®Hak ®Pk • 
aEA 

kEZ 

Hz = I Ha ®Pak ®Pk , 

aEA 

kEZ 

H3= Il®pf®Hk 
kEZ 

Using these operators, one can show that forj = 1,2,3, 

(57) 

(58) 

(59) 

V - iKHJ (60) j-e 
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holds with ~ given by Eqs. (54)-(56). This can be seen by 
substitution into the exponential, expanding in a power se­
ries (which is valid since there exist bounds on Hak , Ha , and 
H k which are independent of the indices) and noting that the 
terms of Eqs. (57)-(59) are pairwise orthogonal. 

D. The final model 

The results obtained here can be combined directly with 
those of Sec. III as follows: From the viewpoint of Sec. I1A 
and III, the process system must be regarded as 
M + R + h R with an overall state space A X (A ~)b X Z. One 
has three transition functions TI , T2 , and T3 for the record, 
process, and shift steps, which are defined so they satisfy 

Uj (1/I: ® til: ® t/J~R) = t/J~~~kl (61) 

for eachj = 1,2,3 and each (a'Yk) inA X(A ~)b XZ. In par­

ticular, TI(ayk) = (ay'k I and t/J~(~;kl = 1/1: ®"y:, ® t/J~R, 
whereforallj#k,y(j) = y'(j)andy'(k) = alb ]ify(k) = b [a], 
and i(k ) = y(k ) otherwise. For T2 if y(k ) = b, then­
T2(ayk) = (ayk )foralla.Ify(k) = a,thenT2(a'yk) = (a,yk), 
where a l = T(a)[a] if a/ = a[T(a)], and a/ = a) otherwise.­
T3(ayk) = (ayk ')wherek' = k + l[k - 1]ifk [k - 1] = po­
sition oflast nonblank symbol in y and k' = k otherwise. It is 
clear from these definitions and the fact that ~ is both uni­
tary and self-adjoint that TJ = 1 and 1j is a bijection on 
AX(Ablb xZ forj= 1,2,3. 

The final model is supposed to evolve under a Hamil­
tonian in such a way that each step of the original process T 
on M becomes three successive steps, record, process, then 
shift, in the extended model. Each step in the extended mod­
el takes place by turning on the appropriate interaction oper­
ator by means ofw interacting with a scattering center in the 
control lattice C. 

To this end, one defines for each process Ton Man 
extended model Hamiltonian by Eq. (27) 

3n 

Hfn =Ho+ I V(x _Xj)HT(j) , (62) 
j= I 

where H 0 is given by Eq. (7) and H T (j) is defined from Eqs. 
(57)-(59) by 

HI} 1 mod 3 
H T(j) = H2 if j = 2 mod 3. 

H3 0 mod 3 

(63) 

In these expressions, the dependence of the Hamiltonian on 
the process T is made explicit. Also for each j,H T (j) is 
bounded as is required for use in the results of Sec. III. 

The final result of this work is obtained by combining 
the results of the previous sections. That is, to each discrete 
process Ton M with a countable set A of states and for each 
n, one can associate an extended quantum mechanical model 
w + C + M + R + hR such that the Schrodinger evolution 
of the model describes the process in the following sense: 

For any time Tand w-position x, the overall model state 
is given by Eq. (11) as 

t/JIx,t) = f dk e - iE., II!¢ (k - ko)t/J + dx)e - i/oco (11) 
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and t/J + k(x) is given by Eq. (35) as 1f; + dx) = eikX1f;':Rh,,(x), 
where 

t/J':Rh"(x)~exp[(im/1i2k) f: 00 V(x/ - n(x)d) dx'H T(n(x))] 

xexp[ i~ HT(n(x) _ l)] ... exP[iDHT(I)1k ]cpMRhR, 

(35) 

where nix) [Eq. (32)] is the place label of the scattering center 
in C which is either interacting with w at x or, if none is 
interacting, has just finished interacting with w. D is given by 
Eq. (21) and H T (j) by Eq. (63). This result also requires that 
the separation d between successive scattering centers satis­
fies Eq. (29), or d>.:lx + 2r, where .:lx is the w-wave packet 
spread at time 0 and r is the range of the interaction 
potential. 

Let cp MRh" = 1/1: ® til: ® t/J~R, where yU) = b for allj;;;,l. 
Then if ¢ (k - ko) is sufficiently narrow, t/Jf:RhR(X) is essential­
ly independent of k over the important values in Eq. (11). As 
a result, one has (Eq. 3) 

t/J(x,t ) ~ t/J~RhR(X)FkoXo (x,t ) , (64) 

where 

,pMRhR(X) = exp [ (im/1i2ko) f: oc V(x/ - n(x)d) dx'H T(n(x))] 

(65) 

X exp[iKH T(n(x) - 1)] ... exp[iKH T(l)] (1/1: ® tfI; ® t/J7") 

and 

FkoXo(x,t) = f dk e- iEktlh¢ (k - ko)eik(X-Xo). (66) 

For each time t, the only values of x that contribute apprecia­
bly to Eq. (64) are those in the interval of width .:lx centered 
on Xo + vot. If t is such that the interval end points also satis­
fy pd + r < Xo + vot - .:lx/2 and 
Xo + vot + .:lx/2 < (p + l)d - rfor somep < 3n, then the w­
wave packet has finished interacting with the pth center and 
is not yet interacting with the p + lth center, (Fig. 2). This 
shows that for all times t in the interval 
.:l = [d - (.:lx + 2r lJ/vo centered on [( p + ~)d - xo]/vo, 

t/J~RhR(X) is independent of x for the relevant values of x and 
can be replaced by 

t/J';:.RhR( p) = eiKHT( p) eikH Tip - 1) ... eikH T(II(1/I: ® til: ® t/J7R) , 
(67) 

where nix) = p. 
This state describes the completion of p model steps and 

can also be written as 

(68) 

Here e, f, and s are the largest integers in (p + 1 )13, 
(p + 2)13, and (p/3) respectively and yfis related to y by 
yf(j) = y(j) forj <l andj> l + Jand yf(j) = Tj-l(a) for 
l<,j<J + f This corresponds to the situation in which e steps 
of the process Thave been carried out on M initially in state 
a, the history ofJsteps is recorded on R which was initially in 
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statey, and hR was shifted from Ito I + s. The length of time 
..::l for which the system remains in this state can be set by 
adjusting the model parameters, in particular 
..::l = d - (..::lx + 2r ). 

For all times t> (3nd - Xo + ¥lx + r )lvo,¢~RhR(X) can 
be replaced in Eq. (11) by ¢~RhR(3n). This corresponds to the 
completion of 3n model steps when w has moved out of range 
of all the 3n scattering centers in C and shows that no further 
changes occur in M + R + hR' 

For the times described above when the w wave packet 
is essentially entirely between c p and c p + 1 and not interact­
ing with either, one has for the overall state 

¢(x,t )c::=¢MRhR( p)Fk.,;<" (x,t ) . (69) 

For those times for which Eq. (69) is valid, the w system state 
is un correlated with the M + R + h R system state. 

For those times t for which at least some of the w wave 
packet is within interaction range of some center cp of C, the 
overall state is obtained from Eqs. (64)-(67) as 

c::=¢';.RhR( P - I)Fk.,;<o (x,t) if x<.pd - r] 
c::=ei8ixIHTiPI."MRhR(p _ l)F (x t) 

'I' ko k,,xo ' (70) 
if pd - r < x <pd + r ' 

¢(x,t) 

c::=¢';.RhR(p)Fk.,;<.(X,t) if x>pd + r 

where 8 (x) = (M Ifz2koW_ 00 V(x' - pd) dx'. The first part 
refers to those components of the w wave packet which have 
completed interaction with c p _ 1 and have not yet begun 
interaction with cpo The second and third parts describes 
those components which are interacting with and have com­
pleted interacting with cp , respectively. 

It is of interest to examine 

exp(i8(x)H T(p))¢';.RhR(p - 1) further. From the definitions 
of H., H 2, and H 3 , and Eqs. (57)-(59) one can easily see that 

I Pa ® U~~I®Pk if P = 1 mod 3 
aEA 

kEZ 

ei8(xIH'(PI = I U~(XI ® Pyk ® Pk if P = 2 mod 3 ,(71) 
yEAh 

kEZ 

= Il®Pf®Uk~i~1 ifp=Omod3 
kEZ 

where U~ixI, U~r:I, and U":i~1 are given by Eqs. (43), (47), and 
(52). 

Let a, y, and I be appropriate initial states. That is 
y(j) = b for alII>!. Let a', y', !' satisfy Eq. (68) with 
a' = Te(a), y' = yf and I' = 1+ s. 

Then Eq. (71) in combination with Eqs. (44), (48), and 
(53) give 

ei6H '( p)(t/I: ® tfJ;. ® ¢~RhR) 

= t/I: ® (a(8)tfJ;. + {3 (8)tfJ;. ) ® ¢7·R if P = 1 mod 3 } 

(a(8)t/I: + {3 (8)~(a'l ) ® tfJ;. ® ¢7·R if P = 2 mod 3 , 

= t/I: ® tfJ;. ® (a(8)¢7·" + {3 (8)¢7·R+ 1 ) if P = 0 mod 3 
(72) 

wherey"(j) = y'(j)ifj:;6!' and y"(!') = a' and y'(l') = b. The 
dependence of 8 on x has been suppressed to make the nota-
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tion easier. If a' is such that a' = T(a'), then the right-hand 
side of Eq. (72) for p = 2 mod 3 is replaced by t/I: ® ¢~ 

® ¢~RhR. a(8 ) and {3 (8 ) are independent of a', y', and I' and 
satisfy the conditions given for Eq. (44). The independence 
follows from the definitions of H o ' H ak , and Hk used in Eqs. 
(57)-(59). 

As a result, if a, y, and! are appropriate initial states, 
one has the result 

ei8(xlll T( PI¢';.RhR( P _ I) 

= a(8(x))¢';.Rh"( p - I) + {3 (8 (X))¢';.Rh"( pJ (73) 

holds provided that either p:;62 mod 3, or p = 2 mod 3 and 
a':;6 T(a'). Ifp = 2 mod 3 and a' = T(a'), the right-hand side 
ofEq. (73) is replaced by ¢';.RhR(p - 1). 

This is the desired result because it shows that the part 
of the overall state ¢(x,t ) which represents the partially com­
pletedpth step is a linear combination of the states represent­
ing the p - 1 th step and the pth step. As the time t (and 
relevant values of 8 (x)] increases, a(8(x)) decreases and 
{3 (8(x)) increases. Thus ¢';.Rh R

( p) grows in at the expense of 
."MRhR ( _ 1). 
'l'k" P 

Thus, one sees that if a, y, ! correspond to a possible 
initial state, the requirement of locality, discussed in Sec. II 
is satisfied. Furthermore, it is satisfied for all three types of 
interactions, record, T-process, and shift. As noted, this is 
the main reason for defining all operations in terms of ele­
mentary operators which exchange just two basis vectors 
and leave the others alone. This is also the reason why the 
shift operator, Eq. (56), is defined in terms of Pf and U k+. 
instead of the bilateral shift operator on 12(Z ). 

It should be noted that the actual quantum mechanical 
model state of the subsystem M + R + h R is given by the 
density operator pMRhR(t ), where 
pMRhR(t) = Trw(pMRhRW(t)), wherepMRhRW(t) is the density 
operator for the overall system and is pure. From the fact 
that 

(x, pMRhRW(t )x) = ¢(x,t) (¢(x,t) 

one sees that when t is such that the w system is not interact­
ing with a center c P of C, then the w subsystem state is un cor­
related with the M + R + hR subsystem state, Eq. (69), and 
pMRhR(t ) is pure. However, when t is such that the states ofw 
and of M + R + hR are correlated as in Eq. (70), then 

pMRhR(t) is impure. This happens when at least some of the w 
wave packet is interacting with a center cp of C. 

It will be recalled that the validity ofEqs. (64)-(66) upon 
which the usefulness of the description given by Eq. (67)-(73) 
depends, is conditioned on ¢> (k - koJ being sufficiently nar­
row. How narrow ¢> (k - koJ must be can be seen from Eq. 
(39), which gives the condition 

3n..::lkK IIH Tlllko< 1 . 

Here..::lk is the w wave packet momentum spread and IIH Til 

= maximum of IIH ill, IIH rll, IIH rll· 
This condition, which is necessary for the success of the 

process model description constructed here, gives a relation­
ship among the parameters which must be satisfied. Thus, 
for given values of ko, ..::lk, K, and liH Til, this relation gives 
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an upper limit on the number of process steps which can be 
correctly described before the model breaks down. Also, the 
smaller..::1k is, the larger..::1x is, and by Eq. (29), the larger the 
separation, d, of the C scatterihg centers must be. 

v. THE DILATION THEOREM OF SZ. NAGY 

It is of interest to relate the model extension described 
in the previous section to the results embodied in the dilation 
theorem ofSz. Nagy. This theorem7 says that any contrac­
tion Won a Hilbert space JY can be dilated to a unitary 
operator Von a larger space.JY with JYC.JY such that 
wnp = PV"P for n = 1,2 ... , where p.JY = JY. Further­
more, there exists a minimal unitary dilation of W which is 
unique up to isomorphism. 

This theorem can be applied to the model process dis­
cussed here as follows: Let the process function Tbe boun­
dedly many-one. That is let Tbe such that there exists an m 
such that for all a {a' I T (a') = a J has <.m elements. As before 
T can be into A. Partition A into a family of nonempty sub­
sets Aj,j = 1,2, ... such that for eachj, Aj is Tinvariant and 
irreducible. That is, TAj kAj and there is no nontrivial sub­
set B of Aj such that TBkB and T(Aj - B )kAj - B. De­
pending on T, the partition may contain one, several or den­
umerably many subsets of A. The proof that such a partition 
exists and is unique is given in the Appendix. 

Consider the operator Ur on JY M as defined by Eq. (1). 
For each A j in the partition, let JY Aj be the subspace of JY M 

spanned by {~laEAj J. ThenJY M = EB jJYAj . It is clear that 
for each A j in the partition, JY Aj reduces U T" Thus, one has 
Ur = EB j UTj where UTj is the restriction of Ur to JYAj and 
UrJYA cJYA . Furthermore, each JYA is Ur. irreducible 
sin~eA;; Ti;reducible. Since Tis bou~dedlyJmany-one, 

V"O", = ... 0, Dwt/J, DwWt/J, ... , DWW"-It/J, W"t/J, 

... -n -1, -n, -n+l - 1, 

and 

V -no", = ... 0, (Wtrt/J, Dw,(Wtr-It/J, DwtWtt/J, 

... - 1, 0, 1, ... , n - 1, 

where the Z place labels of the corresponding terms are indi­
cated directly underneath the terms. Let:£' be the Hilbert 
space spanned by all the vectors Vjo", , wherejis inZ and t/Jis 
in JY'M and let V I:£' be restriction of V to :£'. Von:£' is a 
minimal unitary dilation of Won JY'M. 7 From now on V is 
considered to be restricted to :£'. 

Examination of V;'O", (the subscript Tis reinstated) 
with t/J = ~ shows that V;.O ~ contains in its components a 
history of the first n model steps of the process T. For our 
purposes, the details are not important. Note, though, that if 
a is such that the corresponding U r , which acts on ~, is an 

j 

isometry, then Dw Wl~ = ° for alII. In this case, and only 
in this case, the history can be recovered from W;.~ as Tis 

I-Ion Aj • Also W;.~ = IlUrjll- "tf/1.n(a) is the model state 
corresponding to the completion of n steps of the process T if 
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0, 

each Uris bounded. 
On~ now defines the operator W r on JY M by 

Wr = EB j(Ur/llUrjll ), (74) 

where the sum is over allj in the partition: W r is a contrac­
tion operator which satisfies Wrt/Ja = !llUd)-It/Jrla)' where 
j defines the subsetAj in the partition to which a belongs. In 
what follows, the subscript Ton W will be suppressed. 

Following Sz. Nagy and Foias,7 define the operators 
Dw andDw' on JY M by Dw = (1 - WtW)1/2 and 
Dwt = (1 - WWt)1/2.Dw andDwt areself-adjointcontrac­
tions which satisfy WDw = Dw'W, and 
Dw W t = WtDwt. Also I/Dwt/J1/2 = 1It/J112 -II Wt/J1I

2 for 
each t/JinJY M. ThisimpliesDwt/J = Oift/JIiesinanJYAj such 
that U T is an isometry on JYA (or T IAj is one-one). Both 
Dwt/J =JO and Dwtt/J = 0, if~Aj and Urj is unitary on 
JYAj (or TIAj is one-one onto). 

Define:£" to be the Hilbert space EB jEzJY M of all func­
tions ° from Z to JY M such that 11011 2 

= ~jEZ 110 U)11 2 < 00. 

JY M can be embedded into:£" by the map t/J-o", , where 
O",U) = ° ifj=l=O and 0",(0) = t/J, where t/J is any vector in 
JY'M. Let Vbe the dilation of Wonto :£" defined by VO = ° " 
where ° '(j) = ° U + 1) ifj=l= - 1, ° and 
0'( - 1) = DwO(O) - W tO(I) and 
0'(0) = WO (0) + D W(O (1)). Then V- 10 = °1, where 
0IU) = j - 1 ifj=l=0, 1 and 0 1(0) = DwO ( - 1) + WtO (0) 
andOI(I)= - WO(-I)+Dwt O(O).Since Vis unitary, 
V-I = vt. 

Von :£" is a unitary dilation of Won JY M. However, it 
is not minimal. To construct a minimal unitary dilation con­
sider for each t/J in JY M and each n = 0,1,2 ... , the vectors in 
:£" given by,? 

0, 

1, 
(75) 

Dwtt/J, 0, 

n, n + I, .. , , (76) 

I 

it starts in state ~ andj is such that aEAj" 
As a consequence the results of Sec. III can be taken 

over directly. Let H;" be any bounded self-adjoint operator 
which satisfies 

(77) 

hnd define by Eq. (27), the Hamiltonian Hr = He + ~j~ I 
V(x - Xj}H;". Then following the development of Sec. III, 
one constructs from H T a quantum-mechanical Hamilton­
ian model of the minimal unitary dilation of H ron JY'M. The 
model states all lie in the Hilbert space JY' w ® :£' where:£', 
defined above replaces JY" defined by Eq. (41). The Schro­
dinger evolution in the eikonal approximation is given by 
Eqs. (11) and (31), where in Eq. (31), ~ is replaced by ea. 
Here and from now on, to conserve on notation ° t/!;;' is re-
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placed by 0 a • 

If, following Eq. (65), one defines 

(78) 

then as discussed in Sec. IV, for all times t in the interval.:! 
centered on ((m + !)d - xo)/vo' t/Jr. (x) is independent of the 
relevant values of x and can be replaced in Eq. (64) by 
t/Jr.(m) = (exp(iKH'T)mOa. From Eqs. (75) and (77), 
t/Jr.(m) = V~Oa where, as noted above, this state contains 
the history of the first m model steps. 

If one compares the three step operators, UI , U2, and U3 

on Yr M ® YrR ® Yrh as described in Sec. IV to the exten-
R 

sion and expansion of U T on Yr M as described above, it is 
clear that the former is not minimal. In particular, the dis­
cussion above suggests that the recording system R and the 
space Yr R are probably sufficient for construction of a uni­
tary extension of U T on Yr M and that h Rand M as distinct 
systems with YrhR and Yr M could be discarded. 

However, the extension constructed in Sec. IV has two 
advantages over the minimal one. One is that for the minimal 
extension Eq. (77) gives a condition which any interaction 
operator H;' must satisfy. It is however, not clear how to 
express H ;. in terms of simple operators acting on .Y, or if 
such an expression is possible at all. In the model described 
in Sec. IV, the three types of step operators HI' H 2 , and H 3, 

all have explicit expressions in terms of simple operators act­
ing on Yr' [Eqs. (57)-(59)]. 

Another disadvantage of the minimal extension is that 
for any H ;. which satisfies Eq. (77), the locality requirement 
is not satisfied. That is, as discussed in Sec. II, for 0 < 0 < K 
one would like 

(79) 

to hold for each m and for each a for which 
(V~Oa' V~ + lOa) = O. The conditions that a(o) and f3 (0 ) 
should satisfy are given for Eq. (44). Note that (V~Oa, 
V~ + nOa) = 0, if and only if Tn(a)#a. 

However, as noted in Sec. II, such an operator is not 
unitary. This can be proved by noting that from Eq. (79), 
(exp(ioH ;')V';Oa' exp(ioH;') V~ + lOa )#0 unless T2 = 1 
which is not the case in general. Thus, the minimal extension 
does not satisfy the locality requirement, in contrast to the 
extension described in Sec. IV. Whether or not the expansion 
of Yr M to Yr M ® Yr R ® Yr hR and U T to the three operators 
UI , U2, and U3 ofEqs. (54)-(56) is minimal if one also re­
quires the locality condition to be satisfied is an open 
question. 

Finally, one notes that the minimal extension is restrict­
ed to those maps Twhich are boundedly many-one. Without 
this requirement, one can have UTj unbounded for someA j 

in the partition, which invalidates the definition of W Tin Eq. 
(74). No such restriction is necessary for the extension dis­
cussed in Sec. IV. 
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VI. DISCUSSION 

There are several other aspects of the results obtained 
here which should be noted. One is that Hamiltonian models 
such as the ones developed here have the property that no 
energy is dissipated as the overall system evolves-w begins 
and ends the multiple scattering with energy fz2 k ~ 12m. This 
holds independently of whether the process T is one-one or 
many-one and is simply a result of energy conservation for 
systems evolving under the Schrodinger equation with a self­
adjoint Hamiltonian. 

For which processes T, ifany, the quantum-mechanical 
Hamiltonian models described here are good approximate 
descriptions of actual physical systems plus external fields, is 
difficult to say. The overall states t/J(x,t) are very complex as 
is the Hamiltonian H In . Furthermore, because of the simpli­
fying assumptions embodied in the choice of H o, Eq. (7), any 
system which is described by the models discussed here 
would have to be operated close to OaK to minimize spin flips 
of any of the nointeracting spin systems by unwanted outside 
stray radiation. 

Another aspect of the models constructed here is that 
the interaction operator H TU) given by Eq. (63) isj-depen­
dent. Thisj-dependence can be removed if desired by letting 
each of the scattering centers of C be a fixed spin-l system 
and defining H T (]1 by 

HTU) = P + 1jHI + PojHz + P _1jH3 , 

where HI' H 2, andH3 are given by Eqs. (57)-(59) and the Pij 
are projection operators for finding the system cj in C with 
spin projection i. In this way, the choice of which of the three 
types of interaction is to occur depends on a system spin 
projection rather than a lattice position. Of course, C would 
then have to be set up so that cj has spin projection P U) 
where PU) = + (0)[ - ] ifj = 1(2)[0] mod 3. 

The models described here have expanded each step of 
the original process into three steps: record, process, and 
shift. As far as the mathematics is concerned, one can also 
collapse these three steps into one step by defining U T by 
UT = U3 UZUI or by Eqs. (54)-(56): 

UT = I I UyPa ®Pf·Pyk Uak ® Uk; IPk . 
aEA kk' 
yEA" EZ 

In such a model U T becomes the single step unitary operator 
which represents the transformation to be carried out by one 
w-c scattering. 

In order to obtain an interaction operator, for each real 
number 0 define UT(o) by the above equation where Uy, Uuk' 

d U k' /j /j k'/j an + I are replaced by U y' U ak' and U + I of Eqs. (43), 
(47), and (52). Since the map o-UT(o) defines a one-param­
eter group of strongly continuous unitary transformations, 
there is, by Stone's theorem, a unique self-adjoint operator 
HT such that UT(o) = exp(ioHT)· 

The problem here is that even though the existence of 
H T is guaranteed by Stone's theorem, the existence is implic­
it. One has no idea how to express H T explicitly as a simple 
function of simple operators as was done for HI' H 2, and H 3 · 

I t would seem that H T should be kept simple jf the model is 
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to be a good description of some actual physical situation. 
Finally, it is to be noted that one reason the model of the 

extended system is so complex is that only one model of 
M + R + hR has been given, which is used for all n and all 
processes T. All model dependence on T is contained in the 
dependence of the Hamiltonian H r(j) on T and all depen­
dence on the number of steps 3n for which the model is appli­
cable is contained in the overall Hamiltonian, Eq. (62), and in 
the length of C. 

If the model M + R + h R is allowed to depend on n 
then its construction can be simplified. For example, R can 
be modeled by a finite-lattice (from - n to n) of systems r 
rather than an infinite Z lattice, and all states of h R can b~ 
restricted to lie in 12( - n,n) with appropriate changes in the 
definition of U k+ I . If one further wishes to let the model of 
M + R + h R depend on T and also restrict the set of initial 
states in A to a finite set and require that h R be initially at 
position 0, then both M and rj can be modeled by single spin 
systems rather than infinite lattices. However, in the case of 
rj , the spin of thejth system in the finite R lattice must then 
depend onj. 

Thus, by relaxing the construction as defined, one can 
obtain an n- and T-dependent model of M + R + hR which 
is completely finite. This was the type of model constructed 
in I, where extended models of Turing machine computation 
processes were constructed. The price one pays for this mod­
el simplicity is the n- and T-dependence and restricted initial 
conditions. 
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APPENDIX 

This goal is to prove that for each map T from A to A 
where T can be many-one and into there exists a unique 
partition of A into subsets A i fori = 1,2, ... which are T-invar­
iant and irreducible. That is, TA. CA. and for no nontrivial 

J - J 

subset B of Aj does one have TBr;;;,B and 
T(Ai -B)r;;;,Aj -B. 

To prove this, first define for each T the set function 
T- I by T-I(B) = laIT(a)EE 1 for each subsetB ofA. Note 
that T - nIB ) = I a IT n(a)EE 1 for each n = 0,1,2, .... Choose 
anal inA. For each pair of numbers n,j = 0,1,2, ... define A ~. 
by A ~i = T - no T i(a d j). It is clearthat 1 
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AI = u A ~j • 
n,jEN 

Choose an a2 in A - A I and repeat the above process to ob­
tain A 2 • Continue in this manner selecting a3 in A - (A luA 2) 

etc. until there are no more elements left to choose. 
Let a be in A{. Then aEA ~i for some pair n,j or Tn(a) 

= T i(a{). This implies that Tn -1(T(a)) = T i(a{) or 
T(a)EA ~ _ I j if n> 1. If n = 0, a = T i(a{) implies that 
T(a) = Ti+ I(atl or T(a)EA ~i+ I' In either case, T(a)EA{ 
which gives the result that TA{ r;;;,A{. Furthermore, it is clear 
thatA{ is irreducible. To see this, assume there is some non­
empty subset B of A{ such that TBr;;;,B and 
T(A{ -B)r;;;,A{ -B whereAt -B is also nonempty. Sup­
pose a{EE, let n,j be such that A ~p(A{ - B) is not empty, 
and let a' be an element of the intersection. Then 
T't(a') = T i(a{). But a{EE implies T i(adEE and a'EA{ - B 
implies Tn(a')EA{ - B, which gives a contradiction. If 
a{EA{ - B, a similar argument also yields a contradiction. So 
A { is T-irreducible. 

The uniqueness of the sets AI follows from the fact that 
the definition of A { shows that it is independent of which 
element a{ in A{ is chosen for the construction. Thus, an­
other choice function generates the same sets but possibly in 
a different order. 
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It is shown that the Bloch or angular momentum coherent states furnish a particularly efficacious 
basis for a discussion of various aspects of the Lipkin model of the "nucleus." The Hartree-Fock 
description (as well as its projected version) is elegantly obtained in this framework. It is 
demonstrated that the "transition probability" between the first excited and ground states is 
proportional to the square of the number of "nucleons," representing (in contrast to what obtains 
in the random phase approximation) a cooperativity of the "super-radiant" type. The extension of 
the model through the introduction of bosons permits, with the use of Bloch and Glauber 
coherent states, a succinct description of the phenomenon of boson condensation. 

PACS numbers: 03.65.Ca, 21.60.Jz, 42.50. + z 

I. THE LIPKIN MODEL 

The Lipkin model! is an exactly soluble model of a sys­
tem of N fermions occupying two levels (each possessing an 
N-fold degeneracy) separated by an energy spacing E. Let 
ap,u be the annihilation operator for a particle in the state 
labelled by the quantum number p (enumerating the sub­
states 1, ... ,N in each level or "shell") and u (adopting values 
± 1) is the dichotomic level index, The Hamiltonian of the 

system is written as 

H = !E I ua/uap,u + ~ V I ap;"a/"ap', - "ap, -" , (1) 
p,v p,p',u 

where a two-body "monopole-monopole" interaction (of 
strength V), scattering a pair of particles from one "shell" to 
the other, without changing the "subshell" quantum num­
ber p, is introduced, In terms of "quasispin" operators 

J ± I ap; ± lap, +' I , 

P 

p,u 

(2a) 

(2b) 

Satisfying angular momentum commutation relations, the 
Hamiltonian may be cast into a particularly elegant form, to 
wit, 

(3) 

It may be remarked that, m, the eigenvalue of Jz is simply 
half the difference between the number of particles in the 
upper and the lower states, and consequently its maximum 
value, namely j, equals N /2. It is clear that the unperturbed 
(V = 0) ground state is I j = N /2, m = - N /2) possessing 
the unperturbed energy Eo = - EN /2. The interaction 
mixes states within the samej-multiplet corresponding to 
different numbers of "hole-particle" pairs. 

The Hamiltonian exhibits the following symmetries (a) 
invariance under a rotation of 1T about thez axis in quasi-spin 
space, (b) H-+ - H under a rotation of 1T about an axis lying 
in the XY-plane making an angle of 1T /4 with respect to the X 
and Yaxes, 

II. THE BLOCH STATES 

The familiar angular momentum states I jm), with a 
eigenvalues j(j + 1) and m for the operators J 2 and Jz , are 
superposed to construct a convenient basis, variously called 
coherent atomic states, Bloch, or Radcliffe states,2 thus 

I a,j) =ffexp(aJ+)lj, -j) 

= (1 + laI
2
)-ja

j 
mt-j am~ C;' m) Ijm), 

(4) 

where a is, in general, a complex parameter specifying the 
state, ff, the appropriate normalization factor, and 
[( F+ m)]' the binomial combinatorial. This basis has been 
extensively used3 in various areas of quantum optics such as 
laser theory, super-radiance, and resonance propagation. 

III. THE LIPKIN MODEL AND BLOCH STATES 

Employing the Bloch states as a basis, the expectation 
values of the Lipkin Hamiltonian become 

(a,jIH la,j) = - Ej(1 - lal 2 )1(1 + lal 2
) 

+ Vj(2j + l)(a2 + a*2)/(1 + laI 2)2, (5) 

and introducingp V(2j - I)/E, minimization with respect 
to a yields the solutions 

a 2 = (p + 1)/(p -1) for p< -I, (6a) 

a 2 = -a~ = -(p-I)/(p+l) for p> +1, 
(6b) 

and 

a 2 = 0 when - I <p < + I. (6c) 

Regarding p, which is proportional to the interaction 
strength and the number of particles, as a control parameter, 
it is thus seen that for p > + I (as also, mutatis mutandis for 
p < -I) we have arrived at a minimum, which is immedi­
ately recognized to be the "deformed" Hartree-Fock 
ground state as obtained by AgassV possessing the energy 
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E = - (NEl2) cosXm - (N(N -1)/4] Vsin2Xm , 
o (7a) 

through the identification 

cosXm = (1 - a;" )1(1 + a;") = EI( V(N - 1)). (7b) 

The corresponding ground state is best expressed as 
N 

I am,j) =JV IT b p+ Ivacuum) , (8) 
p~l 

where b is a "rotated" single particle operator defined by p 

bp = [cos<Xm/2»)ap,_1 - i[sin<Xm/2»)ap .+ 1 • (9) 

The deformed Hartree-Fock description obtains for poten­
tial strengths greater than a certain critical value given by Vc 
= EI(N -1), while (within the realm of Bloch states for 
I V I < Vc ) it is the unperturbed ground state (a = 0) which is 
stabilized, and then the situation is in fact better described by 
the random phase approximation (RP A). The different 
branches of the roots of the minimization condition realized 
in various ranges of the control parameter p is depicted 
through the bifurcation diagram shown in Fig. 1. 

Confining our attention to the branch corresponding to 
p > 1 wherein a2 = - a;" , it may be observed that the states 
I iam ,j) and I - iam ,j) are degenerate. The minimum at 
a = 0 for the region Ipi < 1 splits into these two minima 
much like what occurs in a typical broken symmetry situa­
tion, for example in ¢ 4 field theory, as the coefficient of qua­
dratic "mass" term changes sign. The Lipkin Hamiltonian 
through the interaction term mixes only an even number of 
particle-hole pairs, as a consequence of the symmetry of the 
Hamiltonian. Nevertheless, the states I iam ,j) and 
I - iam ,) contain arbitrary numbers (even as well as odd) 
of such pairs, and do not possess the symmetry enjoyed by 
the Hamiltonian, and the corresponding symmetry is 
broken. However the gerade (or symmetric) combination of 
states 

j a,j; g)= JV + [Ia,) + ( _1)2Jj - a,j)]' (10) 

has a lower energy and represents a better candidate for the 
ground state. JV + is the normalization constant. The ex­
pectation value of the Hamiltonian is 

(a,j; g I H I a,j; g) 

= (a,)IH la,j) [(l + COS
2
J- 2X)/(l + cos2JX)], (11) 

+ 
"SPHERIC~L· J 

---- -t ___ ..... __ _ 
J 

: 

I 

i .--- ---1------
: 

+1; . . 
-I : - -----1--- ---

p .. 

FIG. 1. Bifurcation diagram showing stable branches. 
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where cosX is defined as (1 - a 2)1(l + a Z). Inserting for X 
the value X m given by Eq. (7b), the resulting expression for 
the ground state energy is identical to the one obtained by 
Agassj4 and called the "projected" Hartree-Fock result. The 
corresponding state differs from the "unprojected" wave 
function through the absence of admixtures of odd numbers 
of particle-hole pairs. For large values of lal however, 
sinx-o and the projected and unprojected versions become 
identical. 5 

Just as the ground state was obtained as the symmetric 
combination of Bloch states, the present approach admits of 
a simple description of the first excited state, through the 
orthogonal antisymmetric (or ungerade) combination, 

la,j;u) =JV _ [Ia,j) - (- WJI- a,j)], (12) 

which has odd numbers of hole-particle pairs unlike the ger­
ade (or ground) state which has even numbers of the same. 
The nature of correlations present in the projected ground 
and excited states, manifested through the basis chosen, is 
further revealed by the study of the transition probability 
between these states. Within the confines of this model the 
simplest "transitions" are caused by what may be called the 
"monopole" transition operators Jx and Jy ' so named be­
cause they do not change the p-quantum number. The rel­
evant transtion matrix elements are readily calculated to 
yield 

(a,j; g iJx ia,j;u) = jsinx [1 - (cosX )4Jj-I/Z, 

(a,j; giJy ia,);u) = 0, 

(13a) 

(l3b) 

for the case where a is real. This, and other results, for real a 
may readily be extended to complex a through the 
observation 

exp(iOJ.) I a,j) = exp(iOJ)ja exp(iO),j) (14) 

following from the definition, Eq. (4), of Bloch states, where 
the operation involved is a rotation by an angle 0 about the z 
axis in quasi-spin space. In the limit oflarge N, as also in the 
strong-coupling limit (V large), it may be seen from Eq. (7b), 
that cosX---+O and the transition matrix element becomes 
proportional to N. The transition probability is thus propor­
tional to the square of the number of particles, in sharp con­
trast to what occurs in the random phase approximation 
where the transition probability is proportional to the num­
ber of particles. Indeed, a strong parallelism exists between 
what has been obtained here and what occurs in the theory of 
super-radiance in atomic physics,6 wherein a collection of N 
atoms initially prepared in some excited state under suitable 
conditions return to their ground states by emitting electro­
magnetic radiation, of intensity I, proportional to the square 
of the number of atoms, in a super-radiant pulse, in contrast 
to the normal situation where 1-N. This phenomenon has 
been extensively discussed (in the atomic context) in terms of 
Bloch states . 

It is instructive to consider an extended version of the 
Lipkin model where the Hamiltonian is 

H = Elz + (V /2)(J2+ + J2_ ) + (w/2)(J + J _ + J _ J + ). 

(15) 

Minimization of the expectation value of this Hamiltonian in 
the Bloch state yields, for the parameter a, the values 
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a 2 =0, (p+r+l)/(p+r-l) 

and 

- (p - r -I)I(p - r +1), (16) 

for control parameters satisfying I p + rl < 1, 
I p + yl < - 1, and (p - y) > 1 respectively, where 
y=(2j - 1 )w/ £ is defined analogous to p. A perusal of the 
minimization condition reveals that in the absence of the V 
term (p = 0) there exists a degeneracy with respect to the 
phase of a which is a consequence of the invariance of the 
Hamiltonian (when V = 0) with respect to arbitrary rota­
tions in the quasi-spin space about the Z axis. This symmetry 
is broken by the very presence of Vand the phase of a can 
then only adopt the values 0 and ± 1T/2. 

IV. THE LIPKIN MODEL AND BOSON CONDENSATION 

Boson condensation (for pions and scalar bosons) in nu­
clear matter (and particularly for neutron stars) has received 
considerable attention in recent years.' The Lipkin two-level 
model may be extended8 with the inclusion ofbosons to pro­
vide an exactly-soluble system enabling an instructive dis­
cussion of the phenomenon of boson condensation. Intro­
ducing the boson annihilation operator b, and implementing 
the "nucleonic" degrees of freedom through the quasispin 
formalism, the system is taken to be governed by the 
Hamiltonian 

H = £Jz + (V /2)(J 2+ + J2_ ) + (w/2)(J + J _ + J _ J + ) 

+ wb + b + G (J + b + J _ b +), (17) 

where w stands for the energy of a boson and G is the cou­
pling constant of the boson to the nucleonic degree of free­
dom. The appropriate basis for the discussion ofthis system 
will be taken to be la,j; /3) where a andj describe the state of 
the "nucleons" as before, while/3 specifies the coherent state, 
D IQ Glauber,9 corresponding to the bosonic degree offree­
dom, and thus 

la,j;/3) = la,j) exp( -/3*h+/3b+) 10). (18) 

It is readily verified that 

(a,j;/3IH la,j;{3) 
= (£ + w)} +2}E[p(a2 + a*2)/2 

+ (r -1)laI 2 
- 1]/(1 + la1 2

)2 

+ wi {3 12 + G 2}(/3a + /3 *a*)/(l + laI 2
), (19) 

and the extremization condition yields 

/3= - (Gjw)a*/(l + laI 2
), (20a) 

a 1(1 + lal 2
) + (r - 5 )(1 - lal 2

) I + p(a* - a 3
) = 0, 

(20b) 

where 5 ==( G 22111 w£. It may be remarked that with V = 0 
(p = 0) the Hamiltonian is symmetric under arbitrary rota­
tions about the Z axis in quasispin space accompanied by a 
corresponding phase change of the boson operators. Thus 
the ground state then possesses degeneracy on a circle in the 
complex a and /3 planes, constrained by the relation given by 
Eq. (20a), provided I r - 51 -I. 1. The very presence of Vhow­
ever destroys this invariance and forces a to pick a definite 
phase which is 0 or ± 1T/2 depending on whether 
p + r - 5 < - 1 or p + 5" - r> 1. For I p + r - 5 I < 1, 
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however, the minimum resides at a = /3 = 0 which corre­
sponds to the vacuum state of the boson sector. Consequent­
ly, the onset of boson condensation occurs when the relevant 
control parameter (5" - p - r) exceeds unity, confining our 
attention to the range of parameters where real values of a 
are realized. Correspondingly, noting that 2j = N = the 
number of nucleons, boson condensation takes place for nu­
cleon number above a critical threshold value given by 

Neritical =[E-(v+w))/[G 2/w-(v+w)]. (21) 

It is instructive to note that boson condensation, in this mod­
el, is concommitant with the transition from what we have 
called the RP A region to the deformed Hartree-Fock re­
gime as far as the nucleons are concerned. This is analogous 
to the modification 7 of the nucleonic Fermi surface in the 
field of the pion condensate. It may also be noted that the 
presence of attractive "internucleon" potentials lowers the 
value of the critical nucleon number necessary for boson 
condensation. The energy of the system corresponding to the 
minima in the region of interest is given by 

E = (E + wli - 2)£(1 + 5" - p - r)2/4( 5" - p - y). (22) 

The variational energy may be driven to a somewhat lower 
value by invoking the gerade state 

la,); /3 g) = [la,j;/3) + ( - 1)2) I - a,); - /3)]1 
[21 1 + (a2 _ 1)2)/(a2 + 1)2) 

X exp( - 2{3 2)\11/2. 

V. CONCLUSION 

(23) 

We have described the Lipkin model as well as its exten­
sion to include bosons in the space of Bloch or angular-mo­
mentum coherent states and the Glauber coherent states and 
have thereby obtained the Hartree-Fock approximation and 
its projected version. The transition amplitude between the 
excited and ground states exhibits a cooperativity character­
istic of the states analogous to super-radiance in atomic 
physics. The possibility of boson condensation in the model 
is also readily described in this framework. 
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We calculate numerically a few terms of the corrections to the large-order behavior of the ground 
state energy of the 0 (N) anharmonic oscillator by analyzing the perturbation series. We then 
generate 94 terms of the perturbative expansion of the difference between the energies of the two 
low lying states of the double-well potential and analyze their large-order behavior. 
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INTRODUCTION 

In this article we want to present some results, based 
mainly on numerical explorations concerning the perturba­
tive expansion around instantons in quantum mechanics. 
These results are a by-product ofthe analysis of the large­
order behavior of the perturbative expansion of the ground 
state energy for various potentials. 

In Sec. I we discuss the simple integral which counts the 
number of diagrams of the t/> 4 theory with the proper 
weights. 

In Sec. II we present the calculation of the coefficients 
of the perturbative expansion of the ground state energy of 
the anharmonic potential with 0 (N) symmetry. 

As we know, the large-order behavior ofthese coeffi­
cients is given by an instanton contribution. The numerical 
analysis of this large-order behavior yields, therefore, an ex­
pansion around this instanton. Due to limited numerical ac­
curacy only a few terms are available. 

In Sec. III we present a similar calculation for the dou­
ble-well potential. We recall that the perturbative expansion 
of the ground state of the double potential has been discov­
ered numerically to be identical up to the sign and a coupling 
normalization to the similar expansion for the 0 (2) anhar­
monic oscillator. 

We then explain how a formula found in Landau and 
Lifschitz allows one to expand systematically the difference 
between the ground state energy and the first excited state 
for a symmetric potential. For an analytic potential with two 
minima, this difference is given by an instanton contribution 
corresponding to a Euclidean path joining the two minima. 

We apply this technique to the double-well potential. 
We calculate, numerically, 94 terms of the expansion around 
the instanton, and characterize its large-order behavior. We 
verify the asymptotic nature of this expansion by comparing 
the series to a numerical calculation of this energy difference 
from the Schrodinger equation. 

I. THE SIMPLE INTEGRAL 

We shall consider as a model for our study of quantum 
mechanics the simple integral which represents a zero-di­
mensional t/> 4 field theory, 

(g) - 1 J + "" - (x' + gx') d z - --= e x. 
Y1T -00 

(1) 

Actually, to be closer to the real problem we shall con-

sider a different quantity F (g), 

F(g) = (x4
), 

a 
F(g) = - -lnz(g). ag 

(2) 

(3) 

If the perturbative expansion of z(g) can be explicitly 
obtained, the expansion of F(g) has a somewhat more com­
plicated form. It can be generated most simply by remarking 
that z(g) satisfies a differential equation 

4g2z"(g) + (1 + 8g)z'(g) + iz(g) = O. (4) 

Therefore, F(g) satisfies a Ricatti equation 

4g2[F'(g) - F2(g)] + (1 + 8g)F(g) - i = O. (5) 

From this equation we can derive a recursion formula 
for the coefficients of the Taylor series expansion of F(g), 

F(g) = !( -l) kFk g\ (6) 
o 

with Fo = i· (8) 

An amusing arithmetical remark is that 4Fk is an integer 
while the coefficients Zk of z(g) are rational numbers with 
increasing denominators. 

As we know the large-order behavior of the coefficients 
Fk and the coefficients Zk is given by the nontrivial saddle 
point of the integral (1). 

More precisely, the saddle point Xc, 

2xc + 4gx: = 0 ~ x~ = - 1I2g, (9) 

yields a small g expansion for the imaginary part 1m z(g) of 
z(g) for g negative, which gives then an expansion of Zk for k 
large as 

(10) 

As 1m z(g) behaves as e1
/
4g for g small and negative, the 

small g behavior of 1m z(g) is directly related to the small g 
behavior of 1m F(g), 

ImF(g) = Rcz'(g)lrnz(g) - Rcz(g)lrnz'(g) + o (e 1/ 2g). 

g---<J [Rcz(g)] 2 

(11 ) 

The real part Re z(g) of z(g) is just given by the perturba­
tive expansion. At leading order 
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4 e l / 4g 

ImF(g) ~ - Irnz'(g) ~ - ----2 . 
g-.() g-.O_ 1T Y 2 g 

(12) 

From the Ricatti equation we can obtain directly an 
equation for 1m F(g) 

4g2 [lmF(g)' -2ImF(g)ReF(g)] + (1 + 8g) ImF (g) = 0, 
(13) 

4 eIl4g r 
ImF(g) = - 1TY"2 7 exp2 Jo ReF(g') dg'. (14) 

If we neglect exponentially small corrections we can 
replace ReF (g) by the perturbative expansion ofF (g). There­
fore, the small g expansion of 1m F (g), which yields an ex­
pansion of Fk for k large, is directly related to the perturba­
tive expansion of F(g) itself. In addition this relation is 
particularly simple on In 1m F(g). 

Also, the coefficients of the expansion ofln[Im F(g)] 
have simple arithmetical properties. 

II. THE ANHARMONIC OSCILLATOR WITH O(N) 
INTERNAL SYMMETRY 

We shall consider now the ground state energy of the 
anharmonic oscillator with 0 (N) internal symmetry whose 
Hamiltonian H is given by 

H = !p2 + !X2 + g(X2)2. (15) 

The wavefunction of the ground state depends only of 
Ixl. It is convenient to write the Schrodinger equation for the 
logarithmic derivative of the wavefunction ¢(Ixl). Denoting 
simply by x the radial coordinate Ixl. 

d 
f(x) = - -In¢(x). (16) 

dx 

Thenf(x) satisfies the Ricatti equation 

rex) - f2(X) + [(N -1)/x)f(x) + x 2 +2gx4 = 2E, (17) 

in which E (g) is the ground state energy. To generate a per­
turbative expansion of E (g) it is more convenient to use this 
equation rather than the direct Schrodinger equation be­
ca use the expansion off (x,g) in vol ves much fewer terms than 
the expansion of ¢. As a result the calculations are simpler 
and the accuracy is improved. 

Let us expandf(x,g) and E (g) 

f(x,g) = x + I( - g)k+l/k(X), 
I 

E (g) = IEkgk
• 

o 

We get the recursion formula 

2( - l)k+ I Ek = fk(X) + [(N -l)/x - 2x ] fk(x) 

+ 2, fJk-1 +2x4
I5k l' 

I<.k.k-I 

for k > ° and with Eo = N 12. 

Setting then 

fk(X) = 2, C~x2n + I, 
n>O 

we obtain a recursion formula for the C Z, 
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(18) 

(19) 

(20) 

(21) 

x 2, C ,/,C k = '/' - I, 

l~/'C.k-] 

O<m<n -I 

and the coefficients E k , then, simply by 

Ek =(NI2)(-1)k+ IC2· 

(22) 

(23) 

The recursion formula (22) shows that the C ~ are all 
positive rational numbers with as denominators powers of 2 
(for N integer, of course). More precisely 22k - n - I C Z is an 
integer for N odd and 2k - I C Z is an integer for N even. 

Notice that C Z is nonzero only for n <k It is possible 
starting from (22) to derive simple bounds on the C Z, which 
we shall not discuss here. 

A systematic WKB expansion ofEq. (17) generates first 
the coefficients of highest degree at each order in g and then 
successively the other coefficients. For example, 

!,o'(x) = Y x 2 +2gx4 = X (1 + ~(_1)k + I(gX2)kCZ) , 

(24) 

yields 

C k _ 1·3 ... (2k - 3) .. k 2 
k - , lor ;;.. 

k! 
(25) 

The next term in the WKB expansion is a generating func­
tion for C Z - I, etc. 

We have used these recursion formulas in the past to 
generate numerically the perturbative expansion of Ek up to 
order 100, typically, to verify the large-order behavior re­
sults l

.
2 and to study resummation methods for these diver­

gent series. 3
.
4 The results we present in this section are just 

by-products of these studies. 

A. Large-order behavior 

A steepest descent calculation2 of the path integral ex­
pression for Tre - (3H leads to a small g expansion of the 
imaginary part of E (g) for g negative. Using then the integral 
representation 

1 [ lmE(g) Ek = - dg, k> 1, 
1T -00 gk+1 

(26) 

one obtains an expansion, for k large, of the coefficients Ek · 

At leading order one finds 

lmE(g) = 1 (_ 2.)N/2eI/3 g [1 + o (g)), (27) 
g~O r(N 12) g 

and, therefore, 

Ek = E~S[ 1 + 0 (11k)), 

2N/2 
Eas = (_ l)k+ IF(k + N 12)3k+N/2 __ _ 

k 1Tr(N 12) 
(28) 

The first numerical investigations of the successive cor­
rections to expression (27) are due to Bender and Wu. I In 
addition, the 11k term has been calculated analytically by 
these authors I for N = 1, and by Seznec5 for arbitrary N. 

We have investigated these corrections numerically for 
arbitrary N using about 100 terms of the perturbative ex pan-
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sions and a modified Neville procedure. Details about this 
numerical study are given in Appendix A. 

As a result we have obtained a fit of the form 

E = Ea, (1 + a 1(N) 
k k k + N /2-1 

Q2(N) ) (29) 
+ (k + N 12 - 1 )(k + N 12 - 2) + ... . 

This expansion yields then an expansion ofIm E (g) in pow­
ers ofg, 

(30) 

This expansion can, in particular, be obtained by a systemat­
ic calculation of the instanton contribution to the path inte­
gral for Tre - flH. 

The coefficients an (N) are given by a set of Feynman 
diagrams with modified propagators and vertices due to the 
presence of the instanton field. But the weight factors of the 
diagrams are not modified, so that the coefficients an (N) are 
polynomials in N of degree 2n. 

For a reason which will become clear later, it is conve­
nient to exponentiate this last expansion and write 1m E (g) as 

lmE(g) = r(~ 12) ( - ; r12 

Xexp (3~ + b1(N)g + biN)g2 + ... ). (31) 

It is in this form that we shall present the results. But 
before doing this, we shall evaluate some coefficients of 
bn(N), considered as polynomials in the variable N, 
analytically. 
B. Large N expansion 

We can obtain the two coefficients of highest degree of 
the polynomial bn (N) from the large-order behavior of the 
liN expansion as calculated by Brezin and Hikami6 and De 
Vega.7 

The reason for this is the following: The II N expansion 
is obtained in a limit in which the product gN is kept fixed. 

As a result, the large-order behavior of the 1/ N expan­
sion is obtained from the estimate for Nlarge and negative of 
the imaginary part of E (g,N) for g negative and N positive. 
As E (g,N) is not only a function of giN, it has also some 
singularities at finite values of N which probably yield addi­
tional contributions to the imaginary of E (g,N). But these 
contributions vanish identically for IN I larger than some fin­
ite value, and do not affect, therefore, the large N expansion 
of lmE (g,N) at large order. 

One can translate the results of Refs. 6 and 7 in terms of 
an expansion for 1m E (g,N). Setting 

A=Ng, (32) 

they can be written 

lmE(A,N) = 1 (_ 2N)N12 
N-~- oc r(N /2) A 

X C (A )eNA 
(A J [ 1 + 0 (~) ] . (33) 
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The functionsA (A ) and C (A ) are given explicitly. For A small 
they behave like 

A (A ) = 1/3,1 + (7/8)A + 0 (A 2), (34) 

C(A) = 1 + (9/4)A + 0(,.1, 2). (35) 

Ifwe expand NA (A) + InC (A ) in powers of A and re-
place A by Ng, we see that the polynomials bn (N) are of 
degree n +1 only, in contrast to the polynomials an(N). 

In addition, we obtain the two coefficients of highest 
degreeb~+\ andb~ ofb.(N) . 

• +1 

b.(N) = Lb~NI 
I~O 

The function A (A) is given by 

h (A ) = (1 + Uh ) - 1/2 = 1 + 0 (A ), 

A'(Aj __ 1_ (1 + 3Ah )-1/2 + _1_ 
3,.1,2 U 

1 
- - +0(1). 

3,.1, 2 

(36) 

(37) 

In terms of the function h (A. ), the logarithmic derivative 
ofC(A) is 

C'(A) 1 (l +Uh)1/2 1 (1 +Uh) 

C(,1) = T (1 + 3Ah?IZ U (1 +3Ah) 
21 (1 +Uh)1/2 1 

+ 4 (1 +3Ah)2 - U· (38) 

The first ten terms of the expansion of these functions 
are given in Table I. 

From these expressions, one can verify that the coeffi­
cients are alternating in sign with the order. In addition, 
from the arithmetical point of view, the coefficients of3A '(A ) 
and C '(A )/C(A ) are rational numbers with only powers of2 
as denominators. More precisely 220 + 1 times the coefficients 
or order n is an integer. The persistence of this arithmetical 
property, although here it applies to the logarithmic deriva­
tive of the imaginary part, is quite remarkable. 

C. The case N = 0 

After this work was essentially completed, we saw an 
articleS which also pointed out the relevance of the Ricatti 
equation and, in addition, noted that the case N = 0 could be 
solved exactly in terms of Airy functions. 

We shall present here the part of the argument relevant 
for our purpose. 

Let us take in Eg. (17) x 2 as a variable and set 

f(x) = xu(z). 

The equation then becomes 

2zu' + Nu - zu2 + z +2gzZ = 2E. 

(39) 

(40) 

(41) 

We have already used in the recursion formula the relation 

E = (N 12)u(O). (42) 

For N = 0 two remarkable facts occur: The ground state 
energy is exactly known as it vanishes and the equation sim­
plifies drastically, 

2u' - u2 +1 +2gz = O. (43) 

J. Zinn-Justin 513 



                                                                                                                                    

514 

s 

a-

00 

+ 

-t-V)­

'" '" 

+ 
" ,,00 
!!!g 

J. Math. Phys., Vo1.22, No.3, March 1981 

Indeed, now y(z,g) instead of being off unction ofz andg 
separately, is a function of only one variable. If we set 

Y = (1 +2gZ)/g2/3, (44) 

and 

u = gIl3V(Y), 

then v( y) satisfies the differential equation 

4v' - v2 + y = o. 

(45) 

(46) 

The function v( y) is the logarithmic derivative of an 
Airy function. As we are interested in an expansion for g 
small, we have to expand v( y) for y large 

v(y) = V; (1 + ~( - l)k + IVkY -.1k/2) , (47) 

with the recursion formula 

Vk =(3k-4)Vk_1 + 

k>2 with VI = 1. 

Now, from Eq. (42), we get an interesting result, 

lim 2E (N)/ N = €(g) = u(z = O,N = O,g), 
N~O 

with 

u(O) = gl/3V(l/g2/3) = €(g), 

so that 

€(g) = 1 + I( _1)k+l vkgk. 

1 

(48) 

(49) 

(50) 

(51) 

In this limit the coefficients of the perturbative expansion of 
the ground state energy are given by a recursion formula 
with only one index as in the case of the simple integral of 
Sec. I. 

Furthermore, we can now study easily the large-order 
behavior of u(O) and, therefore, obtain information on our 
polynomials bn (N) for N = O. 

To do this we shaH write the differential equation for 
€(g), 

6g2€' -2g€ + €2 -1 = 0. 

For g negative, €(g) is complex 

e(g) = a(g) + if3 (g). 

(52) 

(53) 

Taking the imaginary part of the equation we obtain 

or 

3g2f3 '(g) - gf3 (g) + a(g)f3 (g) = o. 
So that we can calculate f3 (g) in terms of a(g), 

f3'(g) 

f3(g) 3g 

a(g) 
3g2 , 

(54) 

(55) 

f3(g) = Cexp ~ - ~ (g [a(g') -1 - g' ) dg'. (56) 
3g 3 Jo g'l 

For g small and negative, one can replace a(g) by the 
perturbative expansion of e(g) up to exponentially small cor­
rections. As a result, the logarithmic derivative of the imagi­
nary part of €(g) has an expansion directly proportional to 
the expansion of €(g) itself. 
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TABLE II. Values of( -1)"+ 13n2" + 'b ~ for n(6. 

>;:n 2 3 4 

0 5 60 1105 27120 
1 27 438 9720 270552 
2 21 618 18663 629352 
3 246 13572 626742 
4 3453 292782 
5 53226 
6 
7 

From the recursion formula (48) we see that 2k -I Vk is 
an integer. Therefore, 3n2nBn (0) is also an integer. The first 
ten coefficients of Bn (0) are listed in Table I. 

One could then imagine expanding in powers of N 
around N = 0, we haven't done it, but an encouraging em­
pirical remark can be made. From the comparison of the 
perturbative expansion of the ground state energy and the 
coefficients bn (N) it follows that 

/3 o (g) + N/3; (g) 

/3o(g) + N/3I(g) 3g 

where we have defined 

2E(g,N) 

N 

+ iN/3I(g) + 0 (N 2,e2/3!l), 

forg= -Igl +iE. 

(58) 

As a general comment, it should be emphasized that, as 
E(g) satisfies a Ricatti equation, it has not the analytic struc­
ture of EN (g) for general N with an infinite number of branch 
points accumulating at the origin in the second sheet.9 

This explains why this particular case can be solved so 
explicitly. 

A last point: For all negative even integer values of N, 
one can find EN (g) as a solution of an algebraic equation. 
This can be most easily seen be differentiating systematically 
Eq. (41). 

For example, if we differentiate once, we get 

2zu" + (N +2)u' - u2 -2zuu' +1 +4gz = O. (59) 

Setting z = 0 yields 

(N +2)u'(0) - u2(0) +1 = O. (60) 

So, for N = -2, we find E (g), 

K 2(g) = (N /2)u(O) = -1. (61) 

One could, therefore, think to calculate the derivative 
of EN (g) with respect to Nfor N = -2, by solving the equa­
tion for u(z) and finding u'(O). Unfortunately, the function 
u(z,g) does not become this time a function of only one vari­
able and some further investigation is needed. 

D. The coefficients bn(N) 

The first coefficient bl(N) which is a second degree 
polynomial in N is now over determined from the results for 
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5 6 

828250 30220880 
9038790 352590000 

23947884 1025295480 
29050770 1423155756 
18669510 1118597184 
6255252 517369608 

868962 132848268 
14749164 

N = t,4 N = 0 and the large N limit and both our numerical 
calculations and the analytical result of Seznec4 agree with 
this value. 

For higher-order terms we have to rely more and more 
on numerical calculations. We have made the following an­
satz: The quantity 3n22n + 1 b" (N) is an integer for N integer. 
In addition for N even, 3n2"bn (N) is an integer. This means 
that in bn (N), the coefficient b ~ of N n should be divisible by 
2, the coefficient of N n - 1 by 4, etc. 

This ansatz, which is of course compatible with the re­
sults coming from the large N limit, and the N = 0 case, has 
been tested with decreasing accuracy, but beyond any doubts 
for n varying form 2 to 5. 

For n = 6, we have used it to try to determine all the 
coefficients of b6(N). The result we give has a very good 
chance of being correct and in any case is an excellent fit of 
the numbers. 

Our results for the six polynomials bI(N) to b6(N) are 
given in Table II. One notices that the coefficients of a given 
polynomial are all of the same sign and that for N positive 
b n (N) alternate in sign. As g is negative, the series is, there­
fore, not Borel summable. In addition, it suggests that the 
large-order behavior of the bn 's is also dominated by an in­
stanton of action l/3g. We know at least one case for which 
this conjecture is true, it is the case N = 0 as Eq. (56) shows. 

The prediction then is that, in general, b n (N) should 
behave, for n large, as 

b"(N)~Cna( _3)n+ln! 

We have tried to calculate for N = 1 and 2 as many 
terms as possible. They are given in Table III. It can be 

TABLE III. The values of b" (N)( - I)" t I for N = 1 and 2. 

n N=I N=2 

3.95833· .. 8.83333· .. 
2 19.3437500 .. · 56.7500··. 
3 174.2092014 646.01388··· 
4 2177.286133 9894.656250 
5 34045.54329 184707.1208 
6 632817.0536 4005925.573 
7 1.357206 X 107 9.82462X 109 

8 3.2942X 10K 2.679 X 109 

9 8.92X 109 8.03X 101() 

10 2.65 X lOll 2.61 X 10
12 
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checked that the behavior of these terms is compatible with 
the prediction. In any case, as the coefficients of ( - 1 t + I 

X bn (N) are all positive, bn (N) is an increasing function of N 

for N positive, and N = 0 provides a lower bound. In addi­
tion, the coefficients of b n (N) are higher than or equal to (for 
the term of degree zero) to the corresponding term of the 
perturbative expansion (in the sense explained in the N = 0 
case). From this remark we can also obtain a probable lower 
bound on the behavior of the bn (N). 

III. THE DOUBLE-WELL POTENTIAL 

We have also explored the ground state energy and the 
energy difference between the ground state and the first ex­
cited state of the double-well potential whose Hamiltonian H 
is 

(62) 

The analysis of the perturbative expansion of the ground 
state energy E (g) is reduced to the following observation. 3 

The numerical calculation shows the remarkable relation 

E (g) = !EO (2j ( - g), (63) 

where E O (21 (g) is the ground state energy of the 0 (2) anhar­
monic oscillator studied in Sec. II. This relation is obviously 
only valid in the sence of a series expansion, as E O (2)( - g) is 
complex for g positive. In Ref. 3 it was even verified that in 
the sense of functions 

(64) 

The difference decreases exponentially when g goes to zero 
as exp( - 1I3g). 

The relation (63) has not yet been proved analytically 
although this should not be too difficult. 

As a result the structure of the large-order behavior of 
E (g) can be found entirely in Sec. II by specializing all formu­
las to N = 2 and by changing g to - g. 

We shall now study a more interesting problem, the 
perturbative expansion of the difference 11E (g) between the 
energy of the first excited state and the ground state. This 
energy difference can be calculated from the path integral 
expression for exp( - (JH j, by expanding the integrand 
around the instanton solution which goes from one mini­
mum of the potential at 0 to the other at 11\/ g. 

At leading order, 

LlE(g)~ 2 e I/b,:, (65) 

~7Tg 
because the classical action corresponding to the instant on is 
1I6g. The corrections to this formula take the form ofa pow­
er series in g which we shall calculate, 

LlE(g)= 2 e 1/6R (I+Itkgk). 
V 1Tg I 

(66) 

But before presenting this calculation, we shall present the 
recursion formula we have used to expand E (g). 

A. The ground state energy 

It is easy in the case of the double-well potential to per­
form a systematic WKB expansion of the wavefunction. 
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This leads to a faster and more accurate calculation of the 
coefficients of the expansion of the ground state energy. The 
recursion formula can also be more easily used to prove some 
bounds on the coefficients. 

Let us write again the Ricatti equation for the logarith­
mic derivative of the wavefunction t/!(x), 

f(x) = - ~ Int/!(x), (67) 
dx 

f'(x) - f2(x) + x 2(1 - x V;)2 = 2E (g). (68) 

The WKB expansion is an expansion in powers of g, at xv g 
fixed, 

The coefficients C k satisfy then the recursion equation, 

CZ~; =CZ!~ +!(n+2)CZ +! 2: C7'Ck~~'_+/' 
2"",'''->.k -- ] 

2"m,.,:n -1 

with C ~ = C ~ = 1 for k>2, and with C Z = 0 for 
n> 2k -1. Ifwe now define 

E(g) =! + ! Ekg\ 
k~1 

we obtain 

Ek = -CLI' 

(70) 

(71) 

(72) 

The recursion formula shows that all C k are positive, 
again have simple airthmetical properties, but in addition 
leads to simple evaluations. 

Let us give an example. We can first find a generating 
function for C ~k - I and, therefore, evaluate C ~k - I for k 
large, as C Zk - I is the coefficient of the most singular contri­
bution order by order in g, 

h (z) = z - ~ - I C ik - I Z - 2k + I . 

Z k~2 

The function h (z) satisfies 

h ' + h 2 - Z2 + 1 = O. 

It has a trivial solution, 

ho(z) = -z. 

We can, therefore, find the other solution by setting 

h (z) = - z + lIu. 

The function u(z) is solution of a linear equation, 

u'(z) +2zu(z) -I = O. 

The solution is 

u(z) = rz'fet
' dt. 

(73) 

(74) 

(75) 

(76) 

(77) 

(78) 

The quantity a is an arbitrary and, for z large, irrelevant 
constant. 

The large-order behavior of the coefficients of the ex-
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pansion of u(z) for z large can then be obtained, and, there­
fore, the behavior of C ik - I for k large, 

(79) 

The equation forf(x,g) can then be linearized around 
the sum of the most singular contributions, and an evalua­
tion of C Z can be obtained, 

C --- - - k-oo n 2 F(3k-~-n)(2)2k-I-n 
k v'-;'- F(2k - n) 3 ' , 

(80) 

which is in agreement with the large-order behavior of Ek 10 

obtained for n = 2. 
The 11k correction can also be calculated, but the cal­

culation is very tedious. 

B. The energy shift between the ground state energy 
and the first excited state 

We shall expand in a power series the difference LlE (g) 
between the two lowest eigenstates of H. To do this we shall 
use a very simple argument exposed in Landau and Lif­
shitz. I I It is based essentially upon the symmetry of the po­
tential. In d dimensions the symmetry of the potential with 
respect to a (d -1 )-dimensional hyperplane is required. 

Here the symmetry corresponds to the interchange 
XVg in 1 - xVg. 

C. The method 

Let us assume that we have an analytic potential sym­
metric under the change x_ - x, 

Vex) = V( - x), 

and possessing two minima at x = ± R. 
The ground state energy can be calculated by expand­

ing the potential at one of its minima, and making a pertur­
bative calculation starting from the harmonic approxima­
tion. This yields the ground state energy up to corrections 
exponentially small for large R. The leading correction can 
be calculated and corresponds to the half-difference LlE 12 
between the ground state energy and the first excited state. 

Let us assume that </II(X) is the wavefunction obtained 
by expanding g around x = R and Eo is the corresponding 
energy, 

H = ~p2 + Vex), 

- ~ip ;'(x) + V(X)ipl(X) = Eoipl(x). 

(81) 

(82) 

The solution ip2(X) obtained by expanding around x = - R 
is, of course, related to ipl(X), 

ip2(X) = ipl( - x). (83) 

The solution ipl(X) is valid in the region 

x> - R + 17, 17 > O. (84) 

The symmetric situation is true for ip2(X), In addition ipl(X) 
decreases exponentially when Ix - R I increases. As a result, 
in order to calculate the leading exponential correction to 
Eo, we can use the variational principle with a trial function 
rfJAx), 
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x>a>O, </II(X) (1 + c rp2(a») , 
</I 1 (a) 

rfJAx) -a<x<a, </Il(X) + Crp2(X), (85) 

x< -a, rpz(x) [ c + ipl( - a) ] . 
rpz( - a) 

The trial function rfJ Ax) is even or odd if c is + 1 or -1, 
respectively, and will yield, therefore, the ground state ener­
gy or the energy of the first excited state. 

We now calculate 

E = <rfJ.IH!rfJ.) 

• <rfJ.lrfJ.)· 
(86) 

If the derivative of rfJ. at ± a would be continuous, E, would 
just be equal to Eo, as </I 1 (x) and ipix) satisfy locally the 
Schrodinger equation. The additional contributions come 
from the discontinuity of rfJ : (x) at x = ± a. The contribu­
tions from + a and - a are, of course, equal. At the same 
time the norm of rfJE receives two identical contributions 
coming from the neighborhood of ± R. Integrating by part, 

f-+oc'" nrfJ:(x)2 + V(x)rfJ;(x)]dx 

= I-+: [ - ~rfJE(X)(J ;(x) + V(x)(J ; (x) ]dx 

+(J.(a)[(J;(a_)-(J;(a+)]. (87) 

We have, therefore, for EE' upto higher-order exponen­
tially small corrections, 

EE = Eo + J. [</II(a) + cip2(a)] 
2 S</l~(x)dx 

X [ip ; (a) + cip; (a) - ip ; (a) ( 1 + c ::~:D ]. (88) 

The energy difference LlE is thus 

[rpz(a)<p; (a) - rpz(a)<p ; (a)] 
LlE=E+ -E 

S<p ~(x) dx 
(89) 

As <PI(X) and <pz{x) are two solutions at the same energy, the 
Wronskian which appears in the numerator is independent 
of a, as it should be. In higher dimensions, the Wronskian is 
replaced by the charge associated with the conserved current 
JjJ.(x), 

J11 (x) = <P1(X)J~<Pz(x). (90) 

In our case, in order to be able to generate a systematic 
expansion of LlE (g) in powers of g we need a WKB expansion 
of 'PI(X), as we have derived it above. In order to calculate the 
norm of 'P I (x) we need only the simple perturbative expan­
sion of <P I(X). 

As we know, the logarithmic derivative of the wave­
functionf(x), the Wronskian W(a) can be written 

W(a) = ¢(a)¢ ( ~; - a ) [f(a) + f( ~; - a ) ] . 

(91) 

Remember that in our problem the symmetry corresponds 
to x going to (l/V g) - x. 
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We still have the choice of the normalization of the 
wavefunction r/J(x). We choose 

lnr/J(x) = - x 2/2 + (x3/3)V; - In(1 - x V;) 

As W(a) is independent of a, we can calculate it for a large, 

f(a) = all - a~g) + a (l/a), 

lnr/J(a) = - a2/2 + a3 ~g/3 -In(l- a~g) + Oil/a). 

Thus 

(93) 

W(ar = ( I e - 1/6
g

) bail - a~;Jl, (94) 
ag(l - a~g) 

W(a) = (2/ ~g)e - l/6&. (95) 

We have completely reduced the problem to the calcu­
lation of the norm of r/J(x) with the special normalization 
given above. 

At leading order 

f r/J2(x) dx = f e - x' + (2/3)x',g dx + a (g) = ~ 11' + a (g). 

(1_x~g)2 
(96) 

This integral has to be understood as a power series ing. The 
fact that the integral does not converge as such, shows that 
the series will not be Borel summable as was the case for the 
series of Eo(g). 

At leading order we have recovered the instanton 
result, 

.dE (g) = (2/~1Tg)e -1/6&[1 + O(g)]. (97) 

Higher-order calculations will involve the perturbative cal­
culation of integrals of the form 

In (g) = f e - x' +- 1
2
!3)x\g dx. 

(1 - x~gt 
(98) 

It is easy to write recursion formulas for these integrals. 
These recursion formulas and other properties of In (g) can be 
found in Appendix B. It is easy to see that the contributions 
coming from these integrals all have a positive sign, and that 
the expansion of r/J1(x) is a linear combination of the In (g) 
with positive coefficients. It is, therefore, possible to write 
various lower bounds for the coefficients of gk in the expan­
sion of N2(X) dx. 

The simplest bound comes from the expansion of the 
integral Iz(g). At large order 12,k behaves as 

I 2(g) = I/2,kg', (99) 
o 

(100) 

It is possible to calculate by hand a few terms of the 
expansion. Higher-order calculations can be done on a com­
puter. We give in Table IV the first ten terms of the expan­
sion of the quantity L (g), 
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TABLE IV. Values of -6n2"L". It is easy to verify that these numbers are 
divisible by the GCD given in Table I. 

n= 71 
2 1890 
3 65953 
4 2733150 
5 128867746 
6 6758057124 
7 388879707749 
8 24338697845358 
9 1646577122826766 

10 119850766679371980 

(101) 

Notice that the coefficients are rational numbers with 
denominators identical to those of the expansion of the 
ground state energy given by the a (2) anharmonic oscillator. 
We derive in Appendix B this property for the coefficients of 
1n/2(g)· 

A check of our calculation is that we have4 postulated 
the first three terms of this expansion from a numerical anal­
ysis of the energy difference based on a numerical solution of 
the Schrodinger equation. They agree with the present cal­
culation. In addition we have verified by the same procedure 
the asymptotic nature of the expansion, using the additional 
terms calculated here (l0-15 accuracy). 

We have calculated 94 terms of the expansion, and ana­
lyzed its large-order behavior, which is related to the triple 
instanton contribution to the path integral which gives 
exp( - /3H). Some details of this analysis are reported in Ap­
pendix A. 

The result is 

(102) 

y + 1 [ 1 (35 ) Lk = -11'- k! 3(ln6k + r) - k """6 (In6k + r) + 9 

+ 0 c:~) ], k~oo (103) 

in which r is the Euler constant, r = 0.5772156···. The re­
markable new fact is the appearance oflnk factors. This indi­
cates that the smallg expansion of the triple instanton contri­
bution which probably governs the large orders of this 
expansion has lng factors too. 

D. First-order correction to the energy difference 
between the two lowest states of a symmetriC potential 

Using the method described in the special case of the 
double-well potential, it is straightforward to calculate the 
first-order correction to.dE (g) for an arbitrary symmetric 
analytic potential having two degenerate minima. We take as 
Hamiltonian H 

H = ~p2 + (l/g)V(xJg). 

The potential is symmetric under the change 

V(x) = V( - x), 

J. Zinn-Justin 

(104) 

518 



                                                                                                                                    

and has a small x expansion. 

I (3x 3 yx4 

V(x) = _X
2 + - + - + o (X5

). 
2 6 24 

(~OS) 

The method used above is applicable without any modi­
fication and we just quote the result: 

LJ.E(g) = a exp - - ~ V(x) dx 2 { lia

-

~1Tg g 0 

+- dx -------I La (I I) 
2 0 iV' x(l-x/a) 

La [E I +g dx 1 +_ 
o ~ V 8 

X (V- 3 / 2 _ _ V_'_2 + _2(3_ + 2(3 )] 
4V 5 / 2 3x2 3(a _ X)2 

+ g (_(3_ + _7y _ __ 29_9_(3_2) } + 0 (g2). 
6a 64 (12)3 

(106) 

In this expression E 1 is the coefficient of g in the expansion of 
the ground state energy. 

E - L _ 11(32 (107) 
1 - 32 288' 

APPENDIX A: EXTRAPOLATION METHODS 

A. Ground state energy 

We explain here the method we have used to extract the 
corrections to the larger-order behavior from the coefficients 
of the series expansion of the ground state energy. 

Let us consider a sequence {Sn } which admits an as­
ymptotic expansion of the form 

a l a 2 Sn = a o + - + 2" + .... (AI) 
n n 

for n large. We want to improve the convergence of Sn to­
wards ao. The standard method is to construct a Neville 
table. using the following iterative scheme: One defines a 
sequence of sequences ! s~p) l by the following recursion 
formula. 

S{ P + I) = s{ p) +.!!.- (sC p) - s{nP», 
n 11 + 1 n + 1 

P 
It is easy to verify that 

S~PI = a o + o (l/nP). 

(A2) 

(A3) 

In our case it was possible to again improve the convergence 
of this procedure by extrapolating the sequence s~P) at fixed n 
by the means of Pade approximants. However. it appeared 
simpler and more efficient to use a slightly different 
procedure. 12 

Starting from the sequence! Sn l we can construct 

2p [s~P~2 - S~P~ 1 ][S~p~ 1 - S~P)] 

(2p - 1) S~P~ 2 + S~p) - 2s~P~ 1 

(A4) 

One step of this procedure is equivalent to two steps of 
the Neville method in the sense that two successive powers of 
n are eliminated at each step. This a consequence of the main 
feature of this method: The variable n does not appear ex-
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plicitly in the recursion formula. so that everything is trans­
lationally invariant in n. The following problem is. therefore. 
solved approximatively: In the Neville table we have elimi­
nated successive powers of lin. but it might have been more 
efficient to eliminate. instead. powers of l/(n + a). with a 
constant. The new procedure optimizes locally the choice of 
the variable. If the only correction term would be of the form 
b I(n +a), it would be eliminated in one step only. 

In our example this method worked extremely well, and 
no improvement coming from Pade approximants was need­
ed anymore. 

B. Energy difference of the lowest lying states of the 
double-well potential 

In this case the analysis revealed that the structure of 
the series divided by 3nn! was more complicated and did not 
seem to converge. We guessed that it had the form 

Sn = an Inn + br.. 

where an and bn have expansions in powers of lin. 

a 1 a 2 an =ao+ -+ 2"+ .... 
n n 

bn = (30 + (31 + (3~ + .... 
n n 

(AS) 

(A6) 

We had. therefore. to modify the Neville procedure in the 
following way: We first calculated 

S~ =n(sn+1 -sn). (A7) 

As a result the new series had the form 

S~ = a~ Inn + b ~. 

a' a' a~ 
a' = _I + _2 + -3 + .... 

n n n2 n 
(A8) 

b ' (3' (3; (3; 
n= 0+-+ -2+···· n n 

Now the calculation of (3 b involves the use of the Ne­
ville procedure. performing each step twice. At the first step 
a term lnn/n P is eliminated. At the second step the term 
proportional to lInP is cancelled. 

In general. if we were to encounter a series with 
structure 

sn = a~(lnn)q + a~(lnn)q-1 + ... + a~. 
we would repeat. q -I times. the operation 

n(sn+1 -sn). 

(A9) 

and then each Neville step q times. in order to find the limit 
of a~. 

APPENDIX B: SERIES EXPANSION OF THE INTEGRALS 
In (g) 

We shall briefly explain some properties of the integrals 
In (g) which appear in the calculation of the coefficients of 
the expansion around the simple instanton for the double­
well potential. 

f 
+ oc 

In(g)= -'00 

e - x' + (2/3)X"V g 

v' dx. 
(l-x g)" 

J. Zinn-Justin 
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We emphasize again that these integrals are just generating 
functions of a power series in g. We shall consider first lig) 
because it is the leading contribution to the norm of r/J(x), and 
it seems also to govern the arithmetical properties of the 
whole expansion. Integrating by part, its is possible to re­
write lig) as 

12(g) = ~; fxe- x , + (2/3)x4
g dx. (B2) 

The coefficients of the expansion can, therefore, be ob­
tained explicitly, 

12(g) = !J~g\ 
k=O 

Ik = ~ (~)k r(3k + (5/2» 
2 3 9 (2k + 1)! ' 

which can be rewritten 

Ik _ V-; Ilk ( 1) 
2 - (12)kk! n = 1 6n - (6n + 1). 

The large-order behavior of I ~ can easily be found, 

I; = 1 3k + lk![l +O(l/k)], 

~1T k- "00 

(B3) 

(B4) 

(B5) 

which is, up to a factor II ff, the large-order behavior of the 
ground state energy, and is a lower bound for the behavior of 
the expansion around the instanton. 

A simple calculation shows also that Ii g) satisfies a 
differential equation 

36g2
[ :;(g) + (108g - 12)[ 2 (g) + 35[z{ g) = O. (B6) 

This translates in a Ricatti equation for the logarithmic 
derivative 

F( ) = [~(g) 
g 12(g) , 

(B7) 
36g2(F' + F2) + (108g -12)F( g) + 35 = O. 

If we now expand F (g) in a power series 
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we get the recursion formula 

Fk =3(k+2)Fk_l +3 L F,Fk _ 2_" k>2 
O<'<k - 2 

(B9) 
Fo = 35/12. 

It follows from this equation that Fk is a rational num­
ber with a denominator of the form 3(2k + 2), to be compared 
with the denominator of I ~ . 

We shall now explain how we calculate the other inte­
grals [II (g). It is straightforward, using an integration by 
part, to derive the relation 

(BlO) 

which yields a recursion formula for the coefficients I ~, 

[~-[~ 1 = [(n+I)/21[~:;:i· (BII) 

Since we know I;, these relations allow us to calculate all 
I~. 
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1. INTRODUCTION 

The problem of the potential scattering theory for the 
Schrodinger operator H = Ho + q acting in the Hilbert 
space K = L 2(JR ) is to study a spectrum of the operator H. 
According to the spectral theory for a self-adjoint operator 
H:K _~ a unique decomposition for ~ is 

d}f" = ~ac G1 ~Sing G1 ~p 

and H leaves each ~ ... invariant and, moreover, H I Kac 
has an absolutely continuous spectrum, H I K sing has a sin­
gular continuous spectrum and H I Kp has a complete set 
of eigenvectors. 

The existence of the wave operators 

t __ ± 00 

guarantees the validity of the following conclusions 

Rani.? ± C~ac C~~. 

The demonstration of the existence of the wave opera­
tors is one of the main problems in the potential scattering 
theory. In early days of the scattering theory J. M. Cook! 
proved the following simple and strong criterion of the exis­
tence of the wave operators: 

Theorem: Suppose that there is a subset 
if C liJ (Ho)nliJ (q) dense in JY'so that for any rpEif 

J: 00 //qeiIHorp II dt < 00. 

Then n + (H,Ho) exist. 
M. Schechter2

.
3 has recently proved the following use­

ful generalization of the Cook theorem: 
Theorem: Let H, Ho be self-adjoint operators in JY. As­

sume that 
(1) liJ(B)-::JliJ(H) and IIBu/l<const(IIHull + Ilull) for 

all uEliJ (H); 
(2) liJ (Ho) C liJ (A ); 
(3) For all rpEliJ(H), t/JEliJ(Ho), 

< Hrp,t/J) = (rp,Hot/J) + (Brp,At/J) 

«") is the inner product). 
(4) There is a dense subset if C:tt'"ac (Ho) so that for any 

rpEif there is To < 00 with exp(itHo)rpEliJ(A ) for It I> To and 

L . > T" IIAeiIH,rp II dt < 00. 

Then n ± (H,Ho) exist. 
Remark: B. Simon4 has found a proof of this theorem 

based on some modification of Cook's arguments. 

On the basis of physical intuition it is clear that only a 
behavior ofthe potential q(x) at infinity is critical for the 
wave operators n ± (H,Ho) to exist. The most general result 
on the existence of n ± (H,Ho) refelcts this heuristic fact. 

TheoremS: Let H be a self-adjoint operator so that for 
any rpEY(R I) (Y is the Schwartz space) with a support of rp 
outside some ball! x: Ix I <R 1 with the fixed radius R, 
Hrp = Horp + qrp. Let X R be a characteristic function of the 
exterior of the! x: Ix I <R J, and suppose that 

J: 00 11(1- XR)qeitH,rp II dt< 00, V'rpEY(RI). 

Then n ± (H,Ho) exist. 
Next problem of the scattering theory is the investiga­

tion of the completeness of the wave operators n ± (H,Ho) 
[or the equality Ranfl ± (H,Ho) = Kac(H)]. At present 
there are two methods, at any rate, in the time-dependent 
scattering theory. One method lies in the direct examining of 
the existence of n ± (H,Ho), where the following result was 
obtained: 

Theorem 1.1 6
.
7

: Suppose that 

su~[(1 + Ixl)z+2£ r IX_YI-I+4-48q2(Y)dY] 
XEIR J'X-YI<:1 

< 00, 

for some E > 0 and 0 < () <!. Then n + (Ho,Ho + q) exist and 
are complete. -

Remark: By this theorem we can consider potentials 
whose behavior at infinity is I x I -! - " V' E > O. 

The other method to prove the completeness is based on 
the fundamental Birman theorem8

: 

Theorem: Let H>O be a self-adjoint operator. Suppose 
that rp(H) - rp (Ho) is the trace class (see Sec. 4 below) for the 
C 2 function rp on [0,(0) with strictly negative derivative. 
Then n ± (H,Ho) exist and are complete. 

This theorem is valid in a more general sitaution for the 
generalized wave operators 

W ± (H,Ho) = s-lim eilHe - itH"Eac(Ho), 
l-± 00 

where Eac (Ho) is the projection onto the Kac (H 0)' Note also 
the following fact: 

Chain rule: Suppose that W + (Hz,HIl and W (H3 ,Hz) 
. - ± 

eXist (are complete). Then W ± (H3 ,Htl exist (are complete). 
The results9

-
11 which are an analog of the Kupsh-Sand­

has theorem for the completeness have been recently 
obtained. 

Theorem 9
-

12
: Let VEL Iloc(lRI \S), whereSis a closed set 
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ofLebesquemeasurezero: V -(x)=maxIO, - v J and V- isa 
Ho-form bounded operator with the bound < 1. Suppose 
that X R is a characteristic function of the ball I x: Ix I <R J. 
Then n + (Ho + V,Ho), exist and are complete if and only if 
n + (H;+ Vex ,Ho), where Vex = (I - X R)V' exist and are 
complete. (The operators Ho + Vand Ho + Vex are defined 
by the form method.) 

The object of this article is to demonstrate the analo­
gous principle for Schrodinger operators with a magnetic 
field (iV + a? + V with general a, V. Moreover, using the 
commutator method developed below the sufficient condi­
tions for the existence and completeness of the 
W ± [Ho,(iV + (1 - XR)a)2 + (1- XR)V] will be given. 

2. FORMULATION AND DISCUSSION OF THE BASIC 
RESULTS 

We shall now consider the Schrodinger operator with a 
magnetic field (iV + a)2 + V, where 

V = (a~1 , ... , a~J 
is the distributional gradiant and Q=(a (I>, ... ,a (I) is the real 
valued vector function. Denote aEL P (RI) if and only if a(j) 

EL P(R'),j = 1,2, .. .,1. Let us also assume S is a closed set of 
Lebesque measure zero. We define the sesquilinear form i as 
the closure of the form 

t[u,v] = (i(iV + a)u,(iV + a)v), gJ(t) = gJ(V)ngJ(a). 

Let H (a) be an operator associating with the form i. We shall 
also introduce the following designations: 
V -t (x) = max \ 0, ± V 1 ' so that V = V + - V -, V ± >0 for 
any real valued function V. A + B is the form sum of the self­
adjoint operators A,B. (Subsequently we shall usually write 

A + B instead of A + B.) 
Our main result is 
Theorem 2.1: Let aEL ~oe (R I '\S), VEL 110e (R I '\S). Sup­

pose that 

(l)PoV-<Ho + d, for some Po > I, d>O. 
(2) There exists some 0 < R < 00 so that the generalized 

wave operators W± [Ho,(iV+(I-XR)a)2+(I-XR)V] 
exist and are complete, where XR is the characteristic func­
tion of the ball!x:lxl<R I. 

Then W t (Ho,H (a) + V) exist and are complete. 
Remarks: 
(I) The necessity of the condition (1) Theorem 2.1 fol­

lows from the Pearson example. 13 

(2) Theorem 2.1 is new even in the case a = O. (Refs. 9 
and 10). 

(3) In Theorem 2.4 below we shall give conditions 
which guarantee the validity of the assumption (2) Theorem 
2.1 (see also Ref. 14). In the case a = 0 we can use, for exam­
ple, Theorem 1.1. 

Let us pick the two principal results out of Theorem 2.1: 
Corollary 2.2: Suppose that 0< VEL ioe (RI '\S) and 

supp(V) is compact. Then W ± (Ho,Ho + V) exist and are 
complete. 

Corollary 2.3: Let aEL ~)C (R I '\S) and supp(a) is com­
pact. Then W ± (Hu,H (a» exist and are complete. 
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Remarks: 
(1) Corollary 2.2 was obtained previously by P. Dieft 

and B. Simon,1O Yu. A. Semenov,l1 M. Combescure and J. 
Ginibre.9 (See also D. B. Pearson,12 E. B. Davies and B. 
Simon. 15) 

(2) In the case of the operator -.1 + Vthe above 
Kupsch-Sandhas existence theorem precedes the complete­
ness Theorem 2.1. However, Corollary 2.3 is a new result 
both for the existence problem and the completeness prob­
lem for the operator (iV + a? 

The following theorem gives sufficient conditions for 
the validity of the assumption (2) Theorem 2.1. 

Theorem 2.4: Suppose that bEL foe (RI), QEL 110e (JR I
). 

Let p(x) = (1 + IxI2)1/2. Suppose that b = p - 'bo, 
Q = p - vQo for some v> I and the functions bo, Qo obey the 
following conditions 

Po·4b6 <Ho + d, 
(2.1) 

Po·Qo<Ho + d, Po> I, d>O. 

Then W ± (H (b) + Q + Ho) exist and are complete. 
Remarks: 
(1) In the recent paper by J. Avron, I. Herbst and B. 

Simon 16 the completeness of the wave operators 
W -j (H (a) + V,H (a», where ad ~oc (RI) and Vbelongs to 
the-Rollnik space if 1= 3 (see, for example, Ref. 17, p. 3) or V 
belongs to the Birman-Solomjak space (see Ref. 18) if 1>4, 
was demonstrated. In connection with the A vron et al. Re­
sults we may note that our methods allow proving Theorem 
2.4 if we replace the assumption (2.1) by the following as­
sumption: Q belongs to the Birman-Solomjak space. 

(2) Our methods allow us to combine the results ob­
tained by different ways. For example, the following is valid: 

Theorem 2.5: Suppose that q and Q obey the assump­

tions of Theorem 1.1 and Theorem 2.4 (with b = 0), respec­
tively. Then W ± (Ho + q + Q,Ho) exist and are complete. 

3. CONSTRUCTION OF SELF-ADJOINT EXTENSTIONS 

(i) We shall first review some of the main ideas in the 
theory of quadratic forms on a Hilbert space. (There is a very 
complete discussion in Refs. 19 and 20. 

Let ,W' be a complex Hilbert space, ( a densely defined 
symmetric closed nonnegative form on ,W'. Then there exists 
a self-adjoint operator T~O such that 

t [u,v] = (T 1/2U , T 1/2V ), Y: (t) = £0 (T 1/2). 

Let us also consider a symmetric quadratic form a. The 

form a is called t-bounded if and only if & (a)::J Y: (t) and 
la[u,uJI <c( [u,u] + d Ilu11 2

, VUEl.iJ(t) 

for some constants c,d;;'O. (Subsequently we shall put 
a[u,u] = a[u].) 

The infimum of all possible values of the constants is 
called a t-form bound of the form a. 

If a is the (-bounded form, we can represent a by the 
operator AE/PV'+"W' . . Y is the space of the bounded 
operators.): 

a[u,v] = (u,Av), u,uEdY'+=D(A), 

where'lr+ = ! :»(t),II'II+ = II(T + 1)'/2 '111 and dY"_ is a space 
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dual to JY. with the norm \\.1\_ = \\(T + It I/2 .1\, so 
JY.CJYcJY_ and \\.\\-<\\.1\<\\.\\ •. 

As (T + A t I/2E2"(JY,JY.)n2"(JY_,JY), A > 0, the 
oprator (T + A t l/2A (T + A )-1/2 is a bounded map from JY 
to JY. It is clear that 

II(T + A t l/2A (T + A t I/2
\\ <c + r 

for any r> 0 and all sufficiently large A > 0, where c is a t­
bound of the form a. 

Let a be a t-bounded form with the t-bound less than 
one. Then the form t + a, f!iJ (t + a) = f!iJ (t) is closed, 
bounded from below and, consequently, it associates the self­
adjoint operator S. Moreover, we have the representation 

(S + A)-I 
= (T + A t1/2[1 + (T + A t l/2 A (T + A )-1/2]-1 

X(T+A)-1/2, (3.1) 

for all sufficiently large A > O. 
Remark: A complete discussion and numerous applica­

tions of the representation (3.1) are given in Simon's book. '7 

Let t and r be closed symmetric nonnegative forms on 
JY and let f!iJ (t )n9 (r) be dense in JY. Then the form 
s = t + r, 9 (s) = 9 (t )n9 (r) is also closed. Let S, T, R be 
operators associated by the forms s, t, r, respectively. The 
operator S = T -+- R is called the form sum of the operators 
T, R. Notice, it is possible 9(T)nf!iJ(R ) = [0 J. (Further we 
shall write + instead of -+- .) We shall also denote 
AEPK (T)(AEPKo(T)) ifandonly if the form of the operator A 
is bounded with respect to the form of the operator Twith a 
bound < 1 (equals zero). 

(ii) Subsequently we shall need some approximation 
theorems about the convergence of the sequence of quadratic 
forms. 

Theorem 3.1 Ref 19, Chapter VIII, Theorem 3.11: Let 
! t n I be a nonincreasing sequence of densely defined closed 
symmetric nonnegative forms on JY. If Tn is a self-adjoint 
operator associated with tn' then the sequence! Tn J conver­
gences in a strong resolvent sense to some self-adjoint opera-

R 

tor T", ;;;.0. Thus if n-+oo we have Tn-+ Too' so that 
s 

(Tn +A)-I-+(T+A)-', ReA>O. 

In particular, if the symmetric form too [u] = limn _ oo tn [u], 
9 (t 00 ) = Un> I 9 (t n) is closable, then Too is a self-adjoint 
operator associated with the closure i 00 of the form too' 

Before formulating one more approximation theorem 
we shall introduce some definitions. 

Let JY = L 2(lIn and v=(a/ax I"" ,a/aXI) be the dis­
tributional gradient. Consider the form 

ho[u,v] = ± (i~,~) 
k~ I aXk aXk 

=='(IVU,IVV), 9(ho) = 9(V) 

and the Laplace operator Ho associated with the form. If 
O<qEL Iloc (RI"S), where Sis some closed set of the measure 
zero, then 9 (V)n9 (qI/2) is dense in L 2(R I ). So we can de­
fine the form sum Ho + q. 

Let Wbe a multiplicative operator associated with the 
measurable real-valued function W(x). Let W[u v] 
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= s u WVdx be a ho-bounded form with the ho-bound less 
than one, so WE PK (Ho). Then the form sum Ho + q + W, 
which is a bounded from below self-adjoint operator associ­
ated with the form ho + W + q is well defined. 

Theorem 3.220- 24 Let Ho, q, Wbe above-defined. 
(1) Let qn and Wn be truncated operators correspond­

ing to the q, W, respectively, so 

( ) = (q(X) if q(x)<n, n = 1 2 '" 
qn X O'f () , , 1 q X > n, 

Then 

s-lim (Ho + qn + Wn + A t l = (Ho + q + W + A)-I, 

for all sufficiently large A > O. 
(2) There exist the functions ZnECO "'ORI) (n = 1,2, ... ) 

such that the operators! Ho + Zn I are bounded from below 
uniformly on n = 1,2,'" and 

for all sufficiently large A> 0 and, consequently, by the Trot­
ter-Kato theorem 

s-lim e -I(H.,+ Z,,) = e-I(H.,+q + W). 

(iiI) Definition o/the Schrodinger Operator with Magnetic 
Field 

Let aEL ~oc(lRI "S), so a==(a(I), ... ,a(l), a(j) 

EL ~c(RI "S),j = 1,2, ... ,/. We shall suppose a is a real-val­
ued vector function. 

As ad ~oc (HI \S) and a2 ;;;.0 we can define the form sum 
H.(a) = Ho + (1 + E)a2

, (E;;;'O) associated with the form 

t~[u,v] =ho[u,v] +(1 +E)(au,av), 

9(t.) = .@(V)n.@(a) = .@(V)n9(\a\) 

Let us introduce the symmetric form a by the following way: 

a[u,v] = (IVu,av) + (au,iVv), 

9(a) = 9(V)n.@(a) = 9(to)' 

Lemma 3.3: The form a is t.-bounded with the t.­
bound«1 + Et 1/2. 

Proof: Let UE.@(t.) = 9(a), then 

t.[uJ+~l+E~ 

= «(IV + ~l + Ea)u, (iV + ~l + Ea)u);;;.O, 

tofu] -~l +E~ 

= «(iV - ~l + Ea)u, (iV - ~l + Ea)u);;;'O. 

Thent,[u];;;'~l +Eia[uJI. 
Introduce the form 

t~') = t, + a, .@(t~.» = .@(tc), E>O. 

The symmetric nonnegative form t ~') is closed by Lemma 
3.3, so the operator H.(a) associated with the form is self­
adjoint nonnegative and 

t~')[u,vJ = (u,Hc(a)v), 

uEfiJ(t~'», vE.@(H.(a», 

t~')[u,v] = (H.(aY/2 u,H,(a)1/2v>, 

• 
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u,vE§(H.(a)1/2) = li'(t~'», 
(HAa) + A )-1 = (H,(a) + A )-1 /2 

X [I + (H,(a) + A )- 1/2A (a)(H,(a) 
+ A )-1 /2]-1 (H.(a) + A )-1/2, 

where A (a) is the operator associated with the form a. [It 
follows from Lemma 3.3 that a[u,v] = (u,A (a)v), 
U,VEli' (A (a».] 

Notice that the sets § (A (a» and fij (a) = fij (t ~.» coincide. 
It is clear that ° < EI <E2 implies O<H£, (a) <H£, (a). 

Hence it follows from Theorem 3.1, that if E to, the sequence 
! H, (a») converges in the sense of a strong resolvent conver­
gent to the self-adjoint operator H (a):>O, so 

, 
(HAa) + A )-1-+ (H(a) +A )-1, ReA> 0. 

,)0 

Definition: The operator H (a) = R-lim£Jo HE (a) is 
called the self-adjoint Schrodinger operator with a magnetic 
field. 

Define the form ta: 

ta [u,v] = ((iV + a)u, (iV + a)v), 

.9J(U = §(V)n§(a). 

As operator IV + a with .9J(/V + a) = li'(V)nli'(a), is 
densely defined and symmetric, so it is closable. Thus the 
form ta is closable (see Ref. 19, Chapter VI), nonnegative 
and consequently its closure t: associates the self-adjoint op­
erator H '(a). Theorem 3.1 implies H (a) = H '(a). 

(iv) Approximation Theorems for the Schrodinger Oper­
ator with a Magnetic Field 

The object of this section is to prove the following fact: 
the operator H (a) may be approximated (in the sense of a 
strong resolvent convergent) beoperatorsH (a" ) with smooth 
a". All results given in the section can be found in Ref. 25. 
Therefore we shall confine only the formulation of the re­
sults and sketch the proofs. 

Theorem 3.4: Let a, an EL ~oc (JR' \.S). Suppose that (1) 
R 

II(a - an )ipll-+O, (n-+oo) for anYipEC OX(JR' \.S); (2)H +(a,,)-+ 
I.' 

H +(a), (n-oo), where H !-(a) = Ho + (1 + E)a2
• 

Then 
R 

H, (a,J--- H, (a), E> 0. 
L' 

Remark: The importance of the theorem seems to lie in 
that the approximation of the operator H (a) can be reduced 
to the approximation of an operator of the (Ho + V)-type, 
which is a more habitual problem. So the approximation of 
the operator H (a) by H (an), where a" are smooth is possible 
and follows now from Theorem 3.2. 

Proof Let us use the representations: 

g = gl:2(1 + gl;2 + A (a)gl:2)-li~2, 

where 
g" = (H,(a,,) +A )-1, g t." = (R(a" +A )-1, 

g=(H,(a)+A)-I, gl = (H,(a)+A)-I. 

As g I .,,~ .. g+ and Lemma 3.3 implies the estimate 
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v-
SUp 11(1 + gl/Z A (a )g1/2 )-1,;;:: 1 + E 

+- ,f/ n +-,n '"""" "1t. / 

",·1 vl+€-1 

our problem reduces to the proof of the following: 
, 

gl/Z A (a )g1/2 _ gl/2A (a)gl12 
-+ ,II n +- ,n L: +- -+ • 

Hence it is sufficient to prove that 
, 

Vgl~\~ Vgl~2 
L-

and 
s 

ani~2n-+ agl~2. 
I.' 

LetfEL 2(R'), Un = gl~~,J. Then (2) implies 
, 

u,,- u =g'~2f 
L' 

Now we shall prove 

anu,,~au (- is weak convergence). 

The estimates 

IIVun 11<lIfll, II an Un ll<llfll 

(3.2) 

(3.3) 

(3.4) 

imply that for the proof of (3.4) it is sufficient to show the 
following: 

(IVU",ip )-(IVU,ip ); 

(anu,,,ip )-(au,ip) 

for any ipEE, where E is dense in L 2(R'). 
Let E = C (f(JRI \.S), ipEE. Using uE9(V)n9(a) we ob-

tain 

lim (IVU",ip) = lim (un,tVip) 
II ~ ,y: II "'!Y) 

= (U,/Vip) = (/VU,ip), 

lim (a"u",ip) = lim (un,anip) 

= (u,8!p) = (au,ip). 

We now prove (3.2) and (3.3). Using the identity 

lIu n liZ + IIVun liZ + (1 + E)llanu" liZ 
= Ilfli z 

= Iluli z + IIVul12 + (l + E)IIaull
z
, 

we have 

IIV(u n - u)II 2 + (1 + E) II a" Un - aull z 

= IIVu" 112 + IIVull 2 + (l + €)IIa"u" 112 + (1 + E)IIauli
Z 

-2Re(Vu,Vu,,) -2(1 + E)Re(a"un,au) 
= 2(IIR Il" - ~llu" 112 - ~llul12 - Re(Vu,Vu,,) 
- (1 + E)Re(a"u" ,au» 

-2(llR 112 - IIull" - IIVull 2 
- (l + E)IIau I/ 2)_0. 

Theorem 3.4 is proved. • 
Theorem 3.4 and the definition of the operator H (a) im-

ply 
Theorem 3.5: Suppose that all the assumptions ofTheo­

rem 3.4 are valid. Then 

H(a) = R-Iim lim H£(an ). 
f-jO II • Z 
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Corollary 3.6: Let aEL foe (JR.' ,-S). Then 

le-'H(a1l<e-'Holfl, (3.5) 

for allfEL 2(JR.'). 
Proof Let a be smooth. Then the proof of(3.5) based on 

the Feynman-Kac-Ito formula is given in Ref. 26 (see also 
Sec. 4). Thus corollary follows from Theorem 3.5. • 

Subsequently we shall consider the operator 
(iV + af + V, which is more general than (iV + a)2, where 
Vis a multiplication operator. For a correct definition of the 
form sum we need the fOllowing simple 

Propositon 3.7: Let Vbe a multiplicative operator such 
that VE PK (Ho). Then VE PK (H (a». 

Proof Using the representation 

(H(a) + 4 )-1/2 = _1_ foo e - 'H(a)e -A't -1/2 dt, 
r(~) Jo 

and Corollary 3.6 we obtain 
I(H(a)+4)-l/zul«Ho+4yI/2Iul, VuEL 2(JR.'),4>0. 

Hence 

II (H (a) + 4 )-1/2 V (H (a) + 4 )- 1/2 11 

<1I(Ho + 4 )-1/2V(Ho +4 )-1/2 < 1. • 
Suppose that 0";; V ± EL10c (JR.'\S) and VE PK (Ho). Us­

ing Proposition 3.7 it is not difficult to see that the definition 
of the operator H = H (a) + V· - V- as a form sum is coo­
rect. Moreover, we have 

Theorem 3.8: Let aEL ~oc(JR.' ,-S), 0< V ± EL ioc(JR' ,-S), 
V-E PK(Ho)' Suppose that V n± (n = 1, 2,.··) are correspond­
ing truncated operators and the consequence ! an ) obeys all 
assumptions of Theorem 3.4. Then 

H (a) + V· - V- = R-lim lim lim (H£(ad + V n+ - V n-) 
ElO k-... oo n_oo 

Proof It is a direct corollary of the above mentioned 
approximation theorems. 

Remark: It was shown by T. Kato2
? (see also Refs. 28 

and 26) that in the case S = ¢J it is possible to omit the lim£!O. 

4. SOME PRELIMINARY INFORMATION. 
A. eT r -spaces 

Further we shall mainly use some properties of the u ,­
spaces. For the completeness we shall give here some defini­
tions and facts. 

An operator Xis called the trace (or XEU I ) if and only if 
there is an orthonormal basis I tP m J;;; = I such that 

trX==o f <IXitPm,tPm) < 00. 
m= I 

We shall denote XEeT ,(l <r < (0) if and only if X' EO I· 
A norm in the space 8 , is introduced by the following way: 
IIIX Illr = (trXr)1/2. 

Each uris double ideal in the space !f (L 2) and, more­
over, the Holder inequality 

(4.1) 

where r -I = ~;= 1 r )-1 (for r = 00 we shall put 
111·lllr = 11·11), is valid. The following simple proposition is 
valid: 
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Proposition 4.1: (See, for example, Ref. 29). Let Xn EeT r' 
l<r < 00, n = 1,2, ... , Xn S_X and sUPn>IIIIXn III, < 00. 
ThenXEu " 

We shall also formulate a theorem which was essential· 
ly proved in Refs. 10 and 22: 

Theorem 4.2: Suppose that aEL ~oc (JR' ,-S), 
VEL ioc(JR' ,-S) and V-E PK (Ho)' Let s> 0, 8EJR. I. Then 

(1 + ixj2)'8-S(H(a) + V +4 )-s(1 + ixI 2)-SEu r,' 

where r S > +S. 
Remark: In Refs. 10 and 22 this theorem was formulat­

ed for the case a = 0, VE PK (Ho), but it is easy to extend the 
theorem for our assumptions. 

Remark: As e - t(H(a) + V) is a holomorphic semigroup in 
L 2(JR'),(H (a) + V + A )'e - t(H(a) + V)E!f(L 2). Thus Theorem 
4.2 and the representation 

(1 + IxI 2 )-Se-'(H(a)+V) 

= ((1 + Ix1 2) -S(H(a) + V + 4 y] 
= [(H(a) + V + 4 )Se - t(H(a) + V)] 

imply (1 + Ix1 2) - Se - ,(H(a) + V)EeT2 for any s> 1/4. 
In particular, it follows that e - t (H(a) + V) is the integral 

operator. 
Below we shall also use the following well-known 
Proposition 4.3: Suppose that operators F, G in L 2(1F: ) 

obey the assumption 

I G f 1 <F I f \ for any fEL 2(JR.') 

and FEu 2k for some integer k> 1. Then (lEu 2k • 

Remark: For the noninteger K the validity of the propo­
sition is open and for !<K < 1 the proposition is false. There 
is an interesting and complete discussion in Ref. 30. 

B. Integral properties 

Using Corollary 3.6 it is clear that 

Ie - '(H(a)+ V) f\<e- tHolfl 

for V fEL 2(JR'), where aEL ~oe(JR.' ,-S), 0< VEL locCJR' ,-S). 
This estimate and the properties of e - ,Ho imply that 
e -, (H(a) + V) is an integral operator whose integral kernel 
e - t(H(a) + V)(x, y) obeys the estimate 

sup le-r(H(a)+ V)(x,y)1 < 00. 
lx, y)€R I X ill 

C. The Feynman-Kac-Ito formula 

In this section we shall consider the Feynman-Kac-Ito 
formula (FKI) which has a decisive role in our proof of the 
completeness of W ± (Ha,H (a) + V). 

Let,uo be a Wiener measure on the path space ilo, which 
consists of all paths OJ such that [0, 00] 3S-OJ,EIR' with 
w(O)=O. 

Theorem 4.4: Let aEL ~oc (JR' ,-S), VEL Iloe (JR' ,-S), 
V-E PK (Ho),JEL 2(JR.'). Introduce the sets: 

ilo(a2,x) = !WEilo:f a2(w, +x)ds= 00 J, 

il ~(a2,x) = ilo ,-ilo(a
2,x), 

ilo(V,a2,x) = lxEil ~(a2,x):L V·(w, + x) ds = oo}. 

M. A. Perelmuter and Va. A. Semenov 525 



                                                                                                                                    

Then we have (pointwise a.e.) 

(e - '(Ho + vY)(x) = r f(OJ, + x) 
Jno(v+.x) 

xexp [ - f V(OJs +X)ds] dl1-o(OJ), (FK) 

(e-'H(a!f)(x) = L~(a"x/(OJ, +x)U(a,OJ,t,x) dl1-o(OJ) , (FKId 

(e - '(H(a) + V) f)(x) 

= 1 f(OJ, +x) 
n o(a 2 ,x)'\ilu( V.a:!,x) 

xexp [ - Sa' V(OJs +x) dS]U(a,OJ,t,x) dl1-o(OJ) , 

(FKI2l 

where U (a,OJ,t,x)EL 00 ({}o,dl1-o) for a.e. xER', 

II U (a,OJ,t,x)II L ~({}o.dl"0) <: 1 

and formally (if a is smooth it is in fact) 

U (a,OJ,t,x) = exp( - B ), 

B = ~ f diva(OJs + x) ds + i L a(OJs + x) dro. 

(Here S~a(OJs + x) dro is the Ito stochastic integral.) 
We shall give a sketch of the proof. If a, Vis smooth, FK 

and FKI are well known. So our problem is the investigation 
of the singular a, V. Note that fori = 3, VEL 2(Rl) + L "'(R') 
the proofofFK is contained in Reed-Simon,3! but this proof 
is also valid in our case. 

Let us prove the FKI\. Consider first the case 
aEL OO(R/). Let I an 1 be a sequence ofthe CO' vector-valued 
functions such that II(a - an)qJ 11-0 for any qJEC O"(R/), then 

R 

Ho + a;---->:Ho + a2,HE(a) = R - lim HE(an) and 
L ~ n---... 00 

qJn(OJ) = f(OJ t + x)exp [ - E f a~(OJs + x) dS]--+qJ (OJ) 

= f(OJ, + X)expf - E L a2(OJs + x) dS] 

for 11-0 - a.e. OJE{}o and a.e. xERI. Choosing a suitable subse­
quence we can consider (e - tHAa,,) f}(x)--(e - ,HAal fllx) 

pointwise a.e. For HE (an) we have the usual Ito formula 

(e - tH.la"lf)(x) 

for every fEL 2(R'), a.e. xER', where Ulan ,OJ,t,x) = e - 8 n 

Bn = ~ r' divan(OJs + x) ds 
2 Jo 
+ i Sa' an (OJ. + x) dro. 

Let us introduce the Banach spaces L P({}o,d 11-0), 
1 <:p < 00. Denote a value ofthe functional,BEL P(flo,d 11-0) on 
the vector vEL P(flo,d 11-0)' (lip) + (lip') = 1 by (v, (3). Let 
t> 0 be fixed. An element Un (OJ)=U(an, w,t,x) belongs to 
any L q(flo,d I'o} and, clearly, I( Un ilL ~\no.d /Lo) = 1. The space 
L P({}o,d 1'0) is weakly compact, so that there IS a subse-
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quence ! Un' J which has a weak limit in L P({}o,d 11-0): 
(v,Un' )--(v,u), 

uEL P({}o,d 11-0), 'VvEL P'({}o,d 1'0)' 

By choosing v = qJn (w) and using rf>n \ <p we obtain 
L 

(qJn" Un' )--( V,u) 

and 

(qJn"Un, )=exp( - tHE (an' ))f -eXp( - tHE (a))! 

As weak limn,_oo (qJ,Un,) = limn,_oo (qJn' ,un') = (qJ,U) 
does not depend on the subsequence [n/J, then 

(qJn' Un )--(qJ,u) . 

Thus 

(qJ,u) = [exp( - tHE(a))f](x) 

i -E1' a'(a>, + xl ds 

= f(w t + x)e 0 U(a,w,t,x) d l1-o(w) 
no 

for 11-0 - a.e. WE{}o and a,e. xER/. It is clear that 

/IU ilL ~(no.dl"ol = 1. 

Let now aEL ~oc (R' \.S) and [an J, a sequence of the L 00 

functions, obey assumptions of Theorem 3.4, (For example, 
an is a truncated operator corresponding to a.) Now we can 
repeat the above mentioned procedure and construct 
U(a,w,t,x)EL OO(ilo,d 11-0)' IJUIIL~{no,dl"o) = 1, such that 

(e - 'H~a)f)(x) 

= r., f(OJ, +x)e -{a
2

{UJ,+x
l

dS U (a,w,t,x)dI1-0(w) 
Jno(a"x) 

for l1-o-a.e., w, a.e. xER' and every f EL 2(R'). To see this we 
have used the following: 

qJ (OJ) 

~ {;(W, + x)oxp( - '.r .'(w, + x) d,) if we[} ~ (a2,x), 

if wE{}0(a2,x). 

It is also clear that 

r' EjQ 

f(w, + x)exp( - E Jo a2(w, + x) ds)- f(w, + x) 

for l1-o-a.e. we[} ~(a2,x). and a.e. xER', 
It follows from Theorem 3.4 that e - IH,(a)-e - IH(a) so 

using the dominated convergence theorem we obtain FKI t· 
Proof ofFKI2 : The proof of FKI I shows that 

(e - 1 (H,(a) + V,) f)(x) 

i 
-i (VI. + t=a~)«(u, + x) ds 

= " f(w, + x)u(a,OJ,t,x)e 0 d 11-0(w) 
!l Ja-.x) 

for any VkEL OC(R'),JEL 2(R') and a.e. xER'. 
So if € LO, we obtain 

(e - I{H{al + V')f)(x) 

(' - J( (Vk + k<J, + xl ds 

= r " f(w, + x)e " U (a,w,tx) d 11-0(W). J!) (Jla-,x) 

The limit approaching when K-~oo completes the proof. • 
Remark: Using arguments based on the approximation 
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theorem 3.5 it is easily to see that 

supp(a)nsupp(b) = t/> 

implies 

Uta + b,w,t,x) = U(a,w,t,x)U(b,w,t,x) 

for !Lo-a.e. wEflo and a.e. xEHI. 
Moreover, if XR is a characteristic function of the ball 

Ix:lxl";;R J,wehave 

U(a,w,t,x) = U(XRa,w,t,x)U«(l-XR)a,w,t,x}. 

5. PRINCIPLE OF THE DECOUPLING OF FINITE 
SINGULARITIES 

Our proof of the completeness of wave operators is 
based on the following asymptotic estimate: 

Lemma 5.1: Let aEL ~oc (HI \S), 0..;; VEL ~oc (HI \S) and 
H = H (a) + V. Suppose that 

supp(a)usupp(V)e (x:lxl";;R J 

for some finite R > O. Then 

Ii, [e - tHn(x, y) - e - tH (x, y)] dyl ..;;ce - '''''lxi' (5.1) 

for every t> 0 and a.e. xEHI, where C and fF > 0 are the 
constants depending on t and R only. 

Proof Denote 

n I = n ~(a2,x)\no(V,a2,x). 

Then the following equality is valid for a.e. XEW: 

i (e - (Ho(X,y) - e -'H(X, y)] dy 
II' 

i -L V(ld,+xlds 
= 1 - e 0 U (a,w,t,x) d !Lo(w l. 

n' 

In fact, let Xn be a characteristic function of the ball 
Ix:lxl..;;n]. By dominated convergence theorem and (FKI2) 

we have 

{ e-'H(x,y)dy 
JIl' 

= lim { e - tH (x, Y)Xn ( y) d y 
n --0.00 JRi 

= !i~ L, u(a,w,t,x)exp[ - L V(ws +X)dS] 

XXn(wt +x)d!LO(w) 

= L. u(a,w,t,x)exp[ - L V(ws +X)dS] d!LO(w). 

Let Ix I > 2R. Let us decompose the path space no on 
two subsets n l}) and n ~2) in the following way 

n ~I) = (wEflo: inf Iws + xl >R J, 
0<;.,,« 

n ~2) = no \n ~I) = ! WEno: inf Iw, + x I..;;R J, 
Q<s,;;;c 

and introduce the set 

n~1) = (wEilo:sup Iw,I..;;lx ll2j. 
O~s<t 
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It follows from the inequalities 

Iw s + xl>\lxl -Iwsll, 

Ixl - R>lxl/2, 

that 

ng)e{wEflo: inf \lxl-lwsli";;R Jen~). 
O<s<;t 

It is clear that if wEil ~l) and O";;s«t, then a(ws + x) 
= 0 = V(ws + x). So we have n glen ~ and 

Lf> U (a,w,t,x)ex p[ - f V(ws + x) dS] d !Lo(w) 

= !Lo(n gl) + i U (a,w,t,x) 
nb"n~1 

X exp[ - L V(ws + x) dS] d !Lo(w). 

Applying the imbeddings n '\n glen ~Ien~) and the in­
equality 

IU(a,w,t,x)exp[ - L V(w, +x)dS]I";;l 

we obtain 

11 - Lb U(a,w,t,x)exp[ - L V(w, +X)dS] d!Lo(w) I 
..;; 11 - !Lo(n 61))\ + I ( U(a,w,t,x) 

In;l,nt?1 

xexp [ - L V(w, +X)dS] d!Lo(w)I";;2!Lo(n~)). 
The well-known estimate of the right part of the last inequal­
ity gives (see, for example, Ref. 32): 

!Lo(n ~»";;Cle - /Ix l', 

C1 = C1(R,t), fF = fF(R,t). 

Consider now the case Ixl ..;;2R. Introduce the notation 
C2 = e4 

/' R '. Next, we have 

I L [e - tHo(x, y) - e - lif (x, y)] d y I ..;;2..;;C2e - /'Ixl'. 

So by putting C = max! C p C2 1 we obtain the estimate (5.1) . 

• 
Lemma 5.2: Suppose that all the assumptions of 

Lemma 5.1 are valid. Then the operator pI' [e - tHo - e - tH] 

(and thus [e - lHo - e - lif] P 1'), where p(x) = (1 + IxI2), be­
longs to the Hilbert-Schmidt class a2 for every t> 0 and 
!LEH1 . 

Proof It follows from the estimates (5.1) and 

ess sup Ie - l(H(al + VI(x ,y)1 < 00 

(X,Y)E!IIIXIl I 

that the integral kernel of this operator belongs to 
L 2(JR I XJR / ). • 

Theorem 5.3: Let aEL ~oc(HI \S), 0..;; VEL ~oc(H' \S). 
Suppose that a and V have compact supports. Then 

e - IH _ e - I (II (a) + V lEa 1 

for every t> O. In particular, W ± (H (a) + V,Ho) exist and 
are complete. 

Proof Denote G = P -I'e- t(H(a)+ V), F= p-I'e- tHo 
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where /-l > 1/2. Since I Gil ..;;F I I I for every I EL Z(R') 
(pointwise a.e.), so by Poposition 4.3 GE(T Z because FE(T 2' 
By analogy e - t (H (0) + V) p -I'E(T 2, (f.l > 1/2). In view of the 
identity 

e- tH" _ e- tH 

= [(e - (t 12)H" _ e - (t 12)H) pi'] [p - I'e - (t 12)H,,] 
+ [e - (t 12)H P - 1'] [ P I'(e - (t 12)H" 

- e-(t12)H)] [H=H(a) + V], 

we see that every operator in square brackets is the Hilbert­
Schmidt operator, and the product of the two Hilbert­
Schmidt operators is a trace operator. A completeness of the 
W ± (H, Ho) follows from the Birman theorem. • 

Theorem 5.4: Let aEL ~oe (R' \S), 0..;; VEL toe (R' \S) 
and V (x) has a compact support. Then 

e - tH(a) _ e - r(H(a) + V)E(T, (5.2) 

foreveryt>Oandhence W ± (H(a) + V,H(a»existandare 
complete. 

Proof It follows from the (FKIz) that 

I [e - tH(a) - e - t(H(a)+ V)] I..;; [e - tH" - e - t(H,,+ V)] III 
for every f EL 2(R') (pointwise a.e.). In particular, 

pl'[e - t(H(a) + V) _ e - tH(a)]E(T 2 

for every ";;ER t
, because by Lemma 5.2 

pl'[e- ,H" - e- ,(H,,+ V)]E(T z. 

Moreover, combining the inequality 

I p - I'e - t (H(a) + V) I I..;; p - I'e - 'H"I f I 

and Proposition 4.3 we have 

p - I'e - tH(a)E(T 2' 

p-I'e-'(H(a)+ V)E(T2' /-l>1/2. 

Now, by analogy with the proof of Theorem 5.3 we obtain 
(5.2). • 

Theorem 5.5: Let VEL I~e (R' \S), V-E PK (Ho) and 
supp(V+)C Ix:lxl..;;R J for some finite R > O. Then 

e'- tH' - e - tHE(T I 

for every t>O, whereH- = Ho - V-, H = Ho + V. 
Proof It follows from the proof of Theorem 5.3 that it is 

sufficient to show the following inclusions 

p - lie - (HE(T 2' /-l > 1/2, 

pl'[e- tll -e-'H]E(Tz' 

The first inclusion is the consequence of Theorem 4.2. 
Let us consider the operator A = P - I' [e - til" 

- e - tH ], /-lERI. Let X ~ (-) = (1 - X,,)(·), where X v is a char­
acteristic function of the set 

! WEt1o:f V+(w, + x) ds = 00 J. 

Using (FK) and the Holder inequality we have for every 
IEL Z(R') 

I(e - IH - e - tH)f(x)1 
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= I ( eL V «v + x) d, 11 _ x~ (w,x)e - f V'(w, + x) dS) 
Juo 
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X I(w, + x) d f.lo(w) I 
..;;(f I/(w, + x)1 ap eL pV({V, + x) ds d /-lo(w» lip 

fl" 

X <1 I I(w t + x)I O - a) p' 

n" 
- (' v'«V, + xl ds p' 

X P - X~ (w,x)e Jo 1 d f.lO(W»11 p' 
..;; (e - I(Ho - pV)1 I lap)1I P(e - tH" _ e - t(H" + V'» 

1 1 xlflo-a)p')IIP', -+ -=1, 
P p' 

where 0 < a < 1 and pEe I, 00 ) is fixed by the condition 
p V-EPK (Ho) (note that it is always possible). Moreover, we 
have used the obvious inequality 

0..;; 1 - exp( - L V+(ws + x) ds)x~(w,X)";; 1 

for /-lo - a.e, w, a.e. xER'. 
Putting a = 1/ p and denoting 

B = p- lie - I(H" - V), C = pV(e - tH" _ e - I(H" + V'l), 

v = /-l(p + 1)/(p - 1), we have from the last inequality 

IAII~(B I/IFP(C I/I)I/P',~ + ~ = 1 
P P 

for every IEL Z(R') (pointwise a,e.). 
We must show that AE(T 2' In fact, 

I IIAe/1I 2 
= I (Ae/,Ae/) 

i i 

~I «BeYIP,(CeYIP"> 
; 

~2: IIBe; 1121 P,IICe; 1121 p' 
[ 

II P II p' 

..;;(2: IIBe/II2) (IIiCe/1I
2
) 

i i 

for every finite sequence of characteristic functions of the in 
pairs disjoint sets. If L is the subspace of L 2(R') generated by 
{ e / J and P L is a corresponding orthoproyector, then 

IliA III ~ = tr (AA *) 

= sup (PLAA *) = sup 2: IIAe/11 2 
L L i 

21 P 21 p' 

~(sup I II Be/1I2) (sup L II Ce/ 112) 
L i L i 

= III B IIW PIlIC IIWP', 

we have only to remark B, CE(Tz' 

Theorem 5.6: Let VEL ioe (R i "S), V - E PK (Ho) and X R 

be a characteristic function of the ball! x: Ix I ~R J. Then 
W ± (Ho + V, Ho) exist and are complete if and only if 
W ± (Ho + (1 - X R ) V, Ho) exist and are complete for arbi­
trary R < 00. 

Proof Denote Vex = (1 - X R ) V, VR = X R V. Suppose 
that W + (Ho + Vex ,Ho) exist and are complete for some 
R < 00. The existence and completeness of W ± (Ho + V,Ho) 
will be implied by the chain rule if we demonstrate the exis­
tence and the completeness of W ± (Ho + Vex - V R ' 

Ho + Vex)' W ±. (Ho + V,Ho + Vex - V Ii)· 
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It follows from (FK) that 

Ie - t(H" + Vn - v, )1 _ e - t(H" + Vo,) f)(x) I 

= 11., I(wt + x)exp [ - f (Vex - V R )(Ws + x) dS) 

II + exp [ - f V R(Ws +x)dS]ll 

<1., I/(wt +x)lexp [ - f V-(Ws +X)dS] 

11 - exp [ - f V R (Ws + x) dS] J 

= [e - t(H,,- V) _ e- t(H,,- V· + VR )]1/1. 
Hence 

I p IL [e - t (H" + v,, - V R ) _ e - t (H" + Vo,)] I I 
<pIL[e-t(H,,- v 1_ (e-t(H,,- v- + VRI]I/I, 

and, obviously, 

I p - ILe - t (H" + Vn - V R )/1 

<p-ILe-t(H,,-V)I/I, 1l>1/2. 

The operators in the right parts of the last two inequalities 
belong to 0" 2' so that the operators in the left parts of these 
inequalities also belongs to (T 2' Thus the above-mentioned 
arguments give 

The trace of the operator e - t (H" + V) _ e - t (Ho + vo , - V R ) fol­

lows from the inequalities: 

I p IL [e - t (H" + v,., - V R ) _ e - t (Ho + V) ] I I 
< P IL [e - t (H" - V) _ (e - t (H" - V + v Rl] I I I; 

Ip- ILe-t(H,.+ V)/I<p- ILe-t(Ho- V)I/I, 

which are the consequence of the (FK) and the above-men­
tioned argurments. 

We have only to apply the chain rule and Birman theo­
rem to obtain the existence and the completeness of 
W ± (Ho + V, Ho). 

The proof of the inverse assertion is analogous. • 
Theorem 5.7 (The general principle 01 the decoupling 01 

finite singularities): Let aEL ~c (HI \S), VEL loe(HI \S), 
V-E PK (Ho). Let XR be a characteristic function of the ball 
[x:lxl<R J. Then W ± (H(a) + V) exist and are complete if 
and only if W ± [H«l - XR)a) + (1 - XR)V, Hol exist and 
are complete for arbitrary R < 00. 

Proof Introduce the notations 

aex = (1 - XR)a, aR = xRa, 

Vex = (1 - XR)V, VR = XR V. 

Using the chain rule we obtain 

W ± (Ho,H(aex ) + VeX> 
= W ± (Ro,H(a) + V)W ± (R(a) + V, R(aex ) + V) 

X W ± (R(aex ) + V, R(aex ) + Vex)' 

W ± (Ro,H (a) + V) 
= W ± (Ro,R(aex ) + Vex)W ± (R(aex ) 

+ Vex> R(aex ) + V)W ± (R(aex ) + V, R(a) + V), 

So we need to show the existence and the completeness of the 
operators W ± (R(a) + V,R(aex ) + V), W ± (R(aex ) + V, 
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H (aeJ + Vex)' By the Birman theorem and the above argu­
ments it is sufficient to show that 

p - ILexp [ - t (H (a) + V ])EO" 2' Il > 1/2 
(it is the consequence of Theorem 4.2) 

and 

A =pIL[exp[ - t (H(a) + V)]] 
-exp[ -t(H(aex ) + V»]85 2, 

AI=pIL[exp[ -t(R(a) + V)]] 
-exp[ -t(H(a)+ Vex »]E8 2. 

Lemma 5.8: AEO" 2 and A lEO" 2' 

ProofDenotex~(w) = (1- Xa)(W), whereXa (W) is the 
characteristic function of the set l:wEflo:f~a2(ws + x) ds 
= 00 J. Letp > 1 andpV-EPK (Ho). Using (FKI2), the Holder 

inequality, the property 

U(a,w,t,x) = U(aex,w,t,x)U(aR,w,t ,x) 

and the inequalities [U (aex ,w,t ,x)1 < 1, 
11 - U(aR ,w,t ,x) I <2, we have 

I(e - t(H(a) + V) _ e -t(H(ao,) + V»/(x)1 

<1" I/(wt +x)lexp(f V-(Ws +X)dS) 

XiI - U (aR ,w,t ,x)X~R (w)1 d /-lo(w) 
<211 Pee - t(Hopv')1 I 1)11 p 

i I/~ 

.( flo I/(wt + x) II 1 - U (aR ,w,t ,X)X~R (w)1 d lloCW» 

for any I EL 2(HI) (pointwise a.e.). 
Consider the operator N:L q_L q defined by the 

equality 

(N f)(x) = L/(Wt + x)1 

11 - U(aR,w,t ,x)x~R(w)1 d Ilo(w), IEL q(R/). 

It is clear thatN 1/1>0 and IN 11<2 - tHol/l.The latter im­
plies that N is an integral operator and its integral kernel 
obeys the estimate 

esssup [N(x,y)l<oo. 
(x. y)ER' x HI 

Moreover, by analogy with the proof of Lemma 5.1 we ob­
tain the estimate 

0< ( N(x,y)dy<Ce-iYlxl' for a.e. xEHI, Jill 
where C, fJ!" > 0 depend on R, T only. 

Thus p IL N, N P ILEO" 2 for every IlEflt I. Putting 

A = pIL[exp[ - t(H(a) + V)]] 

- exp[ - t(H(aex ) + V))], 

B = 2p - ILexp( - t(Ho - V-)), C = p - "N, 

p+1 
v = Il -- Il > 1/2 p-l' , 

and using (5.3) it is not difficult to see that 
IAII«B III) IIP(C III) lip' andB,CEO" 2 so that A EO" 2' Let 
us prove the inclusion A lEO" 2' It follows from (FKI2) that 
Ie - t(H(a) + Vo,) _ e - t(H(a) + V»/I 

M. A. Perelmuter and Va. A. Semenov 529 



                                                                                                                                    

«e - t(H" - V) _ e - t(Ho - V + V. )1 f I 
+ (e - t(Ho - V ) _ e - t(H" - V + V • ·)1 f I. 

Combining the last inequality and Theorem 5.6 we obtain 
A IEO"I' Thus Lemma 5.8 and Theorem 5.7 are proved. • 

6. ONE SUFFICIENT CRITERION OF THE 
COMPLETENESS OF THE WAVE OPERATORS 
W ± (H(a) + II,Ho) 

In Sec. 4 we solved the problem of decoupling of finite 
singularities for the potential Vand magnetic field a. Thus 
the probelm of the completeness of the W + (H (a) + V,Ho) 
is equivalent to the definition of conditions-which guarantee 
the validity of the assumption (2) of Theorem 2.1. In this 
direction we shall prove the following theorem: 

Theorem 6.1: Letp(x) = (1 + Ixll)III. Suppose that 
b = p - 'bo, Q = p - "Qo for some v> 1 and the functions 
bo, Qo obey the assumptions 

4b~ EPK (Ho), 

QoEPK(Ho)· 

Then 

(H(b) + Q + A) - k - (Ho + A) - kE(}" I 

for all integers k > 1/2 and all sufficiently large A> O. In par­
ticular, W ± (H (b) + Q,Ho) exist and are complete. 

Proof Introduce the operators H, (b), 
H.=Ho + (1 + E)bl

, E> 0, where E is fixed by the condition 
(1 + E)bolE PK (Ho). Then it is sufficient to show that 

(H(b)+Q+A)-k_(H(b)+A)-kEO"I' (6.1) 

(H(b) +A) - k - (H,(b) +A) - kE(}"" 

(H,(b) + A) - k - (H. + A) - kE(}" I' 

(H + A) -- k - (Ho + A) - kEo" I' 

(6.2) 

(6.3) 

(6.4) 

We shall consider (6.3) only, since other inclusions are anal­
ogous to (6.3) and their proofs are more simple. Let 

bnEP - 'bO•n' bo.nEC O'(R') and 
s 

(H,(bn) + A) - k - (H.n + A) - k_ (H,(b) + A) - k 
L' 

- (H. +A) - \ 

-where H +.n = Ho + (1 + E)b~. (It is possible by Theorems 
3.4 and 3.2.) 

Thus by Proposition 4.1 it is sufficient to show that 

Zn = (H,(bn ) + A) - k - (H +.n + A ) - kE(}" I 

and supn IllZn 1111 < 00. 

Denoteg = (H,(bn + A )-1, g. = (H + ,n + A )"1. Using 
the representationg = gl~2( 1 + gl2A (bn )gl~2)-lgI~2 we have 

k-I 
gk _ gk+ = I gk - 1 - j(g _ g + )g~ 
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j~ 0 

k-I 
= I gk-'-jg'2([I+g'~2A(bn)g'~2]-'-l1 

j~O 

xg j++ 1/2 

k - 1 00 

= I gk-,- jg '2( I (_l)m 
j~O m~ I 

X [g'2A (bn)gl~21mlgj++ 1/2. 
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Denote 

2k - (2) + 1) f3 = 2} + 1 v. 
2k ~ J 2k 

We have 
k-I 

gk _ gk+ = I gk - I - jg'2 + p - a, 
j~O 

X ( f (- l)m[pu'g'2A (bn)gl~2 + pti,]ml 
m= I 

X p- ti'g~+ III . 

It follows from Lemma A 1 (see Appendix) that 

II pa'gl~2A (bn)gl~2 p!1'II<C < 1 

for all sufficiently large A > 0, where Cis n independent. 
Hence, the series 

f (_I)m[pa'g'~2A (bn)gl~2 + p!1,]m 
m= 1 

converges to some bounded operator T j • Note that II T j II are 
dominant by the n independent constants. Thus 

k -I 
gk_gk+ = I gk-I-jgl~2p-a'Tjp-!1'gj++1/2. 

j~O 

It follows from Theorem 4.2 that 

gk - I - jgl/2 P - a 'EO" 
+ r 1,2' 

(6.5) 

(6.6) 

where 

r j-:-II < + mini f3j,2) + 1 I, 

r ;:21 < + mini a j,2k - 2} - 1]. 

[(6.5) is a direct consequence of Theorem 4.2.] Equation 
(6.6) follows from the identity 

gk - I - jgl~2 P - a j 

=[gk- I - j p -11M-II] [p11M- IIg l2 P -yM 1, 
M = 2k - 2} - 1, r = a j / M, 

Theorem 4.2, and the Holder inequality (4.1). Moreover, 

Illgk-'- jgl~2 P -a'lll, ,.' 

III p -!1'gj++ (11l1111, ,.,' 

are dominated by the n independent constants. 
Using the Holder inequality for Ur - spaces we get 

lilt III, 
-lllgk - I - jgl~2 P - a'Tj p - {3'gj++ '1l111, 
<lllgk - 1- jgl~2 P -a'lll, )ITJ III p -{3'gj++ 1/2 111, ,.' 

J.. = _1_ + _1_ < min( 3!5..., ~). 
r r j.1 r j.2 1 1 

Using the inequalities k > 1/2 and v > I, we obtain t j EO" I and, 
hence, gk _ gk+ EO" I uniformly in n = 1,2, .. ·. • 
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Remarks: 
(1) If 1>3, we can take b 6J)EL ~(Ri),j = 1, ... ,1, with a 

suitable norm in L~, where L ~(Ri) consists of all measur­
able functions which obey the estimate 

II III p,w==sup t [meas[xl I (x) I > t J ]li P < 00. 
1>0 

NotethatL P(Ri)CL ~(Ri)(see Ref. 31) and the inequalities 
(2.1) follows from the Strichartz inequality 

Illgllp<constll/lli,wIIVgllp, 1 < pd. 
There is a discussion of the best constant in this inequality in 
Refs. 33 and 34. 

(2) Suppose that the functions e, q obey the assumption: 
W ± (H (e) + q,Ho) exist and are complete and, moreover, 
e2E PKo(Ho), qE PKo(Ho). (For example, e = 0, and q obeys 
the assumption of Theorem 1.1.) Using (FKI) and the repre­
sentation of the powers of resolvent by the semigroup, we 
obtain the inequality 
I p-I(H(e) + q +A )-1/2 II<p-I(Ho + q +AyI!21/1· This I 

APPENDIX: COMMUTATOR ESTIMATES 

Let us introduce the following notations: 

says that p-I(H (e) + q + A )-1/2ED 2k for all integer k> 1/2 
(see Theorem 4.2 and the Remark 1 below Proposition 4.3). 
Hence we can replace the operator Ho in Theorem 6.1 by the 
operator H (e) + q and to prove thereby the existence and the 
completeness of the W ± (H(e + b) + q + Q,Ho). 

Note that the proof of Theorem 6.1 is based on the argu­
ments which are very general. So we can extend them on the 
case of elliptic operators of higher order. We shall confine to 
a formulation of the theorem: 

Theorem 6.2: Let Ho be an elliptic operator of the order 
2m with C'" coefficients. Suppose that A is an operator asso­
ciated with the symmetric form ~lal<m,1 {31<m (aa {3D au, 
D /3v) lal + I f31 < 2m and, moreover, A = P - vAo, v> I, 
AoE PK(Ho). Then W ± (Ho + A,Ho) exist and are complete. 

Remark: Evidently, Theorem 6.2 is the most general 
result (without consideration of the behavior of coefficients 
at the infinity) about the completeness of W ± (Ho + A,Ho) 
for the elliptic operator Ho of higher order (see, for example, 
Refs. 35-38. 

p = p(x) = (1 + IxI 2)1/2, A (b) = biV + iVb, g. = (Ho + b2 + A >-1, A> O. 

Suppose that the vector function b and the function Q obey the assumptions of Theorem 6.1 and, moreover, bEC O'(Ri
), 

(b==8n I). 
We shall consider in this section the estimates of the norm of the operator 

pagl~2A (b)gl~2 p{3, a, f3>0, a + f3 = v. 

Put [A, B] = AB - BA. It is easy to see the following equalities are valid (on the Schwartz space Y) 

[Vk,Pa]=axkpa-2 (Vk=~)' [L1,pa]=2apa-2xv+apa-2[1+(a_2) Ixl2 ], 
aXk + Ilxl2 

[g.,pa] = g.[L1,pa]g •. 

Let 1/ = i( f3 - a) pV - 2xbo, then, clearly, 

A (b) = IV P - ~o P - {3 + p - abo p - {3IV = P - a A (bo) p - {3 + 1/ 

and 

pagl~2A (b)gl~2 p{3 = [pa,gl;2] p - aA (bo) p - {3 [gl~2, p{3 ] + [pa,gl~2] p - a A (bo)i~2 + gl~2A (bo) P - /3 [g~2, p{3] 

+gl~2A(bo)gl~2+ pagl~21/gl~2p{3. (AI) 

Our assumptions about bo imply that 

for all sufficiently large A > O. 
We shall now consider all other terms in the equality (AI). We shall prove that if A_oo, their norms tend to zero 

uniformly on boo 
Consider the commutator [pa ,g1~2]. Note, at first, that 

gl:2,,=(H. + A t l/2 
= -.l..l'" s -l;2(H. + A + S >-1 ds 

11' 0 
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Next we have 

pO ~ 2 (H. + 8)-1 = (H. + 8)-1 pa ~ 2 + (H. + 8tl [pa ~ 2,..::1 ](H. + 8tl 

= (H. + 8)-1 pa ~2 + C; (H. + 8)-1 po ~4(H. + 8)-1 + C; (H. + 8)-lqJopa ~4(H. + 8tl 

+ C~(H. + 8tl pa~4xV(H. + 8)-1, (A2) 

where qJo = (lxI 2(1 + IxI 2)-IEL "', C;, C;, C ~ are constants depending on a and 1 only. 
The last item in (A2) is transposed in the following way (omitting the constant C 3) 

(H. + 8)-IVxpa~4(H. + 8tl - (H. + 8tl(Vxpa~4)(H. + 8tl 

= (H. + 8y lVxpa ~4(H. + 8tl - (H. + 8tl(1 + (a -4)qJo) pa -4(H. + 8tl. 

It is obvious that the representation for pa ~2(H. + 8t l as a finite sum consisting of three kinds of terms shown below 
may be obtained by the above mentioned commutation process. 

(1) C j(H. + 8ylqJ i.1 (H. + 8tlqJ i.2 "'qJ i. m J (H. + 8t l po ~ kJ; k i >0, 

(2) diH. + 8tlqJ i.1 (H. + 8tlqJ i.2 '''qJ i.n] pa- 'J(H~ + 8t l
, 

(3) ei(H+ +8)~IOi . .(H+ +8)~IOi.2 .. ·0i.r)H+ +8)-lxpa-xJV(H+ +8)-1 (j= 1, 2, ... ,N), 

where all t i obey the condition a - t i <0, all obey the condition a - flPi + 1 <0 and the function qJ i.m' qJ i.n' qJ i. r are ele­
ments of L "'(R/), moreover, their -norms depend on a and 1 only. 

Thus we have 

Ill'" t- 1/2(H. + A + t)-I pa ~2(H. + A + ttl P - aA (bo)(H. + A )-1/2 dtll 

<jtl ( C jill'" t-
1/2

(H. + A + t)-lqJi.1 (H. + A + O-lqJ i.2 '''qJ i.mJ(H. + A + 0-1 p - kJA (bo)(H. + A t l/2 dtll 

+ dillfo t- 1/2(H. +A + t)-lqJi. 1 (H. + A + t)-lqJi.2 "·qJj.njPU~ 'J)(H. + A + ttl p -aA (bo)(H. +A t l/2 dtll 

+ eilll'''' t-I/\H. + A + tylOj.l (H. +A + 0-IOi.2· .. 0j.rJ(H. + A + tylxpa- /JV 

X (H. + A + ttl p ~ uA (bo)(H. + A )-1/2 dtlD 
N 

= I (CjIi.1 +djI i.2 +ejI i.3 ), 
i~1 

The following relations were used in the last estimate: 

supll(H. + A + 0-1/2 P - uA (bo)(H. + A )-1/2
11 < 1. 

s;;.o 

The latter is the direct consequence of the equality 

p - aA (bo) = A (p - "])0) + ia pa -2xbo 

and the following estimates 

Note that each estimate for the I j.1 , I i.2, I i.3 contain the integral y(A) = SO't -l;2(A + t) - k - I dt - type, k> 0. Since 
y(A)-O, (A-+oo), we have 

111'" t-1/2(H. + A + tyl pU ~2(H. + A + 0-1 p - aA (bo)(H. + A )-1/2 dtll = flP I(A), 
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where avl(A )_O(A_oo). By analogy we have 

Ill''' t- 1/2(H+ +A + 5)-1 pa-2xV(H+ +A + 5)-1 p -aA (JJo)(H+ +A t l/2 dt 11-0 (A-oo). 

Thus we have 

II [p",gI2] P "A (JJo)gl~211 < av(A) 

for any A> 0, where lim",_.oc av(A) = 0. 
The following can be proved similarly 

Ill:2A (JJo)p 13 [gl:2,pf3 ]11-+0, II [pO: ,g1:2]p - aA (JJo)p - 13 [gl~2,pf3 ]11-0 (A-+oo). 

So we need only to consider the term 

II pagl~21Jgl~2 p f3 ll = II pagl~2 p -a(/3 - a)p-1xhop - f3l2 p f3 ll. 

As was proved in Ref. 22, 

(p" -l(H+ + A )-1/2 p ")(x, y)«Ho + Aa)-1/2(x, y), 

where Aa -+ 00 if A-+ 00, so that using our assumptions about bo and the boundess of the Xk p-l(k = 1,2, ... ,1) we obtain: 

II pagl~21Jgl:2 p 13 II < II(Ho + A,,)-1/2( /3 - a)lxbol p-2(Ho + A f3 -
1/211-0 (A-+oo). 

Thus we have 
Lemma A.I: Suppose that bobey all the assumptions of Theorem 6.1 and, moreover, bEe o(RI). Leta, /3;;'0, a + /3 = v. 

Then 

II pag l:2A (JJ)gl~2 p 13 11 < 1 

uniformly in bo for all sufficiently large A > O. 
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The nonrelativistic quantum electrodynamics is formulated in a mathematically rigorous way. 
The self-adjointness and the basic spectral property of the Hamiltonians are proved. 

PACS numbers: 03.70. + k, 03.6S.Db 

1. INTRODUCTION 

We consider a system of one nonrelativistic electron in 
an external potential such as the Coulomb potential interact­
ing with a transverse radiation field. Our ultimate aim is to 
give a rigorous mathematical foundation, though within a 
nonrelativistic context, of the physical theoryl-3 of the Lamb 
shift and spontaneous emission of photons, which have so far 
been formulated only in terms of the formal perturbation 
theory, 

As a first step, this paper gives a fundamental frame­
work by defining the Hamiltonians of the system and prov­
ing their self-adjointness and their basic spectral property. 
We encounter a problem of perturbation of eigenvalues em­
bedded in a continuous spectrum, and it is conjectured that 
the Lamb shift and the spontaneous emission of photons 
should be understood in terms of "resonances." 

The outline of the paper is as follows: In Sec. 2 we give 
some notations and definitions, In defining the interaction of 
the electron with the quantized radiation field, we use the 
dipole approximation for simplicity and introduce an ultra­
violet cutoff in order to make the Hamiltonians well defined, 
In Sec, 3 we prove the self-adjointness of the Hamiltonians 
by using the technique of approximate dressing transforma­
tion, which is usually used to control infinite momentum 
limit,4"{; In Sec, 4 we analyze the spectrum ofthe Hamilto­
nians using the method of asymptotic fields7

,8 and the ana­
lytic perturbation theory, In Sec. 5 we give some remarks on 
the subject. 

2. SOME NOTATIONS AND DEFINITIONS 

The Hibert space Y EM for the radiation field in the 
Coulomb gauge is defined as the 2-fold tensor product of the 
usual Fock space Y for the neutral scalar field4 : 

.7 EM = Y ®Y. (2.1) 
The tensor product of this space Y EM with the space of 
electron wave functionsL 2(R 3) gives the Hilbert space K for 
our model: 

(2.2) 
The Hamiltonian of the atom is given by 

H~I(V) = - (l/2m~ + V, (2,3) 

with m the electron bare mass and V the external potential; 
we assume that V is real and 

alPresent address: Department of Mathematics, Tokyo Institute of Tech­
nology, Oh-okayama, Meguro-ku, Tokyo 152, Japan. 

(2.4) 
Intermsofa(f)[resp.a*(f)]J'EL 2(R 3),theusualannihila­

tion (resp. creation) operator for the neutral scalar field, 4 the 
operatores a #1j1((),JEL 2(R 3),j = I, 2, for the radiation field 
are defined in Y EM as 

0#111(j) = o#(f) ®I, 0#121(1) = I ®a#(I), (2.5) 

where 0 #(f) denotes either o(f) or o*(f). They satisfy the fol­
lowing commutation relations on the set of finite particle 
vectors in .7 EM: 

[alil((), a*(l)(g)] = Ojl f d k f(k)g(k), 

others = 0, j,l = 1,2, j,gEL 2(R 3). (2,6) 

The free Hamiltonian H ~M for the radiation field is de­
fined as 

H5M = jtJ dk Iklo*ljl(k)oVI(k), (2.7) 

H gM is self-adjoint and non-negative on the maximal 
domain. 

All the operatores in L 2(R 3) (or in Y EM) have natural 
extensions to K: If A is a densely defined closable operator 
in L 2(R 3) (or in Y EM), then A ® I (resp., I ® A ) is a densely 
defined closed operator in K. We write A ® I (resp., I ® A ) 
simplyasA. 

For a.e. kER 3 we take e VIER 3,j = 1,2, which represent 
the polarizations of the radiation, satisfying the following 
conditions: 
eV1(k)·elll(k) = oj!, j,l = 1,2, e(ll(k)XeI21(k) 

= k/lkl, e(1l( - k) = elll(k), e121( - k) = - eI21(k). 

Let v be a rotation invariant, real function on R 3 satisfying 

IIvlvlkl1l2 < 00, Ilvllkllb < 00, (2.8) 

and then 
2 

Av(X) = I (l/v(2(21T)3 ) {o'j(e - ikxveVI/vlkll 
j~ I 

(2.9) 

is the radiation field with an ultraviolet cutoff v. 
The minimal interaction between the atom and the radi­

ation field is given in the dipole approximation by the sum of 

Hj'l(v) = (A Im)( - iV)·Av(o) (2.10) 

and the diamagnetic term 

Hj2J(V) = (A 2/2m)A~(o), (2.11) 
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where AER denotes the electron charge. The mass renormal­
ization counter term is given by 

W(v) = - A 2R (v)..:1 

to the second order in the electron charge with 

R (v) = (l/24~m2)llv/lklll~· 

(2.12) 

(2.13) 

The renormalized Hamiltonian H ~en( V) for our model is giv­
en formally by 

H~,cn(V) =H~'(V) +H~M + Hj'l(v) + Hj21(V) + W(v). 
(2.14) 

3. SELF-ADJOINTNESS OF THE HAMILTONIANS 

Let 

Ho = - (l/2m)..:1 + H~M. (3.1) 

Ho is self-adjoint and non-negative with 
D (H 0) = D (.d )nD (H ~M). Our aim in this section is to prove 
the following. 

Theorem 3.1: The renormalized Hamiltonian H~en(v) 
given in (2.14) is self-adjoint with D (H ~en( V)) = D (Ho)· 
Further 

(3.2) 

where..!"(H~'(V)) denotes the spectrum of H~'(V) in (2.3). 
By direct computations using basic estimates5 for the 

operators a #(.), it can be proved that the interactions 
H~I{V), j = 1,2, are Ho-bounded: 

IIH~'(v)V/1i <allHo«[l1l + b 11«[111, «[lED (Ho)' j = 1,2, (3.3) 

where a > 0 and b> 0 are constants. However, the relative 
bound a of H~I{V) with respect to Ho is not smaller than one 
unless IA I is sufficiently small. Therefore, for large values of 
IA I, we cannot directly apply the Kato-Rellich theorem to 
prove the self-adjointness of Ho + H~'I{V) + H~I(V). The 
main point of our proof is to use the dressing transformation. 

We begin with the definition of the generator of the 
dressing transformation. Let K> 0 and let 

TK = A ~ (-zVj'(aV)(!kl- 3/2vKeV») 
(2(21T)3) 1/2ml:'1 

- a*vl(Jkl- 3/2vKelil)], (3.4) 

where 

v" = {~(k) (3.5) 

Let 

(3.6) 

where S = {/e.Y'(R 3) I Fourier transform of/is in CO' (R 3) I , 
and F is the set of finite particle vectors in Y. In the same 
way as in Ref. 6 we can prove the following. 

Lemma 3.1: DF is a set of analytic vectors for TK and 
TK is essentially skew-adjoint on DF • 

We write the closure of TK t DF simply as TK. Let 

H~ren(V) =H~I(V) +H~M + HVI{v) + W{u). (3.7) 

This operator is the renormalized Hamiltonian without the 
diamagnetic term. We denote H~en{o) [resp., H ~ren{o)] by 
H~en(resp., H ~ren.). By using Lemma 3.1, the Ho-bounded-
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ness of H ~ren and some limiting argumens, we can prove the 
following. 

Lemma 3.2: (l)eTK mapsD (Ho) ontoD(Ho). (2) For all 
<7;;;.0 and K;;;'<7, 

(3.8) 

where 

XK(k)={l, O<lkl<K 
0, K<lkl. 

(3.9) 

This lemma can be proved in the same way as in Ref. 4. 
Lemma 3.3: H ~ren(V) is self-adjoint with 

D (H ~ren( V)) = D (Ho) and 

H ~ren(V);;;'ina (H~'(V)). 

Proof It is easy to see that 

II W(v)«[I1i <2mA 2R (v)IIHo«[lll, «[lED (Ho). 

This inequality together with (3.3) gives 

(3.1O) 

II (H~II(uXK) + W(UXK )«[111 <cK (11Ho«[l11 + 11«[111), 
«[lED (Ho), (3.11) 

where C K > 0 is a constant such that C K~ as K -+ + O. We 
fix the value of K such that CK < 1. Then it follows from (3.11) 
and the Kato-Rellich theorem that H ~~e; is self-adjoint with 
D (H ~~:n) = D (Ho). Therefore, by Lemma 3.2, H ;,ren is self­
adjoint with D(H~ren)=D(Ho). Furthermore, using (3.8), we 
can show that 

H ;,ren;;;. - (l/2m).d. (3.12l 
We next consider H ;,ren( V) = H ;,ren + V. It follows from the 
closed graph theorem that there exists a constant C > 0 such 
that 

IIHo«[l II <c(IIH;,ren«[lII + 11«[111), «[leD (Ho). (3.13) 

On the other hand, we have the following well-known esti­
mate from the assumption (2.4) on V(see, e.g., Ref. 9, p. 303): 

IJV«[III<EII- (l/2m).d«[l11 + b(E)II«[III, «[IED{.d), 
(3.l4) 

where E > 0 is arbitrary and b (E) is a constant which depends 
on E. Combining (3.13) and (3.14) we get 

II V«[III < CEIIH ;,ren«[lll + (b (E) + CE)II«[III, «[leD (Ho). 

Since E> 0 is arbitrary, it follows from the Kato-Rellich 
theorem that H ;, rent V) is self-adjoint and bounded below 
with D (H ;,ren{ V)) = D (Ho). Inequality (3.10) follows from 
(3.12). 

Proof 0/ Theorem 3.1: Let L = Ho + 1. It follows from 
(3.3) that 

IJH~en«[l11 <cIIL«[III, «[leD (Ho). 

By using commutation relations and basic estimates on 
a #VI'S, we can show that for some constant c' > 0 

I(Lcp,H~en«[l) _ (H~encP,L«[I)I<c'IIL 1/2«[111 IlL 1/2cp II, 

cP, «[lED (Ho). 

Therefore it follows from the Nelson commutator theorem 
(see, e.g., Ref. 10, Sec. X) that H ~en is essentially self-adjoint 
on D (Ho). On the other hand, by direct computations using 
the positivity of H ;,ren [cf. (3.12)] and commutation relations, 
we can show that for some constant a> 0 
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IIH ~renl{/ 112 + IIH~21(U)1{/ 11
2 ';;;a(IIH :enl{/ 112 + III{/ 11 2). 

I{/ElJ(Ho). (3.15) 

Since D (H ~ ren)nD (H j21( u)) = D (H 0) and H ~Ten is closed on 
D (Ho) by Lemma 3.3. it follows from (3.15)thatH ~en is closed 
on D (Ho). Thus H ~en is self-adjoint with D (H :en) = D (Ho). 
The proof of the self-adjointness of H ~en( V) = H ~en + V is 
similar to that of H ~ren( V). Since H j21(u) is non-negative. in­
equality (3.2) follows from (3.10). 

Remark: We can also consider the operator 

Hv(V) = H~I(V) + H~M + H~I(V) + B~I(V) 
as well as 

H ~(V) = H~I(V) + H~M + H}II(v) 

as a Hamiltonian. Let 

,1.e = {2mR (v)) - 112. 

Suppose that 1,1. I #,1.e' Then. by using Lemma 3.2. we can 
prove the following II: 

(A) (1) H ~(V) is self-adjoint with 
D (H ~(V)) = D (Ho); (2) H ~(V) is bounded below if and 

only if 1,.11 <Ae • . 

(B) Hv(V) is self-adjoint and bounded below wIth 
D(Hv(V)) = D(Ho)· 

It should be noted that the bounded ness below of 

H ~ (V) breaks down for 1,.1 I > Ac' In the case 1,.1 I = Ac w~ 
can prove that if VEL "'(R 3). then Hv(V) [resp .• H ~(VJ1IS 
essentially self-adjoint. bounded below on D (Ho) and 

D ( Bv(V)) [resp.,D ( H ~(V))] ~D (Ho). In particular we 

4. SPECTRUM OF THE HAMILTONIANS 

In this section we study the spectrum of the Hamilto­
nians. We first prove the existence of asymptotic fields to 
obtain some information on the spectrum, and then analyze 
the spectrum by using the analytic perturbation theory, 
where we shall introduce an infrared cutoff in the interaction 
to make the problem manageable. We shall consider only the 
renormalized Hamiltonian H ~en( V). The other three Hamil­
tonians H ~ren(V), Hv(V)' and H ~(V) can be treated 
similarly. 

Let 

* ( ) N=[flllf/lkII12<ooJ. 4.1 

Forfin L 2(R 3)nN and fER, we define a'fljl(f), j = 1.2. by 

a'fIJ)(f) = e - itH;C', I ieitHo{V)a#iJ!(f)e - itHo{VleitH;,cn{vl, (4.2) 

where 

(4.3) 

at IJI((). j = 1.2 are well defined onD (Ho). By the same meth­
od as in Refs. 7 and 8, we can prove the following. 

Lemma 4.1: Suppose VEe 2(R 3) in addition to (2.8). Let I{/be in 
D (Ho) andfbe in L 2(R 3)nN. Then the strong limits 

s- lim afFlil(f)I{/:=a!lil(f)1{/ exist and [H~en(V). a!lil(f)J 
I-±eo 

satisfies the same commutation relations as that of 
{H~M. a#1J1(f)J. Furthermore, if I{/is an eigenvector of 
H :en(V). then aU~ (f) I{/ = 0, j = 1,2. 
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Let 

(4.4) 

Then. by Theorem 3.1. we have E (v) > int:.!' (H~I(V)). 
Proposition 4.1: Let u be as in Lemma 4.1. If E (vIis an 

eigenvalue of H ~en(V). then 

.I (H ~en( V)) = .Iess (H ~en( V)) = E (v). 00), (4.5) 

where .Iess (H ~en( V)) denotes the essential spectrum of 
H:en(V). 

Proof Let I{/ be an eigenvector corresponding to the 
eigenvalue E(u). LetH = H~en(V) - E(v). For any f-l > 0 it 
follows from Lemma 4.1 that 

(4.6) 

wherefand IklfareinL 2(R 3)nN. It is easy to find a sequence 
Ifll J such that!, .lklf,EL 2(R 3)nN. IIf, 112 = 1 and 
Ila11((lk l - ,u)f,)1{/ II~ as Il--OO. Put I{/" = a,,:?l{fn)'l1. 
Then. it follows from (4.6) that II(H - ,u)I{/" 11-0 as Il--OO. 

On the other hand. we have III{/" II = Ill:, 112 = 1. Thereforef-l 
is inI (H). Sincef-l is arbitrary. [0.00) c;I (H). On the other 
hand. we have..!' (H) ~ [0,00 ) by definition of H. Therefore we 
get.I (H) = Iess (H) = [0. co). This means (4.5). 

By a standard theorem on the spectrum of tensor prod­
uct of self-adjoint operators (e.g., Ref. 12, Sec. VIII) we have 
I (Ho(V)) = (int:.!' (H~I(V)). 00 ). so that Ho(V) has no dis­
crete spectrum and all the eigenvalues of Ho( V) are embed­
ded in the continuous spectrum. Thus, we have here a prob­
lem of the perturbation of eigenvalues embeded in the 
continuous spectrum. In the present case we can avoid in 
part this difficulty by introducing an infrared cutoff in the 
interaction. and then we can use the analytic perturbation 
theory. The idea of our procedure in the following is due to 
Ref. 5. 

Let CT > 0 and let 

Ka = IkER 31Ikl>CTj. 

Then, we have 

Y=Y(Kal®Y(K~I. 

where 

Let 

Y(Kal = C$ L~ I{ ~L 2(Ka ))]. 

Y(K ~) = C $ [n ~ I ( ~ L 2(K ~)) 1· 

iJru = L 2(R 3) ® [Y(Ku) ® til lJ ® [Y(Ka)® III lJ, 
(4.7) 

where 

Il = 11,O.O.· .. lEY(K~). 

One can easily prove the following. 
Lemma 4.2: (1) iJr u and iJr~ reduce H ~:n(V). 

(2)E(vul = inf.I(H~:n(v1 t iJra )· 

Theorem 4.1: Let CT> O. Suppose that H ~I( V) has the 
discrete spectrum Eo < E) < ... , at the bottom of the spectrum 
with the multiplicity nl, for each Ej • Then. for each Ej such 
that Ej <Eo + CT there ~xists a constant rj (v,l7) such that if 
1,.11 < rj(v,CT), thenH~:n(V) has nlj eigenvalues (not necessar-
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ily distinct) near Ej which are analytic in.-1, where rj(v,CT) 
depends on v and CT. In particular, if 1.-1 1 < ro(v,CT), then E (va) 
is an eigenvalue of H~~n(V), i.e., the ground state for H~~n( V) 
exists. 

Proof Since ~ (H ~M I cW' a) = 10 J u[ CT, 00 ), we see that 
the discrete spectrum of Ha(V) I JY a is 
IEj IEj <Eo + CTJ( #tP)· Since H~l(v), j = 1,2, and W(v) are 
Ho-bounded and H 0 is H o( V)-bounded, 
H[(v)=Hj'l(v) + Hj21(V) + W(v) is Ho(v)-bounded. Therefore 
H ~en( V) is an analytic family of type (A) for sufficiently small 
1.-11 (see Ref. 9, p. 377, Ref. 13, p. 16). Thus we can apply the 
analytic perturbation theory toH~~,n(V) I cW'a' taking 
Ho(V) I cW'a) as the unperturbed operator andH[(v,,) I cW' a 
as the perturbation, thereby establishing the first half of the 
theorem. In particular, ina (H~:n(V) I JY,,) is an eigenval­
ue of H~en(V) I cW'" if 1.-11 < ro(v,CT). By Lemma 4.2, (2), it 
follows that E (v,,) is an eigenvalue of H ~en( V) if 1.-1 1 < ro(v,CT) 
and thus the latter half of the theorem is proved. 

By combining Theorem 4.1 with Proposition 4.1 we ob­
tain the following. 

Theorem 4.2: Let CT> O. Suppose that ina (H ~I( V)) is a 
discrete eigenvalue of H~I(V). Then, there exists a constant 
r(v,CT»Osuch that for all 1.-11 <r(v,CT), E(va)isaneigenvalue 
of H ~en( V) and 

~ (H ~~.n(V)) = ~ess (H ~:n(V)) = E (v,,), 00). (4.8) 

Proof We first suppose that VEe 2(R 3) and supp vCKa in 
addition to (2.8) and prove (4.8) by using Theorem 4.1 and 
Proposition 4.1. Then, by a limiting argument, we prove (4.8) 
for general v. 

Remark: (4.8) shows that all the eigenvalues of H~en(V) 
with small 1.-1 1 are embedded in the continuous spectrum. 

5. CONCLUDING REMARKS 

We have proved the self-adjointness of the Hamilto­
nians (Theorem 3.1 and Remark at the end of Sec. 3) and the 
basic property of the infrared cutoff Hamiltonian with small 
coupling constant (Theorem 4.2). But our results are not so 
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strong and should be considered as a first step towards the 
construction of a more complete theory for our model in­
cluding the rigorous formulation of the Lamb shift and the 
spontaneous emission of photons. As was mentioned in Sec. 
4, we are faced with the problem of the perturbation of eigen­
values embedded in the continous spectrum. The perturba­
tion theory of eigenvalues embedded in the continuous spec­
trum has been developed by some authors for some classes of 
operators (see, e.g., Ref. 14 and references cited therein) and 
it has been known that it leads us to the so-called "reson­
ances" (see, e.g., Ref. 13, Sec. XII). From this point of view, it 
may be conjectured that the Lamb shift and the spontaneous 
emission of photons correspond to the "resonance". Howev­
er, we have not yet succeeded in proving this conjecture for 
our model and this problem is left for future studies. 
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~he concept of contact between manifolds is applied to space-times of general relativity. For a 
gIVen backgroun? spac~time a cont~ct approximation of second order is defined and interpreted 
both from the pomt of View of a metnc pertubation and of a higher order tangent manifold. In the 
first case, an application to the high frequency gravitational wave hypothesis is suggested. In the 
second case, a constant curvature tangent bundle is constructed and suggested as a means to 
define a ten parameter local space-time symmetry. 

PACS numbers: 04.20.Cv 

1. INTRODUCTION 

The Minkowski tangent spaces to a given space-time of 
general relativity represent the state of zero gravity. Except 
for the metric signature and Lorentz symmetry, these tan­
gent spaces do not contribute substantially to the knowledge 
of the local geometry ofthe space-time itself. On the other 
hand, it is a known fact that the geometry of a manifold in a 
small neighborhood of a point can be expressed in terms of 
osculating or contact geometries. The construction and 
physical interpretation of similar contact structure for 
space-times of general relativity is the object of this note. 

Mathematically speaking, there is one basic motivation 
for the construction of these contact structures. Because of 
the geometrical nature of the gravitational field, the two­
body problem for local gravitational fields may be treated by 
means of the concept of contact of two space-times. In this 
fashion, a completely geometrical interaction can be de­
scribed. The usual metric perturbation methods rely on the 
hypothesis of convergence of a power series expansion of the 
background metric. Because the experimental evidences in 
general relativity are scarce, this hypothesis may be criti­
sized. By use of the contact method such difficulty can at 
least be minimized reducing the mentioned series to a Taylor 
expansion of some basic functions. 

From the physical point of view, two motivations are 
considered. One of them looks for a better description of the 
high frequency gravitational wave as emitted by a collapsing 
background. In this case a contact approximation of second 
order is regarded as a linear approximation where the per­
turbation term depends on the curvature of the background. 

The second motivation is derived from the need to de­
fine a local symmetry in space-time in substitution to the 
Poincare group. The Poincare group is a symmetry which is 
broken by the gravitational field. This fact makes that group 
unsuitable to be used as a symmetry in a quantum field the­
ory or in a group theoretic description of particles on a 
curved background. The construction of tangent space­
times with nonzero constant curvature may be used to define 
adequate groups of symmetry. 

2. CONTACT APPROXIMATION 

The notion of contact between manifolds was firstly in-

troduced by Cartan. 1 It generalizes the elementary notion of 
contact between curves and surfaces. The basic concept can 
be described as follows: If X, X are two mappings of a mani­
fold S into a homogeneous space G / H then X and X are said 
to have a contact ot:.. order k, iffor each qES there is a gEG 
such that X and go X agree up to the order k at q. 2 Here this 
concept is addapted to the case where X and X are two local 
embeddings of space-times in a p-dimensional pseudo-Eu­
clidean space M (r,s) with signature r + s. Two problems 
may, in principle, be considered: In the first case X andX are 
the embedding of two distinct space-times Sand S respec­
tively. In the second case X andX are distinct embeddings of 
a single space-time S. However, sinceX and X are taken to be 
isometric embeddings, they are equivalent up to an isometry 
of M (r,s). Therefore, the second problem becomes meaning­
less and only the first one will be considered. In particular, S 
will be taken to be a given space-time, while Swill be deter­
mined from contact considerations. 

The notion of k-order contact can be described in a 
more general sense by the use of a Grassmann manifold 
G4(M,x (q)) in M (r,s) which is the set of all four-dimensional 
planes through a point X (q) of M (r ,s). It follows that 
G4(M,x (q)) is an analytic manifold.3 At each point X (q) of 
M (r,s) a Grassmann manifold is constructed so that a Grass­
mann bundle B4(M) with fibers G4(M,x(q)) and base M (r,s) 
may be defined. The embedding X: S~M (r,s) induces a map 
tx: S~B4(M) defined by tx(q) = X. (Tq(s)), whereqES,X. is 
the derivative map of X and Tq (S ) is the tangent space to S at 
q. If 1T" denotes the projection map of B4(M), it follows that 
X = 1T" Ot x is another embedding of S. Therefore, a first order 
contact between two embeddings X and X at qES and ijES can 
be defined by the conditions: X (q) = X (q), tx(q) = tx(ii)· 

Higher order Grassmann bundles M n + 1 = B 4(M n), 
n = 0,1 , ... ,k, may be defined by iteration. Let M 0 = M (r,s), 
M 1 = B4(MO), ... ,Mn + 1 = B4(M n), so that Mn + 1 is the 
Grassmann manifold of 4-planes through a point of a fiber in 
M n. Each of these M n + 1 is an analytic manifold and the 
embedding t x induces an embedding t 1 x which by turn in­
duces t 2X and so forth, until t nx: S~Mn + I. If X. n + 1 de­
notes the derivative map of X n (with X 0 = X ) and 1T' • •• n 

denotes the projection map of the tangent bundle Tn + IS, 
then, according to Fig. 1, the induced embeddings are given 
by 
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tx " = X* "01T;; I01T;; ~ 1 O ••• 01TO- I, 

where 1T 0 = 1T is the projection map ofthe tangent bundle TS. 
In terms of these induced embed dings, two embeddings 

X, X are said to have contact of at least order k at gES, qES, if 

t x "(q) = t X "(if), n = 0,1 ,2, ... ,k. 

Since t x n is determined by the derivative map X * ", it 
follows that X and X have contact of at least order k when the 
k th-order Taylor polynomials of X and X agree at 9 and q.4 
In other words, if q i and qi (i = 1, ... ,4) are the coordinates of 
q and q respectively in Sand S, then X and X have contact of 
at least order k if 
Ik) 

X = X (q) + (Xi - qi)X.,(q) + !(xi - qi)(X i - qi)X,ii(q) + ... 
= X(qj + (Xi - c[)X,i(qj + !(xi - c[)(xi - qi)f'ii(q) + ... 

I!>J 

=X, 

II.:) 1'0 
where X ,X denote the k th-order Taylor polynomials of X 

and X respectively. 
The k th-order contact neighborhood of a point q in S is 

the set of points xES on which the contact of order k with Sis 
made. It has a radius A such that 

A k = Ilx - gil/.: = {gii(xi - qi)(xi - qi))kl2 <E\ 
where gii is the metric tensor of Sand E a sufficiently small 
number so that powers of E greater than k are neglected. 

Taking X as a position vector in M (r,s), a Cartesian 
frame in that space can be chosen so that the Taylor polyno­

Ik 1 

mial X may be expressed in terms of its Cartesian compo-
Ik 1 

nents X "(x') (all Greek indices run from 1 to p while small 

case Latin indices run from 1 to 4). 

s __________ ..::x~ ___ • M 

FIG. \. 
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Given a space-time S with minimal embedding X in 
M (r,s), the k th-order contact approximation to S at q is a 

(k) • 

space-time S defined by the k th-order Taylor polynomial 

(k) • • II) . 
X 1'. For example, the first order contact approximation S IS 

just the Minkowski tangent space-time to S at q generated in 
M (r,s) by the coordinates: 

(2.1) 

(2) 

The second order contact approximation S defined by 

XI' = XI'(q) + (Xi - qi)XI',i{q) + ~(Xi - qi)(xi - qi)Xl'.ij(q) 

(2.2) 

(plus the condition that it satisfies Einstein's equation) repre­
sents the simplest nontrivial approximation to the space­
time S at a neighborhood of q 

(2) 

3. GEOMETRY OF S 

Since S has embedding class p - 4, there are p - 4 unit 
vectors 'YJ{A I in M (r,s) orthogonal to S and to themselves (cap­
ital Latin indice run from 5 to p). A point of Sin M (r,s) is 
specified by a set of p Cartesian coordinates X "(Xi) while a 
point of M not in S has Cartesian coordinates 

ZI'(Xi,XA) = XI'(Xi) + XA7]ll(A I (Xi), (3.1) 

where x A are p - 4 parameters. 
A Gaussian coordinate system in M (r,s) may also be 

defined with coordinates XU = (Xi,XA). If 7]/lv denote the Car­
tesian components of the metric tensor of M (r,s), its Gaus­
sian components are given by 

gaf3(xi,xA) = ZI'.a Zv ,{37]"v; 

in particular, gAB = 7]"(A 17]"(B ,7]"". Since the vectors 7]/lIA I 
are orthonormal, then gAB = ~{jAB' where ~ = ± 1, 
A = 5, ... ,p, depending on the signature of M (r,s). On the oth­
er hand, considering that X 1'., are vectors tangent to S 

(3.2) 

then 

glA = (X".i + xB'YJI-'IBI,j )7]"IA I 'YJ"v 

= XB7]I\Bl.i'YJvIA 17])1,V = XBPABi , 

where PABi = 'YJ"IBI,i7]"IA 17]!t'" It follows that 
PARI + PBAi = 0 andglA Is = 0, where Is denotes the restric­
tion to S. Finally, again using (3.2), 

-Xl' X y + 2xAXI' y gi i - .1 . i 7]!tv ,(,77 (A IJI 77I'Y 

+ XA
XB7]"VI).i77

V

IB IJ7]I1Y' (3.3) 

so that gii Is = gjj(S), If gu(3 denotes the inverse matrix of 
ga(3' the Christoffel symbols of the first and second types in 
the Gaussian system are defined in the usual manner and 
r af3y = g yo r ~f3' The restriction of some of these compo­
nents to S gives some useful identities.5 In particular, denote 

biiA = - FiiA Is = + !,gii.A Is· 
From (3.3) 
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g _ 2X Ii v + 2xB Ii v i j,A - .(i 7J (A )J) 7J lil' 7J 1.1 1.1i 7J IB IJI 7J,,,,, 

where symmetrization applies to i,j only. Therefore 

bijA = + 7J1,,·XI'.(i7J"IAI.j)· 

Differentiating (3.2) with respect to Xi and replacing in the 
above expression gives 

b - ,. X" I i,A - - 7J,,,.7J (A) .iJ s· (3.4) 

From this expression it follows that 

X" .. - n.ABb " + r kXIi .'J - -l') 'j,47J IBI i) .k· 

At this point it may be convenient to use geodesic coordi­
nates at q in S so that the above expression is reduced to 

X",;) = -gABbjiA 7J'\B)' (3.5) 
The curvature radius of S at the point q, corresponding 

to a normal 7J(A) and a displacement dx\ is a particular value 
of xA such that Z Ii remains fixed at the center of curvature6

: 

.J.Z" = Z ",idxi 

= (XI',i + ~7JIi(A ).i) dx' = 0 (no sum). (3.6) 

Contracted multiplication of this equation by 7JwvX".i and 
7J Ii" 7J~B) gives respectively 

(3.7) 

and 

(3.8) 

Equation (3.7) has nontrivial solution x A = pAUl when 

det( gij + ~bijA) = O. (3.9) 

The quantities bi)A are intimately associated to the Rie­
mannian curvature of S. This follows from the vanishing of 
the Riemann tensor of M (r,s) writen in the Gaussian system: 
R a{3YD = O. Then Ra{3yo Is = 0 and in particular Rijk, ls = 0, 
from which Gauss equation is obtained: 

R j",(S) = 2gim(S)gABbmlk IA 1 b, ))B' 

From (3.5) and (2.2) it follows that 
(21 

XI' = X"(q) + (Xi - qi)XI'.i 

_ ~(Xi - qi)(xj - qj)gABbijA 7JI'(B)' 

12) 

Then the metric of S is given by 

12) (21 (21 

g ij = XI',iX ' ·. j 7JfiV = gij(q) + Yij' 

where 

(3.10) 

(3.11) 

(3.12) 

Yii = (x k 
- qk)(X'_ q')gABbikA(q)bj/B(q). (3.13) 

In the case of second order contact, Yij is a small quantity of 
the order of A 2. Then (3.12) may be compared to the linear­
ized space-time solution of Einstein's equations. In fact, in a 
suitable coordinate system, g,j(q) can be written as 7J 0 so that 
(3.12) looks exactly like the usual linear approximation when 
y, j is regarded as a perturbation on the flat metric. However, 
there are some differences to be noted. Here the background 
space-time is S and the additional term y, j is a function of 
the curvature of S. If S were flat then Yij would be zero as a 
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consequence of(3.1O). Also note that whileg'j(q) is calculat­
ed at a point of S, Yo is defined in the contact neighborhood. 

It will be of interest to express bijA in terms of the curva­
ture radii of the background. This can be obtained from an 

(21 

additional condition imposed on S. From (3.12), gij(q) 
(21 

= g'j - Yo' In Eq. (3.9) it fonows that 

(2) 

det(g,j - Y'j + ~bijA) = O. (3.14) 

Now suppose tht for a solution ~ = pAUl r'0 of(3.9) it is also 
(21 

true that gij +P\lb'jA = O. That is 

121 

bijA = - gij/pAUI' (3.15) 

• (2) (2) 

Smce b ijA = bijA , the definition ofthe curvature radius of S: 

121 (21 121 

det(g,j +pAu)bijA)=O, (3.16) 

gives after using (3.15) 

(21 

so that p A Ii) = P A(il' Therefore the condition (3.15) ensures 
(2) 

that the curvature radii of Sand S coincide at q. Then (3.16) 

can be rewritten as 
(21 

det(g'j + pAIi)b jjA ) = 0 

which is trivially satisfied in view of (3.15). As a matter of 
(21 

fact, Eq. (3.7) for S becomes identically satisfied. This means 

that with condition (3.15) all directions dx' define a curva-
(2) 

ture line through q and consequently the point q in S looks 

like an umbilic point and the suffix (i) may be dropped in 
121 121 121 

pAIi!' Denoting pA = pAri) for a given (i), a single curvature 

radius in the subspace of M (r,s) normal to S may be defined 
by 

(3.17) 

4. HIGH FREQUENCY WAVES 

Now consider some properties of the intrinsic geometry 
(2) 

of S when it is regarded as a space-time of general relativity. 
(2) 

The covariant metric tensor of S is defined so that 
(2) (2) 

g jig jk = l>'k . Within the considered order of approximation, 
(2) 

g'j may be written as 

(2) 

gii = gO(q) _ gik (q)gi I (q)Ykl' (4.1) 
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(2) 

The condition for S to be a solution of Einstein's equa-

tions is obtained exactly as in the case of as the linear solu­
tion, where the Minkowski metric 'TJij is replaced by gij(q)· 

(21 (2) 

The Christoffel symbols r >, of g ij are 

(21 r> = !g"(q)(Yjl,,, + Ykl,j - Yjk,,j, 

Introducing the notations 

Y = gkl (q)yw t/Jij = Y'j - !gij(q)y, 7i = gkl (q)t/Jik.l' 
12) 

then Einstein's tensor for S , may be written as 

(2) 

G ij = H gkl (q)WiJ,k1 - 7/ j - 7j,i + gij(q)gkl (q)7k.1 ]. 

(4,2) 

Choosing the usual gauge g'" (q}t/Jik,/ = 0, the linear wave 
equation follows from Einstein's Equation Gij = KTij . 
Therefore, a time-dependent t/J'j may have a gravitational 
wave interpretation as seen by an observer in S inside the 
contact neighborhood with wave ripples superimposed on 
the curved background. Notice that the perturbation term is 
derived from the curvature of S. This fact can be seen from 
(3.1O) which relatesbijA toR ij k/(S), Alternatively bijA can be 
expressed in terms of the curvature radius of S as derived 
from (3.9), or explicitly from (3.15), if the umbilic condition is 
used. Considering the last case, the perturbation term (3,13) 
can be written as 

12) (2) 

gik gjl 
Yij = (x k - qk)(X' - ql}~B_A B 

p p 

Define a tensor hij by 
12) 12) 

gikgjl = hij gkl' 

Then Yij = (A 2/p2)hij and (3.12) becomes 
12) 

gij =gij(q} + (A /pfh ij . 

(4,3) 

(4.4) 

This expression can be compared to the expression obtained 
in the high frequency limit hypothesis, according to which 
the metric gij is expanded in powers of the ratio of the wave­
length to the curvature radius. In the case of a strong curva­
ture the curvature radius is small and the power series is 
assumed to converge when the wavelength is comparatively 
smaller/'s Although it appear to be a reasonable hypothesis, 
the series convergence is questionable.9 Considering the 
analogy with the contact approximation, the only expansion 
required is the Taylor expansion of the functions XI' and no 
additional expansion parameter is postulated. Thus, if A is to 
be compared to the wavelength in the high frequency wave 
theory, it follows that the wavelength is nothing but a mea­
sure of the size of the contact neighborhood, Accordingly, if 
the contact neighborhood in S has strong curvature, then the 
frequency of the emitted gravitational waves has to be high 
to keep the ratio (A /pf small. Notice, however, that nothing 
prevents the consideration of low frequency waves as de­
rived form (4.4). In fact, if S has weak curvature in the con-
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tact neighborhood, then p will be large and A can also be a 
relatively large length. Therefore, it appears that (4.4) can 
describe a wide band local gravitational radiation emitted by 
the background. 

5. CONSTANT CURVATURE CONTACT BUNDLE 
12) 

A particularly interesting case is that when S is special-
12) 

ized to have constant curvature. It was seen that when S 

satisfies Eq. (3.15), it will show q as an umbilic point, 
A straightforward calculation of the Riemannian cur-

121 

vature of S gives 

w here indices inside vertical bars are not under skew symme-
12) 

trization. Then, after use of p.15) with the notation p, the 

last expression becomes 

or 

(
~Ijl ~Iik 

Rij kl = ~B (2) 121 
pA pB 

121 121) 
gjk ~ 

(21 11) 
pA pB 

III + g mn(Xr _ qr)(X' _ q')~BgCD 

(2) (2) ((2) 12) 

gnr gms gjk gil 
x--- ---

121 (2) 121 (1) 

pB pD pA pC 

(21 121 ) 
gjl g ik 
--
(2) (2) 

pA pC 

(2) 

(5.1) 

Now, for a contact of second order, A 2/ P 4 is negligible inside 

the contact neighborhood. Then it follows that 
III 12) 12) 12) (2) 

R ijkl = K 2(gjlgik - gjkgi/) (5.2) 

12) 

which characterize S as a constant curvature manifold with 
12) (11 

K 2 = P -2. Under the condition that S is also a solution of 
(2) 

Einstein's equations, in view of the results in Sec. 4, S repre-

sents a linear solution with constant curvature. These con-
12) 

stant curvature contact space-times, denoted S q(p} are 

minimally embedded in a five-dimensional subspace of 
M(r,s) [either M(4,1) or M(3,2)]. They can be defined in all 
regular point of S with curvature such that A </>2. This means 
that the diameter of the contact neighborhood has to be suffi­
ciently small in regions of S with strong curvature, but it can 
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be fairly large for regions of weak curvature. Thus a second 
(2) 

order contact bundle S (p) with constant curvature with fi-
12) 

bers S and base S may be constructed. In particular when 
(2) 

S q(p) is a linearized version of the de Sitter space-time with 
(2) 

curvature radius p (a function of the position in S) a de Sitter 

bundle is obtained. This de Sitter bundle shows a local de 
Sitter symmetry at each point of S. Such bundle has been 
proposed as an additional property of the space-times of 
general relativity. 10.11 Its mathematical existence and con­
struction, as shown above, may be taken as a consequence of 
the local differential geometry of the space-times. 
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We derive necessary and sufficient tensor conditions for the existence of a four-parameter 
isometry group G4 which acts mUltiply transitively on a Riemannian V3 • We then apply these 
results to determine which spatially homogeneous cosmological models have induced 3-metrics 
which are invariant under such a four-parameter group. 

PACS numbers: 04.20.Jb 

1. INTRODUCTION 

In this paper we define a space-time to be a four-di­
mensional manifold V 4 with a Lorentzian metric g which 
satisfies the Einstein field equations. Space-times are 
often found, studied and invariantly classified using n­
parameter isometry groups Gn under which g is in­
variant. If n ~ 6 and Gn acts transitively on orbits which 
are three-dimensional spacelike hypersurfaces, then 
n = 3, 4 or 6 and the space-times are called spatially 
homogeneous. When n = 6 they are also isotropic and 
are called Friedmann-Robertson-Walker (FRW) models 
(cf. Ellis and MacCallwn l and Eisenhare for terminol­
ogy.) 

Historically, isometry groups have two major appli­
cations in general relativity. The imposition of an iso­
metry group on a V4 makes the field equations more 
tractable so that new exact solutions may be found. 
Secondly, isometry groups are used to invariantly 
classify known space-times. This technique fails how­
ever for space-times whose metrics are not invariant 
under any Gn • The Szekeres3 space-times which admit 
no isometry group (cL Bonnor, Sulaiman and Tomi­
mura4

) are a good example. The Szekeres space-times 
are not generic solutions to the field equations, since 
studies by Collins and Szafron 5 and Berger, Eardley 
and 01son6 have shown that the three-dimensional 
spacelike hypersurfaces V: are conform ally flat. In 
fact, there is a subclass of the Szekeres models in 
which the induced 3-metric g* on each hyper surface V: 
is invariant under a G: (since each V: is flat) while 
the 4-metric g on V4 is not invariant under any isome­
try group Gn • 

These results suggest two applications of "intrinsic 
symmetries". The first is to use a combination of in­
trinsic symmetries and extrinsic symmetries, to in­
variantly classify known space-times, even if they 
possess no isometry group Gn under which g is invari­
ant. The second application is to impose a combination 
of intrinsic symmetries (spatial flatness, spatial con­
formal flatness, restrictions on the eigenvalues of the 
3-Ricci tensors of the V:'s, the existence of G:'s under 
which the g*'s are invariant, etc.) and extrinsic sym­
metries (restrictions on the eigenvalues of the expan­
sion tensor, restrictions on the acceleration vector, 
etc.) in order to make the field equations more tractable 
in the search for new exact solutions. This program 

a~his material is based upon work supported hy the National 
Science Foundation under Grant PHY-7911923. 

has been started in Collins and Szafron,7 Szafron and 
Collins,8 Collins and Szafron,9 Spero and SzafronlO and 
Wainwright. 11 

The easiest way to impose intrinsic symmetries is by 
te nsor conditions on the quantities of the V:. .. Spatial 
flatness", the demand that each V: is flat, is equiva­
lent to demanding that the 3-Ricci tensors of the Vfs 
vanish. "Spatial conformal flatness", the demand that 
each V: is conform ally flat, is equivalent to demanding 
that the Cotton- York tensor (cl. York12 and Wainwrightl3 ) 

vanishes. 

In this paper, we begin to explore the consequences 
of imposing isometry groups G: on the induced 3-me­
trics g* of spacelike hyper surfaces V:. In fact, Ellis 
and MacCallwn14 have already begun this study from a 
different point of view. It is well known (cf. Eisenhart15

) 

that the existence of a G: under which g* of a V: is in­
variant, is equivalent to the tensor condition: the 3-
Ricci tensor is isotropic (has three equal eigenvalues) 
or equivalently that the trace free 3-Ricci tensor van­
ishes. They have imposed this tensor condition on spa­
tially homogeneous space-times. They delineate all 
Bianchi-Behr types in which this condition is possible 
and indicate when it leads to the existence of a G 4 or G6 

under which the full space-time metric g is invariant. 
We generalize these results by studying the effects of 

the existence of G!'s under which g* on each V: is in­
variant (the existence of a G~ is of course impossible, 
c.L Eisenhare6

). In order to impose this condition 
easily, it must first be cast in tensor form. Such a 
formulation is independent of the V4 in which the V:'s 
are imbedded and independent of the field equations. 
For this reason, the result should be of general inter­
est in differential geometry. We derive such a condi­
tion in Sec. 2., and believe it to be new. 

In Sec. 3., we review the results of Ellis and Mac­
Callwn on G:'s and use the formulation in Sec. 2 to 
impose a G: on the induced 3-metrics g* of the spatially 
homogeneous space-times with interesting results. It 
turns out that every Bianchi-Behr type II or type VI 
Vz = -1) space-time has a G: under which the 3-metrics 
g* of the hypersurfaces are invariant, but do not in 
general admit a G 4' We give a complete list of which 
Bianchi-Behr types may admit a G: and under what 
conditions the G: becomes a G 4' 

2. MULTIPLY TRANSITIVE G4 ON A V3 

In this section V3 will be a three-dimensional Rie­
mannian manifold with positive definite metric tensor g: 
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(2.1) 

Since V3 does not have to be imbedded in a Lorentzian 
V4 we shall omit the *'s which were used in Sec. 1. 
Throughout this paper, Greek indices will run from 1 
to 3 and Latin indices will run from ° to 3. Semicolon 
denotes a covariant derivative and comma denotes apartial 
derivative. We denote the components of the Ricci ten­
sor by Ra~, the Ricci scalar by R, the trace-free Ricci 
tensor components by 

Sa~=Ra~ - tRga~, 
and define the scalar S, by 

S2 =!Sa~S"'e • 

(2.2) 

(2.3) 

The trace-free Cotton-York tensor Cd is defined by 

Cd= 217a~", (ReA - toe AR);", • (2.4) 

We shall use the orthonormal tetrad formalism of Ellis 
and MacCallum17 throughout this paper, but in this sec­
tion the tetrad is really only a triad since we are in V3 • 

We shall prove the following: 

Theorem: Let Vs be a three-dimensional Riemannian 
manifold with metric tensor g. The following are equiv­
alent: 

(1) g is invariant under a four-parameter isometry 
group G4, multiply transitive on Vs. 

(2) There exist coordinates on Vs in which 

ds2= (w1)2+ (",2)2+ (WS)2, 

w1 =dx - (zB/G)dy + (yB/G)dz , (2.5) 

w2=(A/G)dy, w3 =(A/G)dz, 

where G = 1 +tk (y2 +Z2), k = 0, 1, or -1; and A, Bare 
constants. 

(3) Rae has two equal eigenvalues, the spatial gradient 
of S vanishes ~.'" = 0) 

and 

where either: 

(i) A constant, ASae* 0; 

(ii) A = 0, Sae* 0, and Rae has zero as its third 
eigenvalue; 

or 

(iii) SOle = ° . 

(2.6) 

Remarks: From Eq. (2.11), it will be seen that the 
spatial gradient of R also vanishes, but it is not neces­
sary to assume this in (3). 

In the coordinates (2.5) the four Killing vectors of the 
theorem are: 

~1 = 4By a/ax + 2kyz a lay + (4 + kz 2 - ky2)a/az , 

~2="';'4BZ a/ax + (4+ky2-kz2)a/ay +2kyz a/az, (2.7) 

~s=a/ax, ~4=y a/az -z a/ay. 

The condition that Rae has two equal eigenvalues is 
equivalent to demanding that SOle has two equal eigen­
values. We can cast the eigenvalue conditions of (3) 
into tensor form by defining the invariant 
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T = 486 
- 3 (SaBSeAs~a)2 • 

Then Rae has two equal eigenvalues if and only if T = 0, 
and the third eigenvalue of Rd is zero if and only if 

T = 4S6 _ 3R2~2 _ *R2)2. 

Condition (3) part (iii), Sa~=O, occurs if and only if a 
G6 is admitted. 

Proof that (1) - (2): Cartan18 has shown that if (1) is 
true, then we can find coordinates (2.4). On the other 
hand, Killing's equations 

gaB~a. A+gaA~a, a+gBlI, a~a =0, 

in coordinates (2.5) can be solved by a long and tedious 
procedure and four independent solutions (2.7) can be 
found. [It is not too difficult to check, however, that 
the four vector fields (2.7) are solutions.] 

Proof that (2) - (3): We solve the equations 

(2.8) 

where wa A are given by (2.5) to obtain the tetrad (which 
is really a triad) dual to the one forms of (2.5): 

a G a zB a G a yB a 
e1 = ax' e2 = A ay-+A ax' e3 = A a;--ySX· (2.9) 

Using the formulas (A1) of Appendix A, we compute the 
commutation coefficients of (2.9): 

a l =n 22 =n33 =n 23 = 0, 

a3 = -n12 =tzkA -1, 

a2=n1S =tykA-1, 

(2.10) 

nu = -2.BA -2. 

We then use formulas (A4) and (2.10) to compute the 
components of the Ricci tensor in the orthonormal 
tetrad (2.9): 

R u =2B2/A\ R22==R3S=~A2_2B2)/A4, 

R12 =R 13 =R23 = 0. 

(2.11) 

Equations (2.2) and (2.11) then yield 

S11 = (8B2 - 2kA2)/3A4, S22 =S33 = ~A2 - 4B2)/3A4. 

(2.12) 

If we compute the tetrad components of Ca/J, using (2.4) 
or the formulas (A5) of Appendix A (which is much 
easier), we find, on using (2.11) that 

Cas = -6BS",/A2. (2.13) 

The proof is thus finished. 
The proof that (3) - (2) is quite complicated and we 

relegate the most tedious part to a preliminary lemma 
given in Appendix B. 

Proof that (3) - (2): If the Ricci tensor is isotropic 
(or equivalently SOt/3 == 0) then it is well known that Vs 
admits a G6 (cf. Eisenhart19

) so that (1) is satisfied. 
But (1)- (2) has been shown so the proof is complete. 
Henceforth, we assume 

(2.14) 

Then by the lemma of Appendix B, we choose a tetrad 
which is a Ricci eigenframe in which: 
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(2.15) 

and 

,\=3n u ' (2.16) 

We write out the formula for R22 -Ru from (A4), sub­
ject to (2.15) and (2.16): 

R22 -Ru =2a 2a 2+ 2a3a3 - 4a/ - 4a 2
2 - ~ ,\2. (2.17) 

But a",s == 0, so by (2.3) and (BS), 

a",(Rz2- RU)=0, 

so that from (2.17) 

2a2a2 + 2a 3 a 3 - 4a 3
2 

- 4a2
2 = f3 , 

where f3 is constant. 

(2.1S) 

We now introduce a coordinate system. From condi­
tions (2.15), applied to the commutators of (A1) we have 

[eu e2 ] = [e11 e3] = 0, 

so that e1 and ez form a surface which we label X3 ==z 
= const, while e1 and e3 form a surface which we label 
x 2 == y = const. Then 

e1 • alaz =e2 • alaz =e 1 • alay = e3 • alay = 0, 

so that we can write 

e1 =a alax, e2 =b alax+c a/ay, e3=ralax+s alaz, 

(2.19) 

where a, b, c, r, and s are functions ofx,y,z. If we 
apply the coordinate transformation 

A J 1 A A 
X = ;-ax , y = y, z = z 

we obtain: 

e1 =alax, e2 =ba/ax+ca/ay, e3 ::ra/ax+sa/ay, 

(2.20) 

where we have dropped the hats from x, y, z, b, c, r, 
and s. Applying the commutation relations (A1) to the 
tetrad (2.20) and using (2.15) and (2.16) leads to: 

b,=c,=rx=sx=O, 

a3 = -n12 = (s/2c)c., a2 =n 13 = (c/2s)s" 

nu = h =cr, - sb. + (bs/c )c. - (crl s)s" 

(2.21) 

where subscripts denote partial differentiation. Equa­
tion (2.1S) can now be rewritten, using (2.21), as 

s(sc/c).+(cs/s),- (CS/S)2- (SC/C)2=f3. (2.22) 

A computation of the 1-forms dual [use Eq. (2.8)] to the 
tetrad (2.20) yields 

WI =dx - (b/ ddy y - (r! s)dz , 

w2 =dylc, w3 =dzls. 

Consider the line element 

ds 2 = (W2)Z + (W3)2 • 

(2.23) 

(2.24) 

A calculation of the Gaussian curvature of a 2-space 
with line element (2.24), subject to (2.23) yields 

R 232/ (g2zg33 - gZ3 2) = (3 • 
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Thus, (2.24) is a metric on a 2-space of constant curva­
ture. Eisenhart20 has shown that we can perform a 
coordinate transformation 

y =y(y,z), z =z(y,z) 

so that 

w2 =dyIF, W
S =dzlF , 

where F=1+tf3(y2+z2). We modify the transformation 
slightly and drop A, S so that 

w2 =(AIG)dy, w3 =(AIG)dz, 

where A is constant and G = 1 +tk(y2 +Z2); k = 0, 1 or 
-1. Our 1-forms (2.23) now have the form 

WI =dx - (b/G)dy - (r/G)dz , 

(2.25) 

where band r are different arbitrary functions of y and 
z than appear in (2.23). 

We now perform a coordinate transformation 

x=x+!(y,z), y ==y,z =Z 

so that 

WI =dx - {fy+bG-l)dy - U.+rG-1)dz, 

w2 = (A/G)dy, w3 = (A/G)dz • (2.26) 

We wish to choose!(y,z) to satisfy the two conditions 

!y+b!G =zB/G, !.+r/G = -yB!G, (2.27) 

where B is some constant. The integrability condition 
for (2.27) is!,.=!.,, that is 

Gry - Gb.+bG. -rG,=-2B. 

But on comparing (2.23) and (2.25) we see that 

c=s=(G/A), 

so that (2.21) becomes: 

Gr, - Gb. + bG. -rG,= t.\A . 

(2.28) 

(2.29) 

So the integrability condition (2.2S) can be satisfied by 
choosing B = -~.\A. Dropping A'S, our 1-forms (2.26) be­
come (2.5) and the theorem is proved. 

3. SPATIALLY HOMOGENEOUS SPACE·TIMES WITH 
Grs 

In this section we assume that V4 is a four-dimen­
sional manifold with a Lorentzian metric g invariant 
under a G3 simply transitive on spacelike hypersur­
faces V:. That is, we are lOOking at all spatially homo­
geneous space-times except the Kantowski-Sachs 
models.21 These space-times have been invariantly 
classified by the Bianchi-Behr type of groups which 
they admit. We give this classification in Table I. We 
seek the answers to two questions: 

(1) What are the Bianchi-Behr types of the V4 which 
can admit a G: under which the induced metrics g* of 
the spacelike hypersurfaces are invariant? 

(2) In which of these space-times is the metric g in­
variant under G! so that we really have a G 4? 

Included in the results will be the case studied by Ellis 
and MacCaUum 22 for Gt's. 

We will perform all calculations in the canOnical te-
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TABLE I. The Bianchi-Behr classification of spatially homo-
geneous spacetimes. This information is taken from Ellis and 
MacCallum.24 The cannonical tetrad has a2 =a3 =n 12 = n13 = 0, 
a1 =a, n l1 =n1, n22 =n2, n33 =n3 with: 

Group Class Group Type a n1 n2 n3 Bianchi type 

A 0 0 0 0 
II 0 + 0 0 II 

VIIo 0 + + 0 VII 
VIo 0 + 0 VI 
IX 0 + + + IX 
VIII 0 + + VIII 

B V + 0 0 0 V 
IV + 0 0 + IV 
VII ... + 0 + + VII 
VI ... + 0 + VI (III if h = -1) 

trad of Table I. We begin by considering space-times 
which admit a group from class A. From Eqs. (A4) in 
the canonical tetrad of Table I: 

and 

Rtl =1- (n 1
2 -n2

2 -n32) +n 2n3 , 

R:2=1- (n 2
2 -n1

2 -n32) +n 1 n3 , 

R:3 =1- (n 3
2 - n 1

2 -n22) +n In 2 , 

(3.1) 

(3.2) 

From the theorem and Eq. (3.2), one of the following 
conditions is necessary: 

(i)Rt=R~*R~, Ct=C~, 

(ii) Rtl=R:3*R:2, Ctl=Q3' 

(iii) R:2 =R:3* Rtl> C:2 = C:3' 

(iv) Rtl =R:2=R:3 · 

(3.3) 

SUbstitution of conditions (3.3) into (A5) with (3.1) yields 
the corresponding four possibilities: 

(i) n 1 =n2 *n3, n 3*0, 

(ii)n 1 =n3*n2 , n2 *0, 

(iii)n 2 =n3*n U nl*O, 

(3.4) 

(iv)n 1 =n 2 =n3 , or n l =n2, n 3=0 or n l =n3, n 2 =0 

By the theorem, any of the conditions (3.4) is also suffi­
cient. Condition (iv) is necessary and suffiCient for the 
existence of a Ct. We now look at each type from class 
A subject to the conditions (3.4). 

Type I: All space-times satisfy (iv) so there is a Ct. 
Type II: All space-times satisfy (iii) so there is a Ct. 
Type VIIo: A subset (n 1 =n2) of the space-times sat-

isfy (iv) , so they possess aCt. Since this subset has 
n1 =n2* 0, the Jacobi identities (A3) imply that 82 = 83 , 

This subset is therefore locally rotationally sym­
metric (cf. Ellis and MacCallum23

) so there is a C!;: Ct 
which is really a C 4 • 

Type VIo: No space-times satisfy any of the condi-
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tions (3.4) so no C! can exist. 
Type IX: A subset (which by renumbering takes the 

form n 1 =n2*n3,n3* 0) satisfies one of the first three 
conditio"ns so there exists a C!. Again by (A3) the C! 
is really a C 4' A second subset (n 1 =n2 =n3) satisfies 
(iv) so there is aCt. Howevern 1 =n 2 =n

3
*0 and the 

Jacobi identities (A3) imply 81 = 82 = 83 so that the shear 
tensor vanishes thus the Ct is a C6 (these are some 
FRW models). 

Type VIII: A subset (n 1 =n2) satsifies (i) so there is 
a C! which by (A3) is really C

4
• 

We now turn to those space-times which admit a class 
B group. From Eqs. (A4) in the canonical tetrad of 
Table I: 

Rtl = -1-(n2-n3)2- 20 1
2

, 

R:2=1- (n 2
2 -n32) - 2a/, 

R:3 =! (n 3
2 

- n22) - 2a/ , 

R:3 =a 1 (n 2 -n3 ) , 

Rt2=Rt3=0. 

(3.5) 

In order to impose the necessary condition that R~8 has 
two equal eigenvalues we look at the characteristic 
equation 

det[R~a - <p o",a] = 0 . (3.6) 

Since Rt2 =Rt3 = 0, (3.6) becomes 

(Rtl - <P)[(R:2 - <p)(R:3 - <p) - R:32] = 0 • (3.7) 

There are two cases in which (3.7) may have two equal 
solutions for <p. Case one is when Rtl is a repeated 
root, in which case 

(R~ -Rtl)(R:3 -RtJ -Rk2 =0, 

which upon substituting from (3.5) implies 

(n 2 - n 3)(n2 n3 +a 1
2

) = O. (3.8) 

The second case is when 

(R:2- <P)(R:3 -<p) - (R:3)2=0 

has two equal roots for <p. Using the quadratic formula 
leads to the equivalent condition 

R:3 =R:2 -R:3 = O. (3.9) 

By (3.5), this becomes 

(3.10) 

But condition (3.10) implies S~a = 0 which is necessary 
and sufficient for the existence of aCt. If n 2 *n3 then 
by (3.8) 

(3.11) 

A long calculation using the general definition of C~B 
given in Appendix A [we cannot use (A5) since we are 
not in a Ricci eigenframe] leads to 

C~8=3(n2+n3)S~B' (3.12) 

So by the theorem, condition (3.11) is also sufficient 
for the existence of a C!. We now look at each type 
from class B subject to the condition (3.10) or (3.11). 

Type V: All space-times satisfy (3.10) so there is a 

Ct· 
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Type IV: No space-times satisfy (3.10) or (3.11) so 
no G! can exist. 
Type VD;.: A subset (n a=n3) satisfy condition (3.10) s, 
there exists a Gt. Since na=n3*0, the Jacobi identi­
ties (A3) imply that 6a =63• so there exists a Gtr;: G: 
which is really a G 4' 

Type VI,,: All space-times with h=-l satisfy (3.11) 
so there exists a G!. No space-times with other 
values of h possess a G!. 
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APPENDIX A 

This Appendix contains formulas related to the ortho­
normal tetrad formalism as presented by Ellis and 
MacCallum25 and augmented by Wainwright.26 We have 
assumed that our tetrad ejJ i=O. 1,2,3 has eo=u hyper­
surface orthogonal so that the vorticity tensor w van­
ishes. 

The commutators of e j are: 

[eo. ell =itleo - 6le l - (a12 - 03)ea - (alS + 0a)e3, 

[eo, ea] =lPeo - (ala + 0s)e l - 62e a - (aa3 - 01)e3, 

[eo, e3] =it 3eo - (a13 - 02)el - (a23 + 0l)ea - 63e3, 

[eHea] = (n13 -a2)el + (na3+al)ea+n33e3, 

[ea, e3] =nnel + (n12 - a 3 )ea + (n 13 + a 2)es , 

[e3, ell = (nl2 + a3)e l +n 2a e a + (n 23 - al)e3• 

The Jacobi identities: 

[x, [Y, Z]J+[Y, [Z, X]] +[Z, [x, Y]] =0. 

applied to the vector fields e"" e B' and e).. are 

(A1) 

Bln U + Ba n12 + B3 n3l + Baa3 - B3 a2 - 2(nll al +n12 a2+ n3laJ = 0 , 

B2na2+B3n23 +BlnI2+B3al - Bla3 - 2(naaaa+na3a3+nlaal) =0, 

B3 n33 + Bln 31 + B2n a3 + Bla2 - Baa 1 - 2(n 33 a S +n3la l +n23 a2) = 0 . 

(A2) 

In addition, for a spatially homogeneous space-time, 
with a canonical tetrad some of the Jacobi identities ap­
plied to the vector fields eo, e"" ell yield: 

BOnll + (6 2+63 - 6l)nll =0, 

BOn22 + (8 3 + 61 - 82)n2a = 0, 

BOn33 + (81 +82- 83)n33 =0. 

(A3) 

The 3-Ricci tensor R~1l on the hypersurfaces ortho­
gonal to eo are given by: 

R:2 = 2B2aa + al (n 23 +a 1) + a3(a 3 -n I2) + 2( a3n 12 - al n 23 ) 

+i(n~2 -n~1 -n~3) +nUn 33 -2n 1
2
3 - 2(a2+a2+aa) 

I a 3' 
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Rt3 = 2a3 a3 + al (a l -n23 ) + aa(a2 +n I3) + 2(aln 23 - a2n 13 ) 

+t (n;3 -n~l -n~2) +n lln 22 -2n l
a

2 - 2(aa +a2 +aa) 
1 23, 

Rta =hl (aa +n13) +taa(a l -n23 ) -h3(nll -n 22) +as(n ll :- naa) 

+aan 23 -a1nlS +n12 (n ll +n 22 -n 33) +2nlsn23' 

Rts =ta1 (a 3 -n12) + !as (a l +n23 ) +ha(nll -n 33 ) +aa(n33 -nll ) 

+aln la - a3n a3 +n13 (n ll - n 22 +n 33) + 2n 1an 23 • 

R:3 =h2(a3 +n12) +!a3(aa -nI3 ) +tBI (n S3 -n 22) +a 1 (n 22 - n33 ) 

(A4) 

The Cotion- York tensor (1.2) is in general: 

C*"'1l-2."w(a[a -a ]R*Il) +4n~(cxR*B)+Tj"'''vTjIl.aR* n 
-'1 v v /J A. /.l Ie va 

-R*nall-n"fl*"vljall' 

However, in a 3-Ricci eigenframe (Rta=Rt3=R:s =0) it 
simplifies to: 

Ctl = 2nllRti + (-nll -n22 +n s3)R:2+ (-n ll +n 22 - n33 )Rt3 , 

C:2 = (-n ll - n 22 +nSS)Rtl + 2n 22 R:2 + (n II -n22 - n 33 )Rt3. 

Cts = (-nu +n22 -n3s)Rtl + (n ll -n2a - n 33 )R:2 + 2n33 R t3' 

et2 = -B3(Rtl - R:2 ) +n 12(Rtl +R:2 - 2Rt3)+a3(Rtl -R:2). 

et3 = -a2(Rt3 - Rtl) +n 13 (Rtl - 2R:2 +Rt3) +aa(Rt3 -Rtl). 

C:3 = -B l (R:2 - Rt3) +n 23 (-2Rtl +R:a+ R t3) +a1 (R:2 -Rt3) • 

(A5) 

APPENDIX B 

In this Appendix, we prove the following lemma: 
Lemma: Let V3 be a three-dimensional Riemannian 

manifold. Assume that Rail (or equivalently Sail) has two 
equal eigenvalues and that Sail is not identically zero. 
Assume that the spatial gradient of S2=tS"'/lS"'1l van­
ishes (S," == 0) and 

(B1) 

with either: 
0,) A constant, A* 0, 
or (ii) A == 0 and Rail has zero as its third eigenvalue. 

Then there exists a Ricci eigenframe (R12 =R 13 =R23 = 0) 
in which 

(B2) 

and in which 

(B3) 

Proof: We begin by choosing a Ricci eigenframe in 
which 

R12=R13=R23=~ Ru*R22=R33' 

The remaining tetrad freedom is a rotation: 

e2 =e2 cos¢ +e3 sin¢ , 

e3==-ez Sin¢ +escos¢, 

(B4) 

(B5) 

and the follOwing quantities are invariant under the ro­
tation: 
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(B6) 
13 =n u , 

14 = (n 22 - n33)2 + 4n 23
2

, 

(cf. Collins and Szafron27 or Ellis 28
). Conditions (Bl) 

and (B4) imply 

C23=C22-c33=a, 

which, using (A5), becomes 

n23 = n 22 - n33 = a . 
Definition (2.2) together with (B4) implies 

5 11 =t(Ru -R22 ), 522 =533 = -t(Rll -R22 ) , 

(B7) 

(B8) 

so that the first three equations from (A5) now become 

Cu = ><511 , C 22 = C33 = ><522 = ><533 , 

where 

><=3n u ' 

Equations (Bl) and (B4) imply 

while the conditions a~ = a35 = a together with (B8) 
yields 

(B9) 

(Bla) 

(Bll) 

a2(Ru - R Z2) = a 3(Ru - R 22) = a • (BI2) 

Applying (Bll) and (Bl2) to the fourth and fifth equa­
tions of (A5), and recalling (B4), we find 

(BI3) 

We now use a tetrad rotation (B5) to set 

(BI4) 

and Eq. (B7) provides 

(BI5) 

From the partial list of invariants (B6), we see that 
(B7), (Bla), and (BI3) are preserved. It remains only 
to show that a 1 = a. 

The first Jacobi identity (A2) is now 

In case (i), At- a so (Bla) and (Bl6) imply 

and the lemma is proved. In case (ii), >< = a so that 
(Bla) implies 

nu=a, 

and Ru = a converts the first equation of (A4) to 

(BI6) 

(Bl7) 

(BI8) 

(B19) 

Adding and subtracting the second and third equations 
from (A2) with twice the fourth and fifth equations from 
(A4), now yields 
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(B2a) 

Applying a1 to the second equation from (A4) and using 
(BI8), (B19), (B2a), (Bl3), (Bl4), (B15), and the com­
mutation relations (A2) yields 

(B2I) 

The conditions a15 =Ru = a together with (B8) imply 

(B22) 

Equations (B21), (B22), (B4) and the fact that Rll = a 
yield 

(B23) 

so the lemma is proved. 
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We develop a new theory of the pure gravitational field by treating superspace as a fiber bundle 
with space-time as the base space, and Fermi space, with anticommuting Majorana spin or 
coordinate () i, as the typical fiber. In the fiber bundle geometry, a spin-3/2 field arises 
automatically. It comes in through the commutation relations of the basis vectors in the 
horizontal lift basis, or through the metric in the local direct-product basis. The Lagrangian is 
taken to be the scalar curvature of the fiber bundle, in analogy with general relativity with no 
source terms. The theory is self sourced and the spin-3/2 field and usual spin-2 field appear as 
gauge fields. The theory is also completely basis invariant. The field equations correctly describe a 
spin-3/2 field coupled to general relativity, with the correct "energy-momentum tensor" of the 
spin-3/2 field appearing automatically. We thus end up with a very simple, geometrical theory 
which contains far fewer fields that the geometrical work of Arnowitt and Nath while keeping 
their elegance of formulation. The resulting field equations are similar to those of simple 
supergravity with only a spin-3/2 field appearing in addition to the spin-2 Einstein field, however, 
supersymmetry invariance seems to play little or no direct role in the present theory. 

PACS numbers: 04.50. + h, IL30.Pb 

I. INTRODUCTION 

Supersymmetryl.2 and its possible role in gravitation 
theory has received considerable recent attention. Salam and 
Strathdee3 introduced the idea of using linear transforma­
tions in an eight-dimensional superspace ZA = [xl", () iJ to 
describe the usual supersymmetry transformation. Here x I" 
are the usual Bose space-time coordinates and () i are Major­
ana spinor anticommuting Fermi coordinates. Arnowitt and 
Nath4 then extended this to arbitrary coordinate transfor­
mations in superspace which leave the line element 

ds2 = dz A 
gAB dz B (1) 

invariant. In this elegant geometrical theory, the Lagrangian 
is taken to be the scalar curvature of superspace and the 
single gauge superfield gAB contains all the physical fields in 
the theory. To accommodate electricity and magnetism, or 
other internal symmetry groups, the Fermi sector is enlarged 
by adding an internal symmetry index to () i to give () iq. Re­
cently the arbitrary n-point Green's functions of spontane­
ously broken gauge supersymmetry have been shown5 to be 
ultraviolet finite to arbitrary loop order for N;;. 2, where 4N is 
the number of Fermi coordinates. This augurs well for a 
renormalizable theory of gravitation. The chief disadvan­
tage of this theory is that the superfield gAB contains a large 
number of higher order ordinary fields even in the case of 
pure gravity. If electricity and magnetism are put in, not one, 
but a large number of additional fields appear. One hopes 
that nature has not been so extravagant. 

An alaternative approach to a renormalizable theory of 
gravitation has been the supergravity work of Freedman, 
van Nieuwenhuizen, and Ferrara6 and of Deser and Zu­
mino. 7 This has been extended to larger gauge groups and 
elaborated by numerous authors.8 The simple version of this 
theory (hereinafter denoted FvFDZ) constructs a Lagran­
gian which is explicitly invariant under a supersymmetry 
transformation of the fields. The action describes massless 
spin-2 and spin-3/2 Majorana fields and is the sum of the 

Einstein and Rarita-Schwinger9 actions. This theory seems 
to be 1- and 2-100p finite 10 but 3-100p divergent. I I Thus the 
spin-3/2 field seems to improve greatly the renormalizability 
of the gravitational field but problems remain. This ap­
proach lacks the geometrical elegance of the Arnowitt and 
Nath theory but has the great advantage of containing far 
fewer fields, so that higher order fields do not have to be 
neglected whenever an explicit calculation is made. 

In this paper we propose a new fiber bundle theory of 
the gravitational field which is similar to the Nath and 
Arnowitt4

•
5

•
12 theory in its geometrical elegance but which 

contains far fewer physical fields. In addition to the usual 
spin-2 Einstein field, a spin-3/2 field appears quite naturally, 
so that we end up with something similar to simple supergra­
vity. We will be concerned in this paper only with a pure 
gravitational field. Coupling to matter fields will be taken up 
in a subsequent paper. 

In Sec. II below, we discuss the fiber bundle geometry. 
The field equations are worked out in Sec. III, and we con­
clude with a discussion of results in Sec. IV. 

II. BASIC GEOMETRY 

Rather than treat eight-dimensional superspace as a 
general Riemannian manifold as Arnowitt and Nath do, we 
will take it to have the structure ofa fiber bundle P, with real 
space-time M as the base manifold and the four-dimensional 
Fermi space F, with anticommuting Majorana spinor co­
ordinates () i, as the typical fiber. This approach is much clos­
er to how a gauge group is conventionally associated with 
space-time and has the enormous benefit of introducing far 
fewer physical fields as we shall see. We are essentially taking 
superspace to be a kind of generalized topological product of 
FandM. 

Cho l3 has written a very interesting paper unifying 
gravitation with a nonabelian gauge group. We will use this 
paper, appropriately modified, in the development which 
follows. 
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We choose a coordinate basis l4 Sf' = aft for the base 
manifold M with commutation relations 

(2) 

We also assume that M is a metric manifold with metric gf'v' 
This gf'V will depend on x f' but not on the Fermi coordinate 
e '. Similarly, we choose a coordinate basis for the Fermi 
space F with the basis vectors satisfying anticommutators, 

lSi ,sil = lai ,ail =0. (3) 

F can also be taken to be a metric manifold with metric gij 

which depends on e i, but contains no space-time dependent 
physical fields. gij can be expanded in general in a finite pow­
er series in e i with contributions up through four powers of 
the e 'so For the structure of the fiber bundle P, 15 we consider 
the fibration A = (P,M,Il) where the base space M and the 
bundle space P are smooth manifolds and Il is a C 00 map­
ping ofP into M. Il is surjective and satisfies the condition of 
local triviality: for any xEM there exists an open neighbor­
hood U of x, a manifold F, and an isomorphism (diffeomor­
phism)¢ofIl~'(U)ontoU X Fsuch thatIl( ¢ ~I(X, e)) =X 
for all XE U and eEF. Il is called the projection of the fibration 
andforeachxEM, the inverse imagePx = Il ~I(X) isac10sed 
submanifold of P called the fiber over x. It represents the 
local gauge degree of freedom at x. Local triviality implies 
that all Px ' are diffeomorphic to Px for all X/EU, a neighbor­
hood of x. The fibration can be viewed as a bundle of fibers or 
fiber bundle, especially since all the fibers are diffeomorphic 
to the same manifold F, the typical fiber. 

To go further, we now need a connection rin P. We 
first note that the basis Si ofF can be mapped naturally into 
the fiber bundle. 13 The resulting fields in the bundle will be 
denoted by Si '. These are tangent to the fiber space and form 
a subspace, called the vertical subspace Vp of the tangent 
space T (P) to P. A connection 13.14 is then taken to be a 
choice ;f a subspace of Tp (P) called the horizontal subspace 
H at each point of P such that p 

(a) The tangent space Tp(P) is the direct sum of Vp and 
Hp. 

(b) For all OEFandpEP,Hpll = Re H p ' whereRe : (p, e) 
EP X F-peEP with p( O¢ ) = (pe) ¢ for all e, ¢EF, pEP. 

(c) Hp is smooth on P. 

We can now define the horizontal lift of any vector A at xEM. 
The horizontal lift of A will be a unique vector AEHp at each 

A 14 . 
pointofthefiberIl~I(x)suchthatIl(A) =A. WecanhorI-
zontally lift our basis vectors SI1 in M and denote these by SII' 
These t I along with the Si * defined above, form a natural 
basis fo~ the fiber bundle called the horizontal lift basis with 
commutation relations in the bundle 

(5;*,5/1 =0, 

[5;*, tl ,] = 0, 

[til' t,,] = - F;,,, S; * . 
(4) 

[We will use Greek letters /1. v, p. etc. to denote Bos~ ~nd~ces, 
lower case Latin indices i,j, k, etc. to denote FermIllldlces, 
and upper case Latin letters A, B, C, etc. to denote a fiber 
bundle index which ranges over both Bose and Fermi indi­
ces. The latter takes on eight values. We can keep track of 
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of anticommuting Fermi variables by associating a Grass­
man parity a, b, etc. with each fiber bundle indexA,B, etc., as 
in the work of Arnowitt and Nath. 4 a = 1 if A is Fermi and 
a = a if A is Bose. If we change the order of two quantities 
HAB and Q C DE , for example, we have HAB Q C DE 
= ( - l)(a + bile + d + e) Q C DE HAB'] We will use this horizon­

tal lift basis extensively below because of the simplications it 
makes in actual calculations. Other bases are also possible, of 
course, and the theory is completely basis-invariant as we 
shall see. One other basis in particular is useful, especially in 
understanding gauge covariant derivatives. This is the local 
direct-product basis, which we discuss below. 

The first two commutation relations in (4) follow imme­
diately from the definition of the respective basis vectors. 
The third relation is the statement that [t

l1 
' tv] is vertical. 

This follows since the projection with Il of any horizontal 
component into M must give [Sf' ,Sv] which vanishes from 
(2). This third commutation relation is quite important for 
us, since it brings in F i ,which will be related to the spin-f'V A 

3/2 field. We see that the Sf' form a non coordinate basis. In 
the local direct-product basis, as we shall see, the corre­
sponding commutator vanishes. In this latter basis, F ;v en­
ters the theory completely through the metric Y AB of the 
fiber bundle [see (6'), (23), and the definition of B ~ following 
(20)]. In the horizontallift basis, the metric is simple and F ;v 
enters the theory through the commutation relations of the 
basis vectors as in (4). 

Let us now turn to the metric Y AB in the fiber bundle. 
We shall require YAB to be compatible with the metrics gf'V 
and gik on M and Fby requiring l3

•
16 

A A A B 
YAB Sf'S v = gf'V , 

YAB srA 5tB 
= gik , (5) 

f A !7*B_O YAB ~ f' ~ k - , 

where this last condition is that the horizontal and vertical 
subspaces be orthogonal. This is a basis-invariant definition. 
In the horizontal lift basis, this metric is particularly simple: 

YAB = (
gollV 

(6) 

yAB is not in this simple diagonal form in any other basis. In 
the local direct-product basis, we have for comparison that 

_ ef'V +gik B~ B: B~ gik), (6/) 
YAB- Bk g,'k 

ik v 

where we used (5) and (21). This is much more difficult to use 
in calculations than (6). 

The horizontal lift basis gives rise to one further simpli­
fication. Note that gf'v,i = 0 and gik,f' = 0, where a comma 
denotes a partial derivative. These follow from our defini­
tions of the M and F manifolds and of their respective me­
trics. We can take these over into the fiber bundle by writing 
Yf'v.i = 0 and Yik,;; = 0 in the horizontallif! basis. T~ese are 
now directional derivatives along 5 rand SII respectIvely. 
They follow from the isomorphism of 5i and S *; and from 
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the definition of the horizontallift, and are basis-invariant 
statements. If we work in some other barred basis, YiI, P; = 0 
will still hold, but in terms of quantities in that basis YiI, Ii =1= O. 
The horizontal lift basis thus simplifies the fiber bundle met­
ric in its form and in its dependence on xp and (Ji' 

At this point we have two quantities which may serve as 
physical fields, gpv(x) and F ~v(x,(J). Note thatgpv(x) is not a 
superfield but a simple function of xI-" F ~v(x, (}), however, 
does look like a superfield and may contain large numbers of 
physical fields when expanded in a power series in (Ji' To 
determine the fiber space dependence of F ~v' let us look at 
the Jacobi identities. One of these is 

[t1 ,[ip ,iv]] + [ip ' [iv ,t1]] + [iv' [t1 ,ipll 
=0. (7) 

Using (4) gives 

[tr,-Ftvtj]=O, (8) 

which becomes 

- ( a1 F tv! t j + F ~v { 5 r , t j 1 = 0 , (9) 

and finally 

- a1 F ~v = 0 or F ~v,i = 0 . (10) 

Thus F tv is a simple function of xp and we end up with just 
gpv(x) andF ~v(x) for physical fields. This is in sharp contrast 
with the work of Amowitt and Nath where the superfield 
gAB (x, (J) contains a large number of physical fields. 

A second Jacobi identity is 

[ip , [ip ,iv]] + [ip , [iv ,ip]] + [iv, rip ,ip 1J 
=0. (11) 

This becomes 

i p F ~v + i p F:p + iv F ~I-' = 0 , (12) 

or 

F~v.p +F~p,p +F;p, v =0, (l3) 

where we must remember that the partial derivatives refer to 
the horizontal lift basis. To work out the remaining two Ja­
cobi identities, we need [ t 1 , 5 j] , which is not given in (4). 
This can be written 

(14) 

where v ~ ~ is the covariant derivative in the 5 i direction, and 

we have assumed zero torsion. This involves the Christoffel 
symbol r i~ in the Fermi sector. Thus from (36) below we 
have 

[ 51 , 5 t] = 2r i~ t r . (15) 

The Jacobi identity involving 51 ,5 j ,and 5": then becomes 

rj~,i +rL +rt,k =0. 

Finally, the Jacobi identity involving 51, t j , and il-' 
becomes 

5: r ijk = 0 or r J.I-' = O. 

(16) 

(17) 

This last equation is satisfied identically since gij, I-' = 0 in the 
horizontal lift basis and r j~ is a function of gik only, from 
(37) below. 

We would now like to introduce potentials, To do this 
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we need to define connection forms and cross sections of the 
fiber bundle, Given a connection r, we can always define a 
connection form (L) such that 13 

(L)i( 5 "t) = w~ t"ta = 8~ , 

d( 5:) = w~ i ~ = 0 , (18) 

where w=::=w i 5i and Wi are real valued I-forms. A cross sec­
tion a(x, () ) is then a submanifold of P which is diffeomor­
phictoanopensubset UofMwith ll(a(x, 8)) = x. Let 0' • 51' 
be a vector in the tangent space To(x. 01 (P) to P at a(x, (J) 
induced by 0': xEU-oix, (J )Ell-I(U). We can then define a 
connection form A lui on U [or a(x, (J)] by t3 

A IUI( 51')= A 1:* ti = w(O" 51-') = (L)i(O'. 5p) 5i . (19) 

The A ;:,Ii are then identified as our vector potentials. They 
depend on the choice of the cross section a(x, (J). We can 
define the trivial cross section 0'0 (x) as the set of points 
p = (x, (J) with fixed (J. For each (J there corresponds such a 
cross section, We can also introduce the local direct product 
basis tfl and [; = 51. For all (J the tl-' form a basis of the 
tangent space of the trivial cross sections uo(x). 13 The com­
mutation relations for this basis are 

{ti ,£1 =0, 

[[;,tflJ=O, 

[tl-' ,tv] = O. 

(20) 

We can define potentials in this basis as B i (x, (J )==A 10',,1, . _ p I-' 

= w'( tl-' (x, e)) , and using (18) write 

il-' =tl-' _t,(L)i(tfl)=tl-' -[;B~(x,e)=DJi' (21) 

Thus 5: is the usual gauge covariant derivative if one writes 
it out in the more usual local direct-prod uct basis rather than 
working in the horizontal lift basis as we have been doing. 
We will continue to work in the horizontal lift basis, where 
this derivative will often be denoted by a comma, but this 
shows the role of il-' as a gauge covariant derivative. Thus a 
major advantage of the horizontal lift basis is that the deriva­
tives are automatically gauge covariant. 

Now F ~v can be written in terms of A tli by writing (4) 
as 

DI-' iv -Dv iJi = -F~v tr· (22) 

We can map this into the tangent space Tajxl(P) using the 
mapping 0' as above and then operate with Wi using (18) to get 

F ~v = Dv A ;:'Ii - DI-' A t;li. (23) 

Either F ~v or A ;:'Ii can be used to describe the spin-3/2 field. 
We will work primarily with the gauge invariant quantity 
F/:v in the following, although theA t* is more closely relat­
ed to the tPl-' spinor fields ofsupergravity.6,7 Note thatF ~v is 
essentially the curvature 2-form associated with the connec­
tion I-form (L).14 

III. FIELD EQUATIONS 

The fiber bundle space P has been organized into an 
eight-dimensional Riemann space above. We can calculate 
the curvature of the bundle and use the eight-dimensional 
extension of the Hilbert action of general relativity for our 
action principle, Before we do this, we need to define covar-

D. K. Ross 551 



                                                                                                                                    

iant derivatives in terms of Christoffel symbols r:c and 
write out the curvature tensor R ABC D in terms of r ifc and 
F ~v. We have the double complication of having anticom­
muting variables and also a noncoordinate basis (the price we 
pay for using the horizontal lift basis). 

The covariant derivative of a contravariant vector V A 

can be defined as4 

VA;B=V
A

•B + Vcr~B' (24) 

(In the horizontal lift basis, this derivative is both gauge co­
variant and generally covariant.) Unfortunately we then 
have two types of covariant vectors, U: = V A gAB and U B 

= gBA V A with slightly different covariant derivatives 

(25) 

and 

U A~B = U A~B - (- It(a+dJU jj r fB • (26) 

The behavior of higher-rank tensors can be seen by consider­
ing products of different kinds of vectors. In particular, the 
covariant derivative of the metric Y AB in the fiber bundle is 

Y AB; C = Y AB. C - ( - 1 t (b + d J Y AD r %c 
- (- l)(d+ b)(a +d) YDB r fc = 0, (27) 

since it has one lower index of each type.4 We can now solve 
(27) for r %c remembering that we are interested in general 
in a noncoordinate basis (4). In Arnowitt and Nath,4 we have 
the following symmetry properties, 

Y BC = ( - l)b + e + be Y CB (28) 

and 

(29) 

(28) will hold for us but (29) must be modified because of our 
noncoordinate basis to give 

(_l)b+d+bd+(b+d)e r 5B -r fD=H 5B' (30) 

where H 5B must be determined in terms of F ~v from the 
commutation relations (4). Solving (27) for r %c , watching 
anticommuting variables, and using (30), gives after a labori­
ous calculation that 

r!B = ( - l)be H( - l)bd YAD.B 
+ ( - 1)" + b + ab + ad Y _ Y ] Y DE BD.A AB.D 
_lHE _(_1)be+ 1b+el(a+C)ly H C yDE 

2 BA ;; CB DA 
- ( - 1)b(bH t-e)! YAC Hg

B 
yDE. (31) 

This reduces to the Arnowitt and Nath4 form if H ~A = 0 
and to the usual form 7 for r py in a noncoordinate basis if all 
the indices are Bose indices. 

We can now use 

(32) 

where SA = (;1' ,5 n are basis vectors obeying (4), to get 
H~c in terms of F ~v • We have assumed zero torsion. We 
have 

VSA5B =r~ sd_1)a+a(b+e) (33) 

for the covariant derivative of the basis vector 5 B' Thus, 
using (30), 
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[SA ,5B] =rJjA sd _l)o+o(b+e) 

- r ACB sd - 1)b+b(a+e) 

= [( _ l)b + a + ba + (b + ale r ACB - H ~B ] 

X5c (- 1)"+a(b+e) 

- r ACB S d - 1)6 + b (0 + e). (34) 

(34) and hence (30) are consistent with the commutation rela­
tions (4) if 

C {F ~/3' if C = i, A = a, B = (J 
HAB = 

0, otherwise 
(35) 

We also note that 

[ sf, s j] = - 2r if s d - 1 r 
= 2r J 5 r , (36) 

since r ij = 0 from (31) and our work below. This was used 
in (15) above. 

Using (6) to write Y AB in terms of ga/3 and gij and using 

Y .' = 0 and Y'k = 0 in the horizontal lift basis, we can 
1-'1,/ I./-J 

write out the various components of r iB in (31) as 

r E _I( _.J lJ< 
,,/3 -;; gall.13 + g/38. a ga/3. {) g , 

r'~/3=!F~/3' 
r! = - r fa = - ~ gij F ~a gll/3 , 

r ~j = rj~ = 0, 

r ,; = -! [ - gil.) + g)l. i - gij. I ] glk , 

rij=o. 

(37) 

Before we can write down field equations, we still must 
define the curvature tensor R ABC D in terms of r ifc and F I:V' 
We can get this by parallel transport of a vector around a 
closed loop consisting of five sidesdx=dx ASA , dx'=dx'ASA , 

[dx,dx'), - dx, and - dx', where dx A are components of a 
small vector in our basis SA .17 We must again be careful of 
anticommuting variables and take into account that we have 
a noncoordinate basis so that [dx, dx'] -=1= D. The result is 

R A FGB = r :G.B( - 1)b
8 

- r :B.G 

+ r f~; r ~B( - 1)8(a+b+e) 

- riB r ~G( - 1)61
a 

HI 

_ r ;;E H ~B( - l)g + b -+ bg +- elb ~ g) , (38) 

where H /fB is given in (35). This agrees with the result of 
Misner, Thorne, and Wheeler17 when we have all Bose co­
ordinates and with the result of Arnowitt and Nath

4 
when 

H t;B = 0 (coordinate basis). (I am using the sign conventions 

of Ref. 4.) 
We can now define 

R AB ==( - 1( R CABC 

and the curvature scalar 

R =( - 1)" Y AB R BA • 

(39) 

(40) 

Our variational principle for the field equations will then be 
taken to be 

/j f ( -y)112 Rd 8Z = 0 , (41) 

where we vary with respect to the metric Y AB and 
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r=dety AB • Explicit calculation shows that the field equa­
tions which follow from (41) are 

RAB =0. (42) 

It should be emphasized that the variational principle (41) is 
completely basis-invariant. We will work in the horizontal 
lift basis but any other basis would lead to the same final 
results. Also note that (41) is very geometrical and is a simple 
and elegant generalization of general relativity to the fiber 
bundle. No "source" terms are present so that the theory is 
completely self-sourced. The spin-3/2 field F ~v which is 
buried in (42) arises completely naturally in the geometry of 
the fiber bundle and does not have to be put into (41) by hand 
as in the supergravity theories.6

•
7 Both gJLV and F ~v arise as 

gauge fields, with the fundamental gauge group being the 
group of arbitrary coordinate transformation in the fiber 
bundle. 

We are now in a position to write out our field equations 
(42) in terms of gaP (X), gij' and F ~v(x). Putting (38) and (39) 
into (42) and using (37) gives 

_ IE) j' -h/3 , j i) _ 
RJLV - R JLV + ! gj' F 6JL F v/3 ~ +!(F Vf.L.' + F Vf.L r ji - 0, 

(43) 

R - 1 (Fj -hal _ 1 Fj 6a r /3 f.L' - - 2 gj' 6f.L ~ ,a 2 gji OJL g u/3 
+ !gji Fia ~P r;p = 0, (44) 

Rij = R if') - (! g'k F :a g1Tf.L)(! glj F ~f.L ~a) = 0 , (45) 

where 

R IE 1- r a r a + r 6 r a _ r a r (3 (46) 
I'V = I'v, a - JLa, v I'v oa f.L(3 av 

and 

R !J')=r ;, k + r kJ + r ;r 1, + r ,~r t ' (47) 

We note that the curvature tensor (39) has the symmetries 

Ra, = - R'a and Rij = - Rj' , (48) 

but thatRf.Lv i=Rvf.L because oftheF ~v terms. In fact (43) has 
the form of the sum of a symmetric part and an antisymme­
tric part. These must vanish separately so that (43) becomes 

IE) j' -h/3 - 0 43 ) R f.LV + ! gj' F 6f.L F v(3 ~ - ( a 

and 

F ~I'., + F ~I' r j; = 0 . (43b) 

Now from our definitions of covariant derivatives in (24)­
(26) we can write 

i i j i i lJ i lJ F a/3; C = F a{l, C + F ap r}C - F a6 r (3C - F 0(3 r aC , 
(49) 

where C is a general index. Using (49) and (37) shows that 
(43b) can be written as 

F ~v;, = 0 (50) 

and (44) can be written as 

gij(F}"f.L);>' = O. (51) 

Thus our field equations (43a), (45), (50), and (51) can be writ­
ten in completely covariant form. 

Ifwe look at (43a) we see thatR ~), Fif.L' and g 6(3 are all 
functions of X I' only whilegji is a function of8, only (a power 
series with terms up to 8 4

). (43a) thus implies thatgj , must be 
a constant matrix and not a function 8, and can be written as 
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gji = Qllji , (52) 

where Q is a constant and llji = ( - C - I )j,' C is the charge 
conjugation matrix (C· = C - I and C T = - C) and is the 
only constant Fermi sector matrix which is available to play 
this role. 4 Note that the conclusion (52) holds only in the 
horizontal lift basis. It would not hold in some other basis. 
Using (52) and (10), our field equations can be simplified to 
the following form: 

with 

R ;;) - ! gaP R IE)==:= - (81TK/C2
) TaP' 

(F}vf.L);v = 0, 

F kf.L Fla =0 
a I' ' 

(53) 

(54) 

(55) 

- c
2

Tf.LY = llji F ~I' F 'a v - ! gl'v llji F ~p F ,aP, (56) 

We used (55) to write (56) in traceless form and identified 

Q = 161TK/c4 
, (57) 

R ~EJ and RIE) refer to the Einstein quantities, (Notice that 
our fiber bundle equations are sourceless since R AD = 0.) We 
also must satisfy the cyclic condition on F 'v from the Jacobi , , f.L 
Identity (13). The Jacobi identity (16) and the field equation 
(43b) are identically satisfied using (52) and (10). We thus end 
up with a very simple set of equations. These equations were 
derived in the horizontal lift basis. Any other basis will give a 
set of equations which are equivalent to these, although indi­
vidual components of RAB look different in different bases. 13 

The variational principle (41) is basis invariant since R is a 
scalar, and hence the theory is completely basis invariant. 
We can write out R as 

R = RIE) ya(3+ R (E') yiJ - 1 y .. Fj F' yOPyJLV a(3 '1 4]1 61' (3v , 
(58) 

R ~) and R Ir) are given in (46) and (47). This R would take 
the same form in any basis. 

It is important to note that our final set of equations 
(13), (53)-(55) is invariant under generalxf.L coordinate trans­
formations and under "gauge transformations" of the A t)i 
in (23). Since the A t)' are the coefficients of cross section 
dependent connection forms, different gauges correspond to 
different choices of the cross section. IS More explicitly, F ~v 
given in (23) is invariant under a change in the potentials of 
the form 

A (a)' A (a)' + D E'(X) 
/'- I' f.L ' (59) 

where e'(x) is a spinor which depends only on x/' .It is easy to 
show that (57) corresponds to a change in cross section 
O'(x, 8) in (19). Under this transformation 

8F~y = Dy(DI' ~(x))-Df.L(Dv Ei(X)) 

= [Dv ,DJL] E'(X) = [iv, il'] E'(X) 

(60) 

since S t €"(x) = O. All of our derivatives are also gauge co­
variant. Our field equations are thus invariant under "gauge 
transformations" of the form (59). 

As in general relativity, we have differential Bianchi 
identities which reduce the number of independent equa­
tions which theg/,v(x) and F ~v(x) must satisfy. We can write 
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the variation of(41) with respect to YBA as 

f ( -y)I/2( - It[R AB -! yABR ] 8YBA d 8z = O. (61) 

Under an infinitesimal coordinate transformation, 

zA=zA'+5 A (z), (62) 

we have 

8YAB-Y~B(Z) - YAB(Z) 

= YAC 5,~ + (- 1)a+b+abYBc 55 + YAB.C 5 c. 

(63) 

This can be put in the form 

8YAB = 5A;B + (- l)a+b+ ab 5B;A + YAi 5 {j H ~B 

+ (_l)a+b+abYBi 5 {j H ~A' (64) 

where we used (30) andH ~B is given by (35). Putting (64) into 
(61) and noting that the result must hold for arbitrary SA 
leads finally to the Bianchi identity 

( - It(R AB - ! yABR )j==O . (65) 

This represents eight identities. 
At this point it is interesting to see if the number of 

independent equations versus the number of unknown quan­
tities makes sense. If we use (23) to write F ~v in terms of A ~, 
we have 16 unknown components of A ~ ,and ten unknown 
components of gILv to be determined. The cyclic Jacobi iden­
tity (13) is satisfied identically for F ~v of the form (23). We 
are left with the ten equations (53) and the 16 equations (54). 
These 26 equations are reduced to 18 independent equations 
if the Bianchi indentities (65) are taken into account. Since 
we have 26 unknowns, we have eight degrees offreedom that 
remain to be specified. These are just four xlL coordinate 
conditions plus four gauge fixing conditions for A ~, so that 
the numbers work out as one might expect. 

IV. DISCUSSION 

Our final set of equations (13), (53)-(56) represents a 
massless spin-3/2 field coupled to general relativity. Unfor­
tunately, the spin-3/2 field is in a very unfamiliar representa­
tion. To verify that we do indeed have a spin-3/2 field, we 
can start with the massless, spin-3/2, two-component spinor 
equations of Corson,9 

aru cP usl = 0 

and 

aru Xr SI 
= 0 

along with the complex conjugate equations 

a,a cP USI = 0 

and 

aU'X/' = O. 

(66) 

(67) 

(68) 

(69) 

(We use Latin letters near the end of the alphabet to denote a 
two-component spinor index.) These spinors must be sym­
metric under interchange of indices to prevent lower spins 
from appearing also. These spinorial derivatives are defined, 
for example, as 

(70) 
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with theg Y
ru given in terms of the Pauli spin matrices and 

the unit matrix as in Corson. 19 Now, extending the develop­
ing of Corson a bit, we can write a general antisymmetric 
tensor with one 2 component spinor index as 

G ~v = Col gIL s, gvsP cP 'pI + glL/ gvps cP rpi] 

along with the dual 

iJI - C [s CP'P' s cprp,] 
ILV - - 0 gIL' gvsP - gIL' gvps , 

where Co is some constant. 

(71) 

(72) 

A second general antisymmetric tensor with one dotted 
spinor index can be written as 

HlLvi = - Co[g/, gvsP X 'Pi + glL/ gvps X 'Pi ] (73) 

along with the dual fIILvi ' It is now easy to see by adding and 
subtracting the divergences of(71) and (72) and the diver­
gence of (73) and its dual equation that the spin-3/2 field 
equations given in (66)-(69) are completely equivalent to the 
equations 

aILG '- CF iJ '- aIL H . - aIL fI . - 0 (74) J.lV - J.lV - J.lvt - J.lvt - • 

From the way in which G ILV' and HlLvi are defined, we can 
now combine these to give a four-component spinor 

(75) 

where i = 1,2,3,4. Outr spin-3/2 field equations in fiat space 
then become 

a IL F i-aIL F
V 

i - 0 
J.Lv - J.lv - , 

with the antisymmetric field F ~v satisfying 

F i F ILV - F i F ILV - 0 
f..iV i - J.LV i - • 

(76a) 

(76b) 

(76b) follows from the symmetry properties of the basic spin­
ors in (66)-(69). These symmetry properties are necessary to 
prevent the appearance of lower spin fields. The derivation 
of (76a) and (76b), can be reversed leading back to (66)-(69), 
which shows that (76a) and (76b) do indeed represent a field 
with spin 3/2 and only spin 3/2 present. One advantage of 
this representation is that it generalizes readily to curved 
space giving finally 

(FivIL!;,,=O (77) 

and the dual 

(78) 

where a semicolon denotes a covariant derivative. It is im­
portant to note that F ~v itself represents the physical spin-
3/2 field in this representation, and that this physical field 
satisfies first-order, ghostless equations as we would expect. 
The reason is that the equivalent spin or equations (66)-(69) 
are uncoupled linear equations for this massless case (and 
only for this case). [In the massive case our Eqs. (74) acquire a 
vector potential term on the right and become second order 
equations in terms of the spinors cP or X. In this case Co 
becomes proportional to the mass in (71). Using the massive 
version of (66)-(69) shows thatF ~v, for example, is then pro­
portional to a derivative of X and (74) become second order 
equations in terms of X. Thus our description (74) works for 
the present massless gauge fields but is inferior to a Rarita­
Schwinger formulation in the massive case.] It is interesting 
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that the spin-3/2 field of FvFDZ, IjI ~,can also be written in 
terms of the <P and X spinors in equations similar to (71 )-(73), 
and we have a crude correspondence F ~v -Y,.. IjI ~ between 
their field and ours. Unfortunately, no neat mathematical 
relation between F ~v and IjI ~ seems to exist. 

Equation (77) is now identical with our field equation 
for Fjv,.. given in (54). Also (78) is equivalent to our Jacobi 
relation (13). Similarly, we can show in a rather tedious cal­
culation using two-component spinors that our unfamiliar 
energy-momentum tensor given in (56) is equivalent to the 
usual energy-momentum tensor for a spin-3/2 field. We no­
tice in this context, that the effective Lagrangian for the spin-
3/2 field in (58) and the field equations (54) both have a Max­
well-like form so that it is not suprising that the energy­
momentum tensor (56) also has a Maxwell-like form in this 
representation. We should comment that our remaining 
equation (55) holds for a sourceless massless spin-3/2 field in 
the same way that F ",vFl'v = E2 - B2 = 0 holds for solu­
tions of the sourceless Maxwell equations. It is thus not real­
ly a field equation. Thus we conclude that our equations do 
indeed represent a massless spin-3/2 field coupled to general 
relativity. 

The role of supersymmetry transformations in this the­
ory also merits discussion. In Arnowitt and Nath,4 the usual 
supersymmetry transformation 

xl" = xl' + ~i€yI'O , 
(79) 

Oi' = 0' + E', 
where E i is an infinitesimal Majorana spinor parameter, 
plays the same role as the Poincare transformations play in 
the transition from special to general relativity. The funda­
mental gauge group is thus the group of arbitrary coordinate 
transformations in supersymmetry space for Arnowitt and 
N ath. The supersymmetry transformation (70) thus becomes 
submerged only to resurface later in their work as a result of 
spontaneous symmetry breaking. Similarly, in our work our 
field equations do not possess supersymmetry invariance. 
Whether or not supersymmetry plays any role after sponta­
neous symmetry breaking in the present theory remains to be 
seen since we have not yet worked out spontaneous symme­
try breaking effects. It seems rather unlikely that supersym­
metry will emerge, however, since spontaneous symmetry 
breaking itself may be a problem in this self-sourced theory. 
No scalar fields are now present for spontaneous symmetry 
breaking, and it is not at all clear how they can arise in a 
natural way. 

Another potential problem in the absence of supersym­
metry invariance is that our spin-2-3/2 system may suffer 
from acausal propagation. It is well known that massless 
high spin gauge theories need to be treated with great care. 20 
The related questions of supersymmetry in variance and be­
havior of our spin-2-3/2 system clearly deserves more atten­
tion in subsequent work. 

The similarity between this work and simple N = 1 su­
pergravity is striking, even though our field equations do not 
possess supersymmetry invariance. We have a theory which 
is coordinate system and basis invariant under transforma­
tions in supers pace and which ends up quite naturally with a 
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spin 3/2, massless field coupled to general relativity. Beyond 
that, however, the similarities cease. First, it would certainly 
be nice if supersymmetry invariance could be accomodated 
in some fashion in the present theory. Second, our spin-3/2 
field seems to bear no simple relationship to that of 
FvFDZ,6,7 primarily because of our peculiar representation. 
Third, torsion plays a different role in the two theories. We 
have explicitly taken our eight-dimensional torsion to be 
zero, as in the work of Arnowitt and Nath. Four-dimension­
al torsion, however, plays a key role in supergravity especial­
ly in the first-order formulation. Our effective Langrangian 
is "nonminimally" coupled in terms of Rarita-Schwinger 
fields with this "nonminimal" coupling following from the 
fiber bundle structure of the theory. Thus we end up with 
something more akin to the torsionless original version6 of 
supergravity with nonminimal four Fermion couplings pre­
sent, than to the first-order formulation with torsion. 6,

7 

A number of things remain to be considered in future 
papers. Since massless spin-3/2 fields very likely do not exist 
in nature, spontaneous symmetry breaking probably plays a 
role and gives a large mass to the spin-3/2 field. As we men­
tioned above, spontaneous symmetry breaking may be a 
problem in this theory, however. We have also discussed 
only a pure gravitational field above. How matter fields are 
to be put in is yet to be seen. Hopefully one can do this 
without destroying the geometrical elegance of the theory, 
perhaps by way of an associated fiber bundle. Ultimately, 
renormalizability must be considered. Other theories sug­
gest that the spin-3/2 field may make the theory more renor­
malizable than general relativity, especially if supersym­
metry can somehow be accomodated. 

To summarize, we have a very simple and elegant geo­
metrical formulation of superspace using a fiber bundle. A 
spin-3/2 field rather magically appears in the fiber bundle 
geometry in addition to the usual spin-2 gravitational field. 
These fields are both gauge fields and the basic theory is 
sourceless. A certain economy is achieved since these fields 
are the only ones to appear rather than the very large number 
of fields which appear in the work of Arnowitt and Nath.4 

The resulting equations are similar to those of the simple 
supergravity of FvFDZ,6,7 but our field equations do not 
possess supersymmetry invariance. This paper shows how a 
self-sourced theory of gravitation can be formulated in su­
perspace in a fiber bundle approach. Whether or not the 
present theory leads to a renormalizable theory of the gravi­
tational field remains to be seen. 
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A semisimple Lie group is incorporated into our fiber bundle model of superspace and the 
gravitational field. The Lagrangian density is taken to be the scalar curvature of the (8 + n)­
dimensional fiber bundle where n is the dimensionality of the Lie group. The resulting field 
equations describe a nonabelian gauge field correctly coupled to the spin-3/2 gravitino and the 
spin-2 graviton. 

PACS numbers: 04.50. + h, lUO.Pb 

I. INTRODUCTION 

We have recently formulated a fiber bundle model l of 
superspace in which four-dimensional Fermi space F, with 
anticommuting Majorana spinor coordinates 8 ;, plays the 
role of the typical fiber and space-time plays the role of the 
base space. In this model, superspace becomes a fiber bundle 
rather than a general eight-dimensional Riemannian mani­
fold as in the gauge supersymmetry work of Nath and 
Arnowitt. 2 The Lagrangian density is taken to be the scalar 
curvature of the fiber bundle. A spin 3/2 field appears rather 
magically, and the resulting "self-sourced" field equations 
describe this gravitino field correctly coupled to the spin 2 
field of general relativity. No other fields are present. Al­
though the theory bears a strong resemblance to simple 
N = 1 supergravity,3 supersymmetry in variance is not 
present. 

The purpose of the present paper is to extend our fiber 
bundle model by including a gauge group such as SO(8),4 
SO(3),5 SU(4),6 etc., all of which have been discussed in the 
context of supergravity. We need to do this if we are to have 
any hope of obtaining a physically realistic theory. So far we 
have only a pure gravitational field. Nath and Arnowitt2

•
7 

put in a gauge group by enlarging the number of Fermi co­
ordinates from 8; to () i

q
, where q refers to the gauge group. 

More conventional supergravity4-6 puts in a gauge group by 
constructing Lagrangians whose couplings are invariant un­
der larger irreducible representations of the global super­
symmetry algebra. 

For us, there are several possible ways of putting a 
gauge group G ( a general semisimple Lie group) into our 
fiber bundle. These include: (1) a hierarchical model in which 
our previous fiber bundle plays the role of the base space of a 
new, larger fiber bundle with principal fiber G,(2) a model 
with space-time as the base space and a Fermi space with an 
enlarged number of coordinates e iQ,(3) a model with an 
eight-dimensional general Riemannian manifold with co­
ordinates (xi' ,B;) as the base space and G as the principal 
fiber, and (4) a model with space-time as the base space and 
the direct product F X G as the typical fiber, where Fis four­
dimensional Fermi space and G is the Lie group. Of these 
models only (4) leads to a reasonable theory with no extrane­
ous fields beyond what one would expect. We will explore 
model (4) in the following. Note that (4) is essentially the 

method of Nath and Arnowitt2 correctly transcribed into 
fiber bundle language whereas, contrary to expectations, (2) 
is not. 

II. STRUCTURE OF THE FIBER BUNDLE 

Ch08 has written a very nice paper in which he puts a 
Lie group into general relativity by way of a fiber bundle. We 
will follow his approach below. Choose a set of n linearly 
independent left invariant vector fields Sa for a basis of tJ.-1e 
Lie group G.9 Thus we have V aEG, LaSb = Sb' where La: 
bEG-abEG. These Sa are also a basis ofthe Lie algebra [§ of 
G which forms an n-dimensional vector space. They have 
commutation relations 

(1) 

where thef~b are the structure constants of the group G. 
This is a non coordinate basis. Following our work in I and 
II, the four-dimensional Fermi space F with anticommuting 
Majorana coordinates 8 i, can be considered to be a group. 
We can choose a coordinate basis for Fwith the basis vectors 
satisfying anticommutation relations, 

(2) 

(In the following a,b,c,d,e will denote n-dimensional group 
indices; i,j,k,! will denote four-dimensional Fermi indices; 
lower case Greek letters will denote four-dimensional space­
time indices; upper caseA,B,C,D,E,F,G, will denote (8 + n)­
dimensional fiber bundle indices; and r,s will denote the 
combination of group plus Fermi indices taking on 4 + n 
values.) If we now consider the direct product F X G, we will 
have 

[Sa,S;] = 0 (3) 

also. (1), (2), and (3) can then be considered to be the commu­
tation relations of the basis vectors ofF X G. Since both com­
mutators and anticommutators appear, (1), (2), and (3) are 
the basis of a Grassman algebra. 

Now we want to consider a fiber bundle.e whose base 
space M is space-time and whose typical tiber is F X G. We 
consider the fibration A = (eM,n), where the base space M 
and the bundle space l!..are smooth manifolds and the projec­
tion n is a C oc mapping of l!..into M. n is surjective and 
locally trivial: for any xEM there exists an open neighbor­
hood U of x, a manifold F X G and an isomorphism (diffeo-
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morphism)<P of n -I I U) onto U X IF X G ) such that 
n(<p -llx,a) = x for all XEU and aEF X G (we denote ele­
ments of Fby (), elements of G by a, and elements of F X G by 
a, q; , etc. n - I (x) is a closed submanifold of £.called the fiber 
over x. The fibers are diffeomorphic to F X G, the typical 
fiber. 

Following Cho, the basis vectors Sa and Si ofF X G can 
now be mapped naturally into the fiber bundle £. where they 
will be designated Sa * and Si *. These are tangent to the fiber 
space and form a subspace, called the vertical subspace Vp of 
the tangent space Tp (£.) to e In the fiber bundle, they have 
the commutation relations 

and 

[Sa *,Sb *] =f~bS/', 

!Si*,S/'l = 0, 

(4) 

(5) 

(6) 

To go further, we need to define a connection r. This is 
a choice of a horizontal subspace Hp at each point of £.such 
that 

a) The tangent space Tp(£.) is the direct sum of Vp and 

b)For all aEF X G and PEE. Hp" = R"Hp where R,,: 
(p,a)EE.X(F X G )-paE£,withp(aq;) = p(a)q; for all a,q; 
EF XG,P€l!.. 

c) Hp is smooth on l!.. 
Using this connection, we can define the horizontal lift 

of any vector A at xEM as the unique v~ctor iEHp at each 
point of the fiber II - I(X) such that II (A) = A. We can also 
define a coordinate basis 51'- = JI'- in the base space with 

(7) 

These 51'- can be horizontally lifted into the bundle and de­
noted there by tl'-' (tl'- ,5i * ,Sa *) form a very convenient basis 
for the fiber bundle with commutation relations I 

[tl'-iv] = -F~vSi· -F~vSa*' 
[tl'-,Sj*) =0, 

[il'-,Sa *) = 0, 

(8) 

(9) 

(10) 

along with (4), (5), and (6). This horizontal lift basis is very 
convenient for calculations though not the only J'o~sible ba­
sis, of course. (8) is simply the statement that [Sjt ,Sv] must 
be vertical. The coefficients F~v and F~v will play the role of 
physical fields in the following. 

Given a connection r, we can always define a connec­
tion form w such that 

wr(5s *) = 8;, 

w'(ijt) = 0, 

(11) 

(12) 

where rand s are summed over both Fermi (i) and group (a) 
indices. As in Papers I and II, we can define a cross section 
a(x) as a submanifold of £. which is diffeomorphic to an open 
subset U of M with II (a(x)) = x. If a'5/, is a vector in the 
tangent space to Eat a(x) induced by a:xEU-a(X)EIl - I( U), 
we can define a connection form A (<71 on U [or on a(x)] by 

A (0"1(5jt) A(0"Ijt'5,=w(a'5jt)=w'(a'Sjt)S" (13) 

Alai 'are our cross-section dependent potentials. Now as in 
I' 
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I and II, tl" is the gauge covariant derivative DI" when we 
write it out in the local direct product basis. We can define 
the trivial cross section ala) as the set of points p = (X,a) with 
a fixed, where a is an element of F X G. If fl'- and fr denote 
basis vectors in the local direct product basis, we have 

5: = [I" - t,w'(£J = L - t,B~=DI"' (14) 

where B ~ ==A :'" (see I and II for details). We see that 

DI'- =[1'- -[;B~ -faB~ (15) 

and hence involves both the potential B I'- i associated with the 
spin 3/2 gravitino field and the potentialBI'- a associated with 
the gauge group G. 

Our fields F:v can now be written in terms of the poten­
tials B: in the local direct product basis. Using (8) and (14), 
we can write 

(16) 

and 

F~v =JjiB~ -J;;B~ +f~bB~B~ (17) 

so that F~v and F;v take the forms we might expect. Jji 
denotes a partial derivative in the local direct product basis. 
In the following, we will deal primarily with F~v and F;v 
rather than the potentials. 

We can denote a metric for the base space M as gl"v(x) 
and for the four-dimensional Fermi space as gij(())' It is im­
portant that these can depend at most only on x and () respec­
tively. The metric for the semisimple Lie group G can be 
written as 

(18) 

where W is a constant to be determined later andf~c are 
structure constants for the group. [Note that the definition 
of gab will not work for the abelian group U(l). In that case 
we can let g II(U( 1) is one-dimensional) float until we get to 
the field equations. Quantities such as gil F ~IlF ~f3 will ap­
pear in these equations. If we let gil = 1 and F ~Il = FI'-Il (the 
electromagnetic field tensor), our resulting field equations 
correctly describe electricity and magnetism coupled to the 
spin 2 graviton and the spin 3/2 gravitino fields. In fact, in 
this case, (E "/ Rab vanishes identically, so that the cosmologi­
cal constant term in (63) never even appears.] We can define a 
metric Y AB on the fiber bundle, which is compatible with the 
above metrics and the fact that F X G is the typical fiber, as 

'A 'B 
YAB51,5 v = gl'-v' ( 19) 

YABS;AS:B=gik' (20) 

YABs:
A
5: =gab' (21 ) 

1ABi~5;B = 0, (22) 
"A -B 

YABSI'-S a = 0, (23) 

S"AS"B 0 YAB i a = . (24) 

This is a basis invariant definition. In the horizontal lift ba-
sis, Y AB is particularly simple and we have 

r,,~(~' .: (25) 
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In another basis, off diagonal terms would appear. 
At this point, we have gill' (x) and the superfields 

F~l'(x,e,a) andF~v(x,e,a) which can play the role of physical 
fields. The fiber space dependence of F ~v and F~l' is given by 
the Jacobi identites, which will greatly simplify these super­
fields. There are ten Jacobi identites, one of which is 

[ill' [s"",t*]] + [iv,[Si*.iIl ]]+ [si*,[ill.iv]] =0. (26) 

Using (8) and (9), this becomes 

[Si *, - F~vSr *] = 0 (27) 

which can be written as 

- (ai*F~vls/ - (ai*F~v)Sa * + F~l'{Si*'S/J = O. 
(28) 

Using (5) gives finally 

a*Fj = 0 
I I'l' (29) 

and 

ai * F~v = O. (30) 

Thus these two fields are not functions of the Fermi coordi­
nates e i. The other nine Jacobi identities can be worked out 
similarly using the commutation relations and the 
expression 

(31) 

where r~ is the Christoffel symbol. We summarize as fol­
lows: F~v can only be a function of Xll; F~v can only be a 
function of x Il and group coordinates a; r t can oly be a 

function of e i. In addition we must satisfy the following 
equations: 

/~J~d + /~J~d + /:J~d = 0, 

aa *F!v + F~J:c = 0, 
a Fi a' . t1 v8 + vF~1l + aoF~v = 0, 

at1F~{j + avF~1l + al;F~l' = 0, 

ai*rjk + a/r~i + ak *r~ = O. 

(32) 

(33) 

(34) 

(35) 

(36) 

(32) is merely the statement that/abc gaJ~ must be fully 
antisymmetric. (33) is the well-known gauge covariance of 
nonabelian gauge field and (36) will be found later to be satis­
fied identically in the horizontal lift basis. (34) and (35) are 
the statements that F~8 and F~8 can be written in terms of 
potentials. Ifwe wish to deal with the fields themselves rath­
er than potentials, (34) and (35) behave like additional field 
equations. 

It is important to note that the Jacobi identities tell us 
that F~v and F~l' are not supecfields but ordinary space­
time fields. This vastly reduces the number of possible phys­
ical fields in the theory to just glll'(x),F~v(x), and F~l'(x). 

We stilI need Christoffel symbols before we can write 
out our field equations. As in I and II, we have the doubl/~ 
complication of having anticommuting variables and also a 
noncoordinate basis, since we chose to work in the horizon­
tal lift basis where the metric is particularly simple. From I 
and II, we have 

r!B = ( - l)B'E'H( _ l)B'D'YAD,B + ( _ l)A' + B' + A 'B' + A 'D'YBD.A 

_Y ],,DE_IH E _(_l)B'E'+(B'+C'IIA'+C' II y H C .,DE 
AB.D r 2 BA 2 CB DA r 

_ ( _ l)B'IB' + C' + E'lly HC .,DE 
:2 AC DB r (37) 

for the Christoffel symbol in the fiber bundle. A comma denotes the directional derivative in the horizontal lift basis. A, D, etc. 
are fiber bundle indices and in the present paper include (p,i,a,). A 'is the Grassman parity associated with index A and is + 1 if 
A is Fermi (i) and zero if A is Bose (j.l or a). HgB is given by 

Hg
B
=( _l)B'+D'+B'D'+(B'+D'IC'rg

B 
-r~D' 

and vanishes in a coordinate basis. In the horizontal lift basis, we have 

{ 

F~v 
HD _ F~v ifA =fl, D=v, D=a 

AD - _ /:b if A = a, D = b, D = d 

° otherwise. 

if A = fl, D=v, D=i 

Writing out the Christoffel symbols gives 

r" - I [ ] ,,",v ILY - :2 gllo,y + gyo,1l - glly,8 ~ , 
r k _ I [ ] Ik ij - -:1 -gilJ +gjl,i -glj,! g , 

r e _! [ ] de I Ie ab - :2 gad,b + gbd.a - gab,d g + 'Y ba 
+ !gcJ~agde + !JJaJ~bgde, 

r;", = W;,v' 
r~" =W~", 
r~i = - r;~ = - !gjiF~"g8", 
r v - r v _ ! Fb 8" 

Gil - IW - - ~ab /)/Lg . 

The remaining 18 Christoffel symbols all vanish. 
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(38) 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 
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III. FIELD EQUATIONS 

The variational principle for the field equations will be taken to be 

8f~~ Rd 8
+nZ =O, (47) 

whereR is th~ scalar curvature o~t~e 8 + n-dimensional fiber bundle. We vary with respect to the metriCf~B, and r= detrAB' 
No cosmologlCal constant term IS Included. The field equations which follow from this are 

(48) 

We can calculate the curvature tensor R A FGB by transporting a vector around a closed loop being careful of our noncoordinate 
basis as in I and II. This leads to 

R (I)A'rA (l)A'G' A' A FG = - FG.A - - ( - I) r FA,G 

+ (- l)A'r~Gr~A( _l)G'C' - (- W'r~Ar~d _ l)A'(A'+C'1 

_ ( _ l)A' r :EH ~A ( _ I)G' + A ' + A 'G' + E '(A' + G'I = 0. (49) 

Using (39) through (46) allows us to write this out. Exactly as 
in I and II, we find that the field equations imply thatgij 
must be of the form 

gij = Q'TIi)' (SO) 

where Q is a constant and 'TIji = ( - C -I )ji' C is the charge 
conjugation matrix and is the only constant Fermi sector 
matrix which is available to play this role. Conclusion (50) 
holds only in the horizontal lift basis and is another way that 
this basis simplifies calculations. After considerable simplifi­
cation, the field equations then can be written as 

(EIR + IQ FJ Fi b(3 + I Fa Fb ...Jj(3 - ° 
I"V :1 'T/ji 81" v(3g ~ab 01" v(35 - , 

F~I";a = 0, 

Fjal";a = 0, 

Fil-'aFil-'a = 0, 

Faav;a = 0, 

FarraFjrra = 0, 

(E"IRab -ll5aegbdFe7raFda-rr = 0, 

where 

(EIR -ra r a + r ti r a r a r f3 
1-',,= p,v,a - Ita;v pv ~a - J..L/3 av 

is the Einstein curvature tensor and 

(E"IR
ab 

=r~b.d - r~e.b + r~br~d - r~dr~b + r~J~d 

=V~J~b' 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 

(57) 

(58) 

(59) 

The semicolon denotes a covariant derivative where, for 
example, 

F~I-';a=F~I-',a + F~I-'r~a - F~I-'r~a - F~7rr;a 
= F~I-'.a + F~I-'r~a' (60) 

using (46) and the antisymmetry of F~I-" Equations (51) and 
(52) arise from the symmetric and antisymmetric parts of the 
original R,<v in (49), respectively. (53) arises from RI-'i = ° 
and so forth. These field equations are completely covariant. 

In addition to these equations, we must also satisfy the 
Jacobi identities. Using (60) and the fact that r:e = f:a' we 
see that field equation (52) is equivalent to Jacobi identity 
(33). (SO) implies that (36) is satisfied identically. Thus, we 
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have only (34) and (35) remaining of the Jacobi identities. 
Ifwe choose to work in more conventional units, we can 

rescale 

Fj _(161TK/c4)II2Fj til-' til-' (61) 

and 

F~I-' -( 161TK/c4)II2F~I-" (62) 

We can manipulate (51) into the form 

(EIR _ la (EIR _ la (E"IR a = ( _ 81TK/c2)T 
IiV 26JLV 26J.LV a pv' (63) 

where the energy-momentum tensor is given by 

- c2 T - Fi Fib 1 Fj Fiap 
I-'v - 'T/ji I-'ti v - Wl-'v'T/ji a(3 

+ gabF:oFb v ti - 19l<vgabFpbFbB", (64) 

and we let Q = 1 in (SO). The other field equations remain 
unchanged under this rescaling except for (57) which 
becomes 

IE"I 4 e d(3ti_ Rab - (41TK/c )gaegbdF b(3F - 0. (65) 

We notice that IE "IR a a plays the role of a cosmological con­
stant in (63). From (59) and (18), we have 

(E"IR aa = .\8"'a/W = n/(4W), (66) 

where n is the dimensionality of the group space. We see that 
we can make (E" IR a a as small as we like by picking the scale 
factor W in the group metric sufficiently large. If W is taken 
to be large, we see that (65) requires 

(67) 

We end up with the set of equations (52)-(56), (63), (64), 
(67), and the Jacobi identities (34) and (35). If F~v is set equal 
to zero, we return to the equations ofI and II, which correct­
ly describe a spin-3/2 field F~v coupled to general relativity 
in a rather unfamiliar representation. This spin-3/2 field 
arises quite naturally from the Fermi part of the typical fiber. 
If F~v is not set equal to zero, the complete set of equations 
describes a nonabelian gauge field correctly coupled to the 
spin-2 graviton and spin-3/2 gravitino fields. The part of the 
energy-momentum tensor (64) concerning the F~v field is 
correct, \0 (52) [or (33)] correctly describes the gauge covar­
iance of the F~v' and (55) gives the correct field equation for 
F~v in the present sourceless case. Equation (67) is all right 
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for these massless, sourceless non abelian gauge fields and is 
analogous to the statement pa/3Pa/3=E2 - B2 = 0 for solu­
tions of the massless, sourceless Maxwell equations. 

The only unexpected equation to turn up is (56) which 
couples the gauge field to the gravitino field. In the U( 1) case, 
this would couple photons to spin-3/2 gravitinos in an unac­
ceptable way. We must also remember, however, that mass­
less spin-3/2 fields have not been observed in nature. 
Through spontaneous symmetry breaking, this field pre­
sumably will grow a superheavy mass. Because of the small 
range of such a massive gravitino, the effects of (56) will be 
felt only at very high energies. Nonetheless, (56) may prove 
important in future work, in which we must address sponta­
neous symmetry breaking and the renormalizability of the 
theory. Spontaneous symmetry breaking may be a problem 
in this self sourced theory since no scalar fields are now pre­
sent, and it is not at all clear where they can come from in a 
natural way. If supersymmetry can somehow be accomodat­
ed in this theory, other work on supergravity and gauge 
supersymmetry suggests that this theory should be more 
renormalizable than general relativity. Otherwise, renorma­
lizabilty may be a problem also. 

As in I and II, we can work out the Bianchi identities 
and we find 

(68) 

where now this represents 8 + n equations (4 Bose + 4 Fer­
mi + n gauge indices). We can easily check that the number 
of unknown field components minus the number of in de pen-
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dent field equations gives the number of degrees of freedom 
expected for the present case. 

To conclude, we find that a semisimple Lie group can be 
incorporated into our fiber bundle model ofthe gravitational 
field with relatively little trouble. Thus the foundations for 
an extended theory with a physically realistic particle con­
tent have been laid. 
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A note on lattice random walks with an excluded point 
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We derive some asymptotic results for the moments of displacement of a random walk on a lattice 
with a single absorbing point. In one dimension we are able to find an asymptotic expression for 
the probability distribution of random walks that have not been trapped. 

PACS numbers: 0520.Gg, 02.50.Ey 

Rubin 1 appears to have been the first to investigate ran­
dom walks on a lattice with the origin excluded, i. e., which 
never return to their starting point. Although he derived an 
expression for the generating function of such random walks 
he presented results in detail only for the mean-square dis­
placement when the starting point of the random walk is 
symmetrically located around the origin. Subsequently, 
MontrolJ2·3 developed equation for a generalization of the 
model to study statistics of the first passage time till trap­
ping. In this note we present more detailed results for the 
moments and distribution of displacement in the Rubin­
Montroll model on an infinite lattice. 

The random walk will be assumed to take place on a 
translationally invariant homogeneous lattice. The single 
step transition probabilities will be denoted by pm with the 
corresponding structure function 

4 (0) = 2: pm exp (j.O). (I) 
j 

Let the excluded point be s, let Un (r) be the probability that 
the random walker is at r at step n on the lattice with the 
excluded point, and let Pn (r) be the state probability on a 
regular lattice, i.e., one without an excluded point. The Un (r) 
satisfy the recursion relation 

Un + I (r) = 2: Un (I)p(r - I) - Un (s)P(s - r), r#s (2) 
I 

Un + ds) = L Un (l)p(s - 1) + Un (s)[ 1 - prO)}. 
1 

Hence if we define the generating function 

U(9;z) = f IUn (r)znexp(ir'9), (3) 
"=Or 

we find, following Rubin J and Montroll,2.3 that 

U{9;z) = 1 + P(s;z) (1 _ .........;...{I_-_Z-'-)_)ei •. a, 
1 - z4 (0) (1 - z)P{O;z) 1 - z4 (9) 

(4) 

where 

P(s' z) = -l-f ~. f exp( - is.O) dDO (5) 
, (21T)D ~ 11 1 - z4 (0) 

in D dimensions. Equation (2) implies the result 
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f Un (r)zn=V(r; Z) = P(r; Z) _ Pis; z)Pir - s; z), r#s, 
n =0 pro; z) 

V() P(s; z) (6 
s;z = (t-z)P(O;z) ) 

It is readily verified from these relations that since 

IP{r; z) = lI{t - z), (7) 

it follows that the V(r; z) satisfy the same relation. Equation 
(6) now allows us to determine the asymptotic distribution of 
the Un for n large. Let us first note thatif F n(s) is the probabil­
ity that the random walker reaches s for the first time at step 
n, that 

I Fn(s)z" =F(s;z) = P(s;z)IP{O; z), s#O. (8) 
fl--=--O 

Whenz = 1 we know that F(s;1) = 1 for D = 1,2 and F(s;l) 
< 1 for D>3. Maradudin, et al 4 and Joyce 5-H have deter­

mined the analytic form for F(s;z) when Iz - 11 is small and 

Ir; 2p(r) < 00, i = 1,2, .. ·,D, (9) 

and Lindenberg, et al.9 provided similar results for D > 3. In 
the present analysis we make the assumption of finite vari­
ance transitions as in Eq. (9), and also that in the absence of 
traps, the average displacement in a single step is zero. Un­
der these hypotheses the contribution from the first term on 
the right hand side ofEq. (4) is clearly the Gaussian distribu­
tion that appears in the theory of unrestricted random walks. 
In order to determine the nature of the remaining contribu­
tion we must study the properties of F (s;z) as z-l. 

In the case D = 1 it is straightforward to calculate mo­
ments of the distribution by using Eq. (4) as a generating 
function. The probability that a random walk remains un­
trapped at step n, call it G n , has the generating function 

!. Gllzn = 1 - F(s; z)/(1 - z). (10) 
n=O 

The properties of this generating function have been estab­
lished by Lindenberg, et al. 9 who showed that the asymptotic 
form ofGn is 

(11 ) 

where u is the standard deviation of the single step transition 
probabilities. One can easily verify from Eq. (4) that 
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FIG. I. Curves of the probability distribution of the end-to end distance ofa 
random walk on a I - D lattice with a trapping point at s = 4 and 
n = 10,20, and 50. The random walker is initially at the origin. 

I rV(r; z) = o. (12) 

This implies that the mean position of a random walker con­
ditional on its not having been trapped is 

(r(n) u = - s( 1 - Gn )/Gn ~ - CT(1Tn/2)1/2sgn s. (13) 

That is to say, the mean position of un trapped walks reflects 
the fact that they must move steadily away from the trapping 
point in order to survive. A similar calculation shows that 
the leading term of the conditional variance is 

a;, ~2<?n, (14) 

which is independent of the trapping point. Lower order 
terms do depend on s. The distribution of position of the 
untrapped random walker at step n is easily calculated by 
noticing that the joint generating function excluding the 
point sis 

U(O; z)- Us(O )eiSO = [1 - F(s;z)e iSO ]![ 1 - ZA (0 )]. 
(15) 

Hence the conditional probability is 

rn(r) = [Pn(r)-,t/n~'(S)p,(r-S)]/,=~+tF,(S), (16) 

as is otherwise obvious. An approximation to rn (r) valid for 
large n can be obtained by using the continuum limits for Pn 

(r) and Fn (r), i.e., 

__ I--:--:-::ee ~ r/(4no") Fn (s) 
u(41Tn) 1/2 ' 

lsi e ~ s'/(4no"). 

cr(41Tn)3/2 
(17) 

In Fig. 1 we show curves of r n (r) for U = 1, s = 4, and 
n = 10,20, and 50. As n increases the maximum of the curve 
shifts to the left (for fixed s) as one would expect from Eq. 
(13). 

In dimensions greater than one we may use Eq. (10) to 
show that 
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G ~ 21TU1U2[P(O;I) - P(s;I)] (18) 
n In n 

so that in two dimensions, using the asymptotic form for 
G n (s) derived by Lindenberg, et al,9 

- Sj In n 
(rj(n) = - . 

21TUtU2[P(O; 1) - P(s; 1)] 
(19) 

Just as in one dimension the surviving random walks are 
those that move away from the trap, but at a slower rate. In 
D-;;.3 dimensions, since lim Gn (s) = G (s) < 1 the untrapped 
random walkers are influenced by the presence of the trap, 
but their average position does not move off to 00 as n---+ 00 • 

The variances and covariances of position can also be calcu­
lated from Eq. (4). Since we have assumed symmetry in the 
underlying transition probabilities, the generating function 
of second order moments is 

00 _ a2 uI 8 07Z[ 1 - F(s' z)] I (r,(n)rj(n)zn = -- = J' J 2'. (20) 
n=O aO,aoj 9=0 (l-z) 

In D-;;.3 dimensions limz~t F(s,z) = F(s) < 1, which is the 
probability of being trapped at s. Hence the elements of the 
variance-covariance matrix are asymptotic to 

(21) 

This expression is valid for all random walks including those 
trapped at s. If we consider only the untrapped random 
walks, we find 

(22) 

so that to leading order the variance of position is unaffected 
by the trapping point,and covariances are 0 (n). This result 
agrees with Rubin's more detailed calculation. The exten­
sion of these results to study the effects of a finite number of 
excluded points is formally simple,2 but the development 
rapidly leads to tedious algebra. 

'R. J. Rubin, J. Math. Phys. 8, 576 (1967). 
'E. W. Montroll, J. Phys. Soc. Jpn. Suppl., 26, 6 (1969). 
'E. W. Montroll, J. Math. Phys. 10,753 (1969). 
4A. A. Maradudin, E. W. Montroll, G. H. Weiss, R. Herman and H. W. 
Milnes, Green's Functions/or Monatonic Simple Cubic Lattices(Acad. 
Roy. de Belgique, Brussels, 1960). 

'G. S. Joyce, J. Phys. C 4, L53 (1971). 
'G. S. Joyce, J. Phys. A 5, L65 (1972). 
7G. S. Joyce, J. Math. Phys. 12, 390 (1971). 
"G. S. Joyce, Phil. Trans. R. Soc. London, Ser. A 273,585 (1973). 
9K. Lindenberg, V. Seshadri, K. E. Shuler, and G. H. Weiss, J. Stat. Phys. 
23,11 (1980). 
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The lattice Green's functions for a linear chain with next nearest neighbor (NNN) interactions, 

G, (t,A ) = ~ (IT coslx dx 
1T Jo t + iE - (cosx + Acos2x) 

are studied for various values of A, the ratio ofNNN to nearest neighbor (NN) interactions. It is 
shown that G, (t, - A ) = ( - 1)' + , [G, ( - t,A ) ] *, thereby allowing attention to be restricted 
to the positive range of A which further divides into the two cases, (a) O<,A <,1/4, with band edge 
singularities, and, (b) 1/4 <A < 00, with an additional in-band singularity. Exact results are then 
obtained for the imaginary parts of G, and for the real parts of Go and G,. Finally a recurrence 
relation enables the real parts of G, for arbitrary I to be found from those for I = 0 and 1. 

PACS numbers: 05.50. + q, 71.20. + c, 63.10. + a 

I. INTRODUCTION 

It is well known that lattice Green's functions (LGF) 
play an important role in a broad range of phenomena in 
solid state physics, and accordingly, their evaluation has 
been the subject of extensive studies. 1 The last decade has 
seen substantial progress in the analytic treatment of those 
for two- and three-dimensional lattice problems with nearest 
neighbor (NN) interactions. 2 In the general case, character­
ized by longer ranged interactions, one has to resort to the 
tedious and approximate numerical methods of multiple in­
tegration for which there are nowadays a number of quite 
practical schemes. 3 The inclusion of next nearest neighbor 
(NNN) interactions to the NN problem provides a simple 
and physical way of overcoming4 special features of the near­
est neighbor cases, e.g., the logarithmic singularities of the 
NN BCC and FCC tight binding densities of states, and also 
provides an enriched singularity structure to the LGF's. It is 
with these thoughts that the present authors studied the in­
clusion of NNN interactions in the linear chain and found 
the unique opportunity for the exact solution of the LGF's 
for an arbitrary ratio of the NNN and NN interactions. 

Section 2 presents some general characteristics of these 
LGF's including their critical points, associated van Hove 
singularities,S and a recursion relation which shows that one 
need only evaluate the first two LGF's in order to obtain all 
others. Section 3 gives the derivation of the exact expressions 
for the LGF's and the conclusions are given in Sec. 4. 

II. GENERAL PROPERTIES OF LGF'S 

The general form of the LGF for a one-dimensional 
system with NNN interactions is 

G, (t,A ) = ~ iff coslx dx , (1) 
1T 0 t+iE- (cosx+Acos2x) 

where E is a positive infinitesimal and A is the ratio of NNN 
to NN interactions. Although I may take any integral value, 
we can derive the following recursion relation from Eq. (1) by 
multiplying the integrand by t - (cosx + Acos2x) and rear-

ranging with trigonometric identities: 

0'0 = tG, - HG,+, + G,_ 1 ) -!A (G,+ 2 + G, 2)' 

(2) 

It then follows that we need only evaluate G, for I = 0 and 1 
since the remaining LGF's can be obtained from these two 
by successive application of Eq. (2) and the fact that 
G _, = G,. Furthermore, we need only consider positive val­
ues of A since the LGF's for negative A are related to those 
for positive A by: 

G,(t, -A) = (-1)' ~ J [G,( - t,A ) ]*, (3) 

where * stands for complex conjugate. Equation (3) may be 
easily obtained from Eq. (1) by making the substitution 
x = 1T - y. 

Before we derive expressions for G, we discuss briefly 
the critical points of the dispersion function and the associ at -
ed van Have singularities. 5 The present dispersion function, 

F(x) = cosx + Acos2x, (4) 

has a qualitatively different behavior for A> 1/4 than for 
A < 1/4 as shown in Fig. 1. Critical points are defined as 
those points in the Brillouin Zone (BZ) where the group ve­
locity dF /dx vanishes. The resulting singularities in the 
spectral functions are known as van Have singularities. For 
A < 1/4, the dispersion function is monotonic with turning 
points, maximum and minimum, at x = 0 and 1T respective­
ly. For A> 1/4, F(x) has maxima at x = 0 and 1T and a mini­
mum in betweenatxo = cos-II - 1/4A ). The values of F(x) 
at the turning points are as follows: 

F(O) = 1 +A = t2, 

F(1T) = -1+A=t" (5) 

F(xo) = - (1 + SA 2)1SA = to' 

For A = 1/4 it follows that Xo = 1T, to = t" and at this point 
F(x) has a point of inflexion. The band represented by F(x) 
extends from t 1 to t2 for A <, 1/4 and from to to t 2 for A > 1/4. 
The van Hove singularities for A < 1/4 are at the band edges 
whereas for A> 1/4 there is an additional singularity within 
the band at t 1• 
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FIG. I. Dispersion function F(x) = cosx + Acos2x for the linear chain with NNN interactions. 

III. EXACT EXPRESSIONS FOR LGF'S 

To derive expressions for the real and imaginary parts 
of G" we first rewrite the denominator in the integrand of 
Eq. (1) as follows: 

g(x) = t - (cosx + Acos2x) 

(6) 

where 

a 0 = {- I ± [D(t)]II2}/4A (7) 

and 

D (t) = 1 + 8A (A + t) = 8A (t - to). (8) 

We note that since D (t ) is negative for t < to, a ± are real for 
(;;>to and a pair of complex conjugates for t < to' As we will 
see, the variation of a + with t is crucial in understanding the 
behavior of G,. Figure 2 shows this variation and we distin­
guish three types of behavior: (a)O.;;;A < 1/4, (b) A = 1/4 and 
(c) A> 1/4. For (a) and (b),la + I.;;; I within the band (t 1 .;;;t.;;;t2 ) 

while for (c), la+ I.;;; 1 throughout the band (to.;;;t.;;;t2 ) and 
la _ \.;;; 1 within part of the band (to';;;t<t I)' 

(i) Imaginary part of G, 
From Eq. (1), the imaginary part of G, is given by 

ImG,(t,A) = - f'dXCOSIXO{g(X)} 

eoslxn 

- ~ Ig'(x n )1' 
(9) 

where 

g'(X) = dg/dx 

= 2A (1 - eos2x) 1/2 
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(10) 

and where x" are the roots of g(x) = O. From Eq. (6) we see 
that the two possible roots are given by eosx + = a + and, 
since 1 eosx 1 .;;; 1, roots exist only for 1 a ± I.;;; 1. Hence from 
Fig. 2, we see that for A.;;; 1/4, a + is the only root and occurs 
within the band (t I .;;;t.;;;t2 ) while for A> 1/4, the a + root ex­
ists throughout the band (to.;;;t.;;;t2) and the a _ root exists 
within part of the band (to.;;;t.;;;ttl. Hence, using Eqs. (9) and 
(10) we obtain the following expressions for the imaginary 
part ofG, 

eoslx+ 
D 1/2(1 _ a~ )112 

to.;;;t.;;;t\ 

eoslx+ 
t l .;;;t.;;;t2 (11) 

D 1/2(1- a2~ )112' 

eoslx+ 
t l .;;;t.;;;t2 (12a) 

D 1/2(1 _ a2+ YIl' 

coslx 

(12b) 

where eosx ± = a ± . Outside the band ImG/ = O. The be­
havior of ImGJ within the band is shown in Fig. 3. For 
A < 1/4, the only poles occur when la+ 1--+1[(1- a2+ )1/2 
--+0] and we see from Fig. 2a that this occurs at t\ and t

2
• 

Near the pole, for t = t I + 8 or t = t2 - 8 (where 8 is small 
and positive) the behavior is inverse square root, i.e., ImG

J 

-8 -\/2. For A> 1/4, the poles occur when (1 _ a2+ )\/2 or 
D 1/2 goes to zero and the divergencies are also of th~ form 
8 -\/2 for t = to + 8 (D 1/2 _8 1/ 2), t = tl - 8 
[(1- a2_ )112_8\/2], and t = t2 - 8 [(1 _ a2+ )1/2_8 1/ 2]. 

We note that for A = 1/4, we have to = t\ and the divergence 
around to is stronger than inverse square root as in this case 
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for 1m GI . 

(ii) Real part of GI 

From Eqs. (1) and (6), the real part of Gf is given by 

x [!... rtr 

dx ( coslx 
1T Jo cosx - a+ 

coslx )], 
cosx - a_ 

(13a) 

where P stands for principal part. As mentioned in the pre­
vious section, a recursion relation [Eq. (2)] allows one to ob-
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FIG. 2. Variation of a ± with t [Eq. (7)]. 

tain all the LGF's from those for I = 0 and I. Hence, we only 
evaluate the real part of Gf for these two cases, i.e. 

ReGo(t,A) = -D -1/2 

[Pltr 

( 1 X - dx 
1T 0 cosx-a+ cosx - a )] 

and, with the help of cosx = (cosx - a ± ) + a ± . 

ReGI(t,A ) = - D -1/2 

(l3b) 

X [: iff dx Co:~ a+ - co:=- aJ]· (13c) 
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Thus we only need to evaluate integrals of the form 

I(a) = ~ iTr 

dx . (14) 
1T ° cosx - a 

For t>to' a is real and I is a standard integral and has the 
well-known form 

I(a) = ° for lal<l 
= - (a 2 

- 1) - 1/2 for a > 1 

= (a 2 
- 1) - 1/2 for a < - 1. (IS) 

For t < to, a is complex and the integral in Eq. (14) may be 
evaluated by a contour integration method. Making the sub­
stitutiony = tan (x/2) in Eq. (14) gives 

I(a) = - I f'" dy, (16) 
1T(1 + a) _ '" y2 - y2 

where 

y=(I-a)/(1 +a). (17) 

We can rewrite Eq. (16) as a contourintegral in the complexz 
plane as follows: 

I(a)= _ 1 !~ 
1T(1 + a)JcZ2 

- y' (18) 

where the contour C is shown in Fig. 4. The poles in the 
integrand are at z = ± Y and the residues are ± (2y) - I re­
spectively. For the contour chosen, we only pick up thez = y 
pole and hence, using the residue theorem, we find 

1 I(a) = = (a2 _ 1)-1/2. 
i(1 + a)y 

(19) 

Substituting the above into Eq. (13) gives the following ex­
pressions for the real part of G, (for 1=0 and 1 only): 

r;pt2: ReG, = D -112 [a'+ (a2+ _ 1)-1/2 

+al_(a2 __ 1)-1/2] for/=O,I, (20) 

c 

.+~ 

c 
• -0 

FIG. 4. Contour for the integral in Eq. (18\. 
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to<t<tl: ReG/=D-1/2[a l_(a 2 __ 1)-1/2 

- at la Z _ 1)-112] ,\ + 

for A < 114, 1= 0,1 

= 0 for A > 1/4, 1=0,1, (22) 

t<to:ReG, =D- 1/2 (a'_ (a 2 __ 1)-1/2 

-a'+ (aZ+ _1)-1/2]for/=O,1. (23) 

We note that for t < to, a ± are complex conjugates, D 1/2 is 
pure imaginary and hence the right-hand side ofEq. (23) is 
real. The variation of ReG[ is shown in Fig. 3 and again the 
diverging singularities are inverse square root (t5 -1/2) except 
for the special case of A = 1/4 where the divergence at to is 
t5 -3/4. 

IV. CONCLUSIONS 

Equations (11), (12a) and (12b) give the imaginary parts 
of all the LGF's for the NNN linear chain, while Eqs. (20)­
(23) give the real parts ofthe first two LGF's (l = ° and 1) 
which provide the input for the recurrence relation, Eq. (2), 
from which higher orders can be obtained. We note that in 
the limitA--Al we have D~I, a+~t and both to and 
a _ ~ - 00 so that Eqs. (11) and (20)-(23) reduce to the NN 
case. It is worth noting that in the NN case Go is purely 
imaginary (and symmetric) inside the band. 

The present results have applications to a range of stud­
ies concerned with the behavior of excitations in anisotropic 
systems that have strong one-dimensional character from 
either linear or layered components. The present authors are 
applying these LGF's to study the problem of two spin exci­
tations in the NNN chain for all possible pair wave vectors 
and for the entire spectrum6 as an extension of Majumdar's 
work? which studied bound states at special wave vectors. 
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We continue our study of complex aesthetic field theory using a set of group theoretical data 
introduced previously. Our more detailed study shows significant differences with the 
corresponding real theory. We find that our theory allows for a four-dimensional particle system, 
where the particle system is viewed as a bound state of a three-dimensional maximum and 
minimum. The magnitude of the field is large in this "confluence" region. This property persists in 
time. We can think of this as a form of non attenuation. We never see a large magnitude "free" 
maximum or minimum (confinement). A problem with the particle system is that the confluence 
region extends to a greater degree in z for large It I compared to the case at t = O. 

PACS numbers: 11.1O.Cd, 11.1O.St 

I. INTRODUCTION 

This article is a direct continuation of the paper 
"Aesthetic Field Theory: The Problem of Spatial Inver­
sions".l A set of data rae;. was chosen there, with the 
property of being invariant under three-dimensional 
rotations. Another set of data can be obtained from this 
set by means of a spatial inversion. Both sets of data 
were then used together in a complex version of aes­
thetic field theory. 

In our previous paperl we observed that maps at t = 0, 
z= 0 showed results that do not look much different from 
what we have seen before in a real theory. 2 We have 
continued our study of this group theoretical data and 
found the similarities with real theory that we observed 
to be superficial. Further studies showed deep-seated 
differences with respect to particle structure. 

The equations and notation used in this paper will be 
the same as in Ref. 1. 

We shall review in the next section our previous work 
with respect to particle solutions of the aesthetic field 
theory. 

II. PARTICLE BEHAVIOR IN AESTHETIC FIELD 
THEORY 

In the past we have put forth considerable effort in 
investigating what the aesthetic field equations imply. 
The focus of attention has been in studying particle type 
solutions of these equations. 

We first obtained particle solutions in Ref. 2. Here 
we saw a three-dimensional maximum and minimum. 
At too 0 the maximum and minimum were well separated. 
However, as time went on the maximum and the mini­
mum approached one another. As they grew closer to­
gether the magnitude of the maximum and the minimum 
increased markedly. There was a small region at the 
time (or is it time interval) of impact in which we could 
no longer follow the motion because of this. This small 
region of space in which the maximum and minimum 
were essentially on top of each other we have since 
called a'" confluence" region. 3 After the scattering the 
maximum and minimum separated from one another 
and the magnitude of the field fell off sharply. 

Although it was still possible to follow the particles 
around in time, nevertheless we can say that the part i-

cles underwent "attenuation." 
We realize that in the world we live in particles like 

the electron show an incredible stability. They do not 
fade into the background as in the solution we found. 
Zabusky and Kruskal4 showed that such a thing as non­
attenuating particle ,solutions exist (solitons), arising 
from nonlinear field equations. 

The question then is whether the aesthetic field equa­
tions are capable of particle solutions for which atten­
uation is not a problem (at least for a reasonable dura­
tion of time). (In our computer work we can only talk 
of nonattenuation for a reasonably long time interval. 
In our subsequent discussions this is what we shall 
mean when we talk of nonattenuation.) 

We have found recenUy3 that such stable particle so­
lutions exist in complex null aesthetic field theory. Our 
particle system is a bound state of a maximum center 
and a minimum center. Unlike Ref. 2 the confluence 
region does not exist for a single time (or short dura­
tion), but instead moves along a path in time. The 
fields become quite large in magnitude in the confluence 
region. We say fieldS rather than field since all the 
r}k have large magnitudes in this region. From a prac­
tical point of view we have not been able to find exactly 
how large the magnitudes become. The errors become 
too big as the size of the numbers grow. When we say 
"large" we mean (at least) several orders of magnitude 
greater than the environment, with the possibility that 
the numbers are many, many orders of magnitude 
greater than the surroundings. For example, coming 
into the confluence region with a 0.0003 grid, the com­
puter printed overflow, which means numbers in excess 
of 1075

• Of course we cannot believe such numbers due 
to large errors. For this reason in Fig. 3 we drew a 
box around the confluence region. This procedure was 
also done in Ref. 3. Nonattenuation, for us, does not 
mean that the values of the field stays the same-it 
shall mean instead that the numbers remain large. 

The drawback with our results in Ref. 3 was that such 
a particle system described above has only been found 
in a three-dimensional theory. 

In addition to bound systems of two particles we found 
bound systems of 3 particles (particle refers to a max­
imum or minimum in the field) in Ref. 3. The two and 
three particle system that make up the bound state do 
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not separate in time the way they did in Ref. 2. We 
shall call this effect" confinement." 

In our three-dimensional theory3 we found that the 
bound system moved, so far as we could tell, on a 
straight line (in a course sense). From our maps in 
Ref. 3 as well as in this paper we see many curved con­
tour lines. It is not as if all lines are straight. 

What happened in the complex null theory described in 
Ref. 3 when we tried to extend our work to four-dimen­
sions? We found that the confluence region extended in 
z in such a way that we can find no end to the confluence 
region in our computer work. Either we are dealing 
with extremely large particles or particle interpretation 
is not possible in four dimensions. The possibility of 
the confluence region closing upon itself leading to a 
"topological" particle is intriguing. However, no evi­
dence has been presented supporting such a solution. 

In this paper we shall study the consequences of the 
group theoretical data presented previously [Eqs. (1) 
and (6) of Ref. 1] with respect to particle properties, in 
four-dimensional space-time. 

III. DESCRIPTION OF THE SOLUTION 

We have mapped Ail for convenience. At the conflu­
ence all the components have large magnitudes. We 
are dealing with a cooperative effect. 

Figure 1 is a map of A~l at t = 0, z = -4 (using 0.3 
course grid). We see a planar maximum and a planar 
minimum. They are clearly separated. The magnitude 
of the maximum and minimum are not large (roughly 
0.43 and 0.07, respectively). In Fig. 2 we have a map 
at t = 0, Z = 10 with a course 0.5 grid. Again the maxi­
mum and minimum are separated and the value of the 
maximum and minimum are not great. However, we 
find as we progress up in z, starting with z = -4, thatthe 
planar maximum and the planar minimum become clos­
er and closer to one another. Eventually they are "es_ 
sentially" on top of each other. Here the magnitudes 
are extremely great. We find this to be the case in the 
region x= 3.64, y =-0.14, z =3.33. We call this region a 
"confluence" region. In Fig. 3 we give a map of a "con­
fluence" region at t = -17.5. The grid used here was 
0.001. (The confluence region looks similar at different 
times so t = -17.5 was chosen for illustration.) In Ref. 3 

o • 

. '0 

FIG. 1. Map of AI! around the origin att=O, z =-4. The grid 
was 0.3. 
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FIG. 2. Map of All around the origin at t = 0, z = 10. The grid 
was 0.5. 

the confluence region extended in z without any end that 
we could find. In the current situation there is no doubt 
that the confluence region is bounded. There is a region 
in z for which the field has large magnitudes. The re­
gion, as determined with a large grid of 0.5, has di­
mensions ~z < 3. 

Thus at t = 0 we have a bounded particle system con­
structed from a three-dimensional maximum and mini­
mum in close proximity. The question then is does this 
particle system persist in time? In Ref. 2 the maximum 
and minimum separated from one another and the mag­
nitude diminished. However, in the present case we found 
that the magnitudes remain large as time went on. We 
found large magnitudes in the region around 

t= -10 
x= 11.5 
y = 0.92 
z = 10 

t=-17.5 
x= 17.44 
y = 1. 78 
z = 15 

1=-104.5 
x= 86.34 
y = 11.76 
z = 73.33 

These points lie essentially on a four-dimensional 
straight line. However, we should caution against as­
signing a straight line for a world line since the large 
magnitudes extend in z as discussed previously. The 
large magnitudes are always in a region where large 
negative numbers are in close proximity to large posi­
tive numbers. We can think. of our solution as a model 

FIG. 3. Map ofAit around the confluence region att =-17.5, 
z = 15. The confluence region occurs within the box. The grld 
was 0.001. 
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for confinement. We have not seen a large magnitude 
"free" maximum or minimum. (We have yet to see even 
a small magnitude "free" maximum or minimum.) We 
can say we have a model for nonattenuation in the sense 
that the magnitude remains large at t'" -104.5. Thus 
our bound system appears stable although we cannot 
say how long it will continue. 

Are there any more particle systems like the one de­
scribed above? We have some evidence to this effect. 
At t'" -17.5 we notice again high positive numbers in 
close proximity to high negative numbers in the region 
of x'" 24, y '" 5, z '" 15. This region was uncovered with 
a course grid of 0.5. As of now we have not confirmed 
any more potential particle systems. Computer time is 
a practical limitation in such a search. 

There is a problem that should be noted. We find the 
confluence region extended in z much more at higher 
times than at too O. At too -17.5 the confluence region 
extended in z such that ~z < 16 (a course determination). 
We found the spread of the confluence region is ex­
tremely small in x and y for a particular z. 

IV. SUMMARY 

The group theory data of this paper leads to a bound 
state system in four dimensions. The particle can be 
viewed as a bound state of a three-dimensional maxi­
mum and minimum. This picture persists in time. 
There are large magnitudes in the confluence region 
and only in the confluence region (where large negative 
numbers come in close proximity to large positive num­
bers). Large magnitudes have been found for ~t-l00 in 
our computer work. We shall call this effect nonattenu­
ation. 

The model we found for a particle is very different 
from, say, Ref. 4. There particles are not composite 
systems. In nature, the quark picture suggests that 
observed particles are composite, and the quark con­
stituents do not exist freely. Our particle system has 
similarities to this quark picture. In Ref. 5 bound 
"kink-antikink" systems have been discussed in one 
spatial dimension. 
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Some questions still unanswered are: Can aesthetic 
field theory yield particle systems which are better 
localized? The variable (in time) extension of the con­
fluence region could be a problem. Can the aesthetic 
field theory describe a multitude of particles? One or 
two is not yet a multitude. Are there curved trajecto­
ries in time? Can we find three particle bound states, 
as we did in null theory, in the case that the dimension 
of space-time is four? 

The data (1) in Ref. 1 is invariant under three-dimen­
sional rotations. Under reflection we obtain, from (1), 
the data (6), again found in Ref. 1. These two sets of 
data cannot be reached from one another by means of a 
continuous transformation. Thus, the question from a 
conceptual pOint of view is which data, (1) or (6) should 
be taken. There is no logical reason that favors one 
set over the other. The answer we have suggested is to 
take both sets, by allowing for the theory to be complex. 
A complex theory is consistent with the requirement 
that all derivatives as well as all tensors, be treated in 
a uniform manner so far as change is concerned. We 
have found that such hypotheses lead to an extended par­
ticle system in four dimensions. 

Note added in proal: We use the samel'''; and h(\ as 
in Eqs. (21) and (22) of Ref. 1. However, Eq. (21) there 
should have read: 

1°1=0,44/°2=-0.16/°3=0.39. 

1M. Muraskin, J. Math. Phys. 21, 1155 (1980). 
2M. Muraskin and B. Ring, Found. Phys. 5, 513 (1975). 
!M. Muraskin, Found. Phys. 10, 887 (1980). 
N. Zabusky and M. Kruskal, Phys. Rev. Lett. 15, 240 (1965). 

5p. Caudrey, J. C. Eilbeck and.:. Gibbon, Nuovo Cimento 
B 25, 497 (1975). 
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On the decoupling theorem in field theory 
Edward B. Manoukian 
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An elementary proof of the decoupling theorem in field theory is given when all the masses in the 
theory are allowed to go to infinity. The proof is given directly in momentum space with the 
subtractions of the theory performed at the origin and containing nonzero mass particles. The 
theorem states that, in Euclidean space, if the masses of the theory are scaled by A and A is allowed 
to go to infinity then the corresponding Feynman amplitUde vanishes not more slowly than A - l, 
i.e., I dl<A -le, forA> 1. 

PACS numbers: 11.10.Gh, 11.10.Jj, 11.1 OEf ,02.30. - f 

Several useful applications have been carried out in the 
literature (see e.g., Refs. 1,2) making use of the so-called de­
coupling theorem in field theory. When some of the masses 
in a theory, with nonzero mass particles, become large the 
proof of the theorem (in Euclidean space) is involved3 due to 
the complex nature of the subtractions of renormalization 
and, to some extent, due to the complicated structure of the 
Feynman rules involved with higher spins and derivative 
couplings. An elementary and complete proof of this impor­
tant theorem is given in this paper by working directly in 
momentum space with subtractions carried out at the origin 
and with nonzero mass particles for the cases when all the 
masses of the theory are allowed to go to infinity. The theo­
rem states that, in Euclidean space, when the masses of the 
theory are scaled by a parameter A and the latter is allowed to 
go to infinity, the renormalized Feynman amplitude vanish­
es. More precisely, the renormalized Feynman amplitUde d 
does not vanish any more slowly thanA -l,i.e., I dl<A -le, 
A> 1, where e is a constant independent of A. The simplicity 
of the proof we hope justifies this work. 

A renormalized Feynman amplitude may be written in 
Euclidean space in the form: 

dip M) = 1 ,dkR Ip, k, M). 

= M = (M., ...• M.), M J > O. (1 ) 

p = Ipl; •. ..• P;" ).k = (k \' , ... k ,~ ), 

R lp,k,M) = 'lp,k,M) n (Q; + M;-I, 
.1' ' 

Qj = i ajiki + I bjiPi=Kj + Pj' 
;=1 i= 1 

where M denotes the set of masses in the theory, P Ip ,k,M ) is a 
polynomial in its argument and if denotes the totality of all 
lines participating in the denominator of R (P,k,M). 

We write 

PIp,k,M) = V'P,(k.M), 
" 

(2) 

p" == (p?rOI ... (p;")"'''', 

d"j >a"j >0, j = 1, ... ,m; f.l = 0,1,2,3. 

Letp},.· .. ,Pj~,'J be (d"j + 1) distinct values for pr. Let 

P* _ (po p3) 
t - Itol "'" me],,,' (3) 

where O<tl'j <dfLj, then Lagrange's interpolating formula 
states4

•
5 that we may find a constant e" (P~) depending on a 

and the fixed values in p~ such that 

PJk,M) = Ie,,(p~)p(p~,k,M), (4) 
I 

where P and P" are defined in (1) and (2), respectively, and 
the sums is overall O<t"J <d"j with} = 1, ... ,m; f.l = 0,1,2,3. 

Let D (P,k,M) = fIkE [(Q J + M J). An elementary and 
useful inequality4 is that 

(QJ + MJl-'Aj -1«Kj + Mj)-f«Qj +Mj)-'Aj , 

(5) 

where 

(6) 

Using (4) and the right-hand side of the inequality (5), 
we may find a positive G (P~) depending on (P~) such that 

I P,,(k,M) I <Ilea(p~) / P(P~,k,M) /. 
D (O,k,M) I D (p~ ,k,M) 

(7) 

The inequality (7) states that the absolute convergence 
of S dkP (p~ ,k,M) implies the absolute convergence of 
SdkP" (k,M)D -1(O,k,M). This result is similar to the one in 
Lemma 6 of Ref. 4 except in the latter an expansion is made 
in powers of k rather than inp as we have done in (2). 

By writing AM = (AM" ... ,AM,), we have 

J£(p, A,M) = (A )eiIG) r dkR (L,k,M), 
JR'" A 

(8) 

where d (G) is the dimensionality of the graph G with which 
the renormalized Feynamn amplitude .if is associated. 
From the left-hand side of the inequality (5) and Eq. (7) we 
have that SdkP" (k,M)D -1(PIA.k,M) is also absolutely con­
vergent for all A > O. By the Lebesgue dominated conver­
gence theorem we may take the limit of A~ 00 inside the 
integral in (8) and we obtain from (2): 

lim .rf'(p, A, M) 
.1.-----.00 
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X L."dkP,,(k, M)D -1(p/A,k,M) 

= lim I(A )dIGI- lap" 
A--- OC a 

X l."dkP" (k,M)D -1(O,k,M). 

Now, quite generally 
(i) if d (G) < 0, then a;;;'O, 

(9) 

(ii)ifd (G );;;'0, thena;;;.d (G) + 1, by definition of the over­
all subtraction over G, and hence in all cases 

lim .9I(p, A,M) = ° (10) 
A • 00 

Equation (9) and the inequality in (5) then gives the fol­
lowing estimate that 

(11 ) 
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where 

C = II (1 + IP
j I + PJ

2
)Iw" l 

]E.:/' M j Mj" 

X l."dkIP,,(k,M)ID-1(0,k,M), 

covering both cases d (G) < ° and d (G );;;.0. 

'T. Appelquist and J. Carrazzonne, Phys. Rev. D 11,2856 (1975). 

(12) 

lE. C. Poggio, H. R. Quinn, and J. B. Zuber, Phys. Rev. D 15,1630 (1977). 
'J. AmbjQ\rn, Commun. Math. Phys. 67, 109 (1979). Unlike ours the proof in 
here is given in the so-called a-parameter representation of .rf'. 

4y. Hahn and W. Zimmerman, Commun. Math. Phys. 10, 330 (1968). 
'E. Issacson and H. Keller, Analysis oj Numerical Methods (Wiley, New 
York, 1966). 
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~n quantum solitons and their classical relatives: Spin l approximation of the 
sme-Gordon system 
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If ~r~dient te~ms i~ the linear Bose chain H.amiltonian co~ple ~earest neighbors only, then in the 
Spill 2 approxl~~tlOn they reduce to the Spill! x-y-z Hamlltoman. Hence, spin! approximation 
reveals the ~hlrnng model as the one, whose spectrum is completely included in the spectrum of 
the underlymg Bose chain. Relation to the Coleman's equivalence is discussed. 

PACS numbers: Il.l0.Lm 

1. INTRODUCTION 

There are still missing points in the most recent studies 
of the famous Thirring-sine-Gordon model equivalence in 
1 + 1 dimensions. One knows here that the spin! x-y-z Hei­
senberg chain provides an equivalent description of the mas­
sive Thirring model put on a linear (space direction) lattice. 
A continuum limit of the latter can be used to recover spec­
tral properties of the quantum sine-Gordon system (Cole­
man's equivalence), within the appropriate limitations on 
the coupling constant values of the Bose model. 1-3 

However no one has satisfactorily investigated the 
question of a "classical limit" of the quantum sine-Gordon 
field, with the special emphasis on the relation of classical 
and quantum soliton fields. The only exception in this con­
text were the semiclassical quantization methods of Ref. 4, 
and quite inconclusive Coleman's remarks in last sections of 
Ref. 1. 

Second, suppose, we start from a classical sine-Gordon 
field energy density5 

H(X,t)=!{(~~r -(~~r +2m2(1- COS¢)}(X,t) 

(1.1) 

and approximate it on a linear lattice with spacing €. Then 

L H (x,t ) dx--+H 

= II [~+2m2(1- cos¢,)] - (¢s -¢s+1 )2/€2] 
, 

= I (H, + V,.s+l) (1.2) 

can be viewed to describe a linear chain of plane pendula 
subject to harmonic interactions among nearest neighbors. I> 

The gradient terms I V,.s + 1 J s ~ o. + I ••.. are here responsible 
for the emergence of nontrivial configurations in the pendu­
lar chain. In the "single site approximation" of Hby '1,sHs, a 
quantization of the chain is immediate through a simple re­
placement of each classical pendulum in the chain by a re­
spective quantum one. A corresponding Schrodinger prob­
lem,7 involves a pair of variables I rr = - ifz(J/J¢ ),¢ ] which 

"'Permanent Address: Institute of Theoretical Physics, University ofWro­
claw, Cybulskiego 36, Poland. 

though infinitesimally canonical cannot be integrated to a 
representation of the CCR (canonical commutation rela­
tions) algebra, in the sense of Ref. 8. 

As a consequence, there is no straightforward way of 
getting a quantum analog of gradient terms I Vs.s + 1 1, and 
probably it was the main reason why the lattice analog (1,2) 
of the classical sine-Gordon system, has never been explicit­
ly related to the spin! x-y-z Heisenberg chain. The latter can 
in principle be considered as a lattice ancestor of the quan­
tum sine-Gordon system, and as such should somehow be 
related to the quantization of the classical lattice problem 
(1.2), which is a lattice descendant of the classical sine-Gor­
don system. 

Our aim is to establish the underlying relation. Basic 
result of the paper can be summarized as follows: Quantum 
fields on a lattice are considered as functions of the single site 
level raising-lowering operators. We prove that each linear 
Bose chain, whose gradient term in the Hamiltonian couples 
nearest neighbors only, in its spin! approximation, is equiv­
alent to the lattice Thirring model. Specification of its cou­
pling constant relies on the explicit form of the quantum 
field entering the gradient term. (For a particular case of the 
sine-Gordon field, each quantum soliton operator appears to 
give rise to its own Thirring problem. 8

.
9 A crucial point in 

this investigation is an interaction of a quantum system with 
a nonzero temperature reservoir, without which a spin! ap­
proximation makes no sense. IO 

2. QUANTUM PENDULUM AND PENDULAR CHAIN 

The quantum pendulum spectral problem is conven­
tionally expressed in terms of the Mathieu equation: 

(2q cos2z - d 2Idz2)l/J(z) = al/J(z), (2.1) 

with q = m 2
, cP = 2z, zE[0,2rr], l/J = l/J(cP )Ey2(0,4rr) and a 

playing the role of the eigenvalue, compare, e.g., Ref. 7. 
The spectrum of the quantum pendulum in the cou­

pling constant range qE(O, 00 ) is nondegenerate, and both 
eigenfunctions and eigenvalues exhibit a q-dependence. The 
Mathieu (eigen)functions: 

ce2n (z ± rr) = ce2n (z), se2n + 2 (z ± rr) = se2n + 2 (z), 

ce2n + 1 (z ± rr) = - ce2n + 1 (z), 

se2n + 1 (z ± 'IT) = - se2n + 1 (z), n = 0,1,2,.··, (2.2) 
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form a complete orthonormal system in h = "zp2(0,41T) and 
hence 

h = EP h" = EP (h ~e EPh ~e) = h ce EPh se. (2.4) 
n=O ,,=0 

In the limit q-O, Eo(q) falls down to its minimum Eo, while 
E~e_E~e_Ek(O),Ek(O) <Ek + 1 (0) for k>O. In the opposite 
limitq-oo, the spectrum [Ek(q)!k=O.l. ... goes to that of the 
doubly degenerate harmonic oscillator with the 
identifications: 

for all n = 0.1.·· .. 

By introducing: 

e4n = (11 ~ 1T )ce2n , e4n + 1 = (11 ~ 1T )ce2n + 1 • 

e4n +2 =(1I~1T)se2n+I' e4n +J =(1I~1T)se2n+2' (2.5) 

we can define densely in h the pair of the raising and lowering 
operators a*. a. for quantum pendulum 

a* = ! Yk+ lek+1 ®ek• 
k=O 

a= ! Ykek_ 1 ®ek • (2.6) 
k=1 

which generate in h a Fock representation of the CCR 
algebra 

In terms of [en! the quantum pendulum Hamiltonian be­
comes immediately diagonalized. which allows an expres­
sion of H in terms of the true (integrable) generators a*, a of 
the CCR algebra 

H = ! Enen ® en = I Ena~: exp( - a*a):an = H (a*,a), 
n=O n 

(2.7) 

where we have exploited the fact that: exp( - a*a): is a pro­
jection on the ground state eo in h. 

On the other hand. one easily finds that the operators 

~+ _ * cos2(1Ta*a/2) 
>;:;.I -a , 

(a*a + 1)1/2 

®- _ cos2(1Ta*aI2) a 
- (a*a + 1)1/2 • 

(2.8) 

generate in h a reducible representation of CAR algebra 

[®-,®+]+ = 1 = I en ®en• 
n 

®-e2n = 0, ®+e2n = e2n + I' Vn = 0,1, .. ·, (2.9) 

(®-)2 = 0 = (®+)2, 

which becomes reduced on each two-dimensional sector 
h ~e(se) of h. In particular. if to denote Po a projection on h ~e in 
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h. then: 

®o+ = Po®+Po = a*:exp( - a*a):. 
(2.10) 

®O- = Po®-Po = :exp( - a*a):a, 

are identities on h ~e, and the spin! operator S, with 
S + = ®o+ , S - = ®o- , S 2 = -! + ®o+ ®o- , emerges at once. 
Let us now consider a linear chain of elementary quantum 
systems. It is characterized by a countable set 
(a: ,as J s = o. ± I ... of the CCR algebra generators, which form 
a reducible representation in the general tensor product 
space 

® 

JY = II (h)" (2.11 ) 

where with each site of the chain, we associate a copy of the 
quantum pendulum Hilbert space. An irreducible, Fock 
component of this CCR algebra arises in the proper subspace 
IDPS(il) of JY, where 

® 

il=II (eo)s, [as,a~]-=Ds,l, 
s 

(2.12) 
[a"a,]_=O= [o~,a~]_, asil = OVs. 

By comparison with (2.7) we find that a correctly quantized 
form of the lattice sine-Gordon Hamiltonian. should be giv­
en as a nonlinear function of generators (a:o, J : 

H-H = H(a*,a) 

= ~ { + Eka:k:exp( - a:as):a: + V,.s+ 1 (a*,a)}, 

(2.13) 

where. in principle, the gradient term should read 
~ A A 

Vs,s+n = Vs.s+1 (a*,a) = [(1IE)(¢s+1 -tPs)f, 
(2.14) 

~s = ¢s(a*,a). 

In Ref. 10, we have given a description of the quantum sine­
Gordon field in terms of (single-site) canonical generators 
( a:,a s J.f = o. ± I .... and shown that each single classical soliton 
field ¢, after quantization should give rise to its associated 
irreducibility sector IDPS(¢ ) of JY, On the other hand, in 
Ref. 10, we have formulated a model independent descrip­
tion of criteria under which expectation values of observa­
bles associated with a finite part of the lattice Bose system, 
can be made to converge to these of the associated Fermi (or 
spin !) system. A leading idea behind, was that of a "spin! 
approximation concept" for quantum Bose systems in ther­
mal bath. We have shown that if a projection 

Po = II P~ = II! :exp( - a:as): + a::exp( - a:as):as J 
s s 

(2.15) 

on the lowest two levels of each single lattice degree of free­
dom, happens to be a spectral projection for a Bose system 

~ 

[Po.HB]-=O, (2.16) 

then for a finite fraction of lattice sites, one has 

(2.17) 
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and a resolution of the spectral problem for the spin ~ lattice, 
~rtly (within Pr/lI" = 3Y'o) resolves a spectral problem for 
H 8' In connection with the time development, notice thatJor 
all vectors la), Ib )EPr/lI" = 3Y'o there holds 

/'.. /'.. 

(al exp(iHBt)lb) = (al exp(iHFt)lb), (2.18) 

see, e.g. Ref. 10. IJ la )EJY'o, but Ib )EJY' the identity (18) 
holds as well. Because in Ref. 8 we have established a connec­
tion between classical solitons and irreducibility domains for 
the CCR algebra generated by [a; ,a s ) s ~ o. ± I •... quantum so­
litons can be specified by identifying the corresponding 
IDPS-generating vectors. Hence, in the infinite volume lim­
it, the spectral problem for fiF , should indeed give rise to a 
classification of quantum solitons. 

In the present papers we are concentrated on the rela­
tion between the classical sine-Gordon equation and the 
equivalent lattice approximations of the quantum sine-Gor­
don system: the spin! x-y-z and Thirring model. 

Studies of the Fermi contents of quantum solitons will 
not be studied here 

3. SPIN! APPROXIMATION OF GRADIENTS IN THE 
LINEAR BOSE CHAIN, AS SPIN! x-y-z HEISENBERG 
PROBLEM 

(i) Take an elementary quantum system (single site 
Schrodinger problem in, the linear chain) in its two-level 
(spin i) approximation. Within a Hilbert space h it means 
that we preserve two lowest levels [eo,e l ) of the general spec­
tral solution [e k ) k ~ 0,1 ..... We charactef'ize them by indicat­
ing an orientation of the spin! arrow: S 2eo = ( - !)eo, 
S2e l = (!)el,oreo = 10) Lei = 11)-r,foreachfixedexci­
tation possibility. 

The set of all mappings between the excitation levels of 
the two-level problem can be described in terms off our ar­
row diagrams: 

1 -,-,-
~ 

Let us now consider the two chain neighbors, both in 
the spin i approximation, Then a propagation of excitations 
along a linear chain can be completely given in terms of 16 
arrow diagrams, describing elementary site-to-site energy 
exchanges (s,1 1.)-(s + 1,11.): 

(1) _1_1 ,~, 
1 1 1. 1. 

(2) _1 _1. ,~, 
i 1. 1. 1 

(5) ~,~, 
1 1. 1. 1 

(7) _1 _1. , _1. _1 , 
1 1 1. 1. 

(2)~,~, 
1 1. 1. 1 

(4)~,~, 
1. 1. 1 1 

(6) ~,~, 
1. 1. 1 1 

(8) _1 _1 ,~. 
1. 1 1 1. 

(3,1) 

Each of these elementary transition diagrams can be de­
scribed in terms of Baxter's vertices I 1.12: (1)+, (2)+ ,(3)T' (4) +, 
(5) + ' (6) + ' (7)+ ' (8) + ' (3,2) 
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provided, we adopt the Kadanoff-Wegner convention 13: the 
right or upward arrow in the Baxter's diagram corresponds 
to the case when the two adjacent (with an arrow in between) 
spins are parallel, while a leftward or downward arrow is 
assigned to anti parallel spins. 

We shall be composing transition diagrams in both 
horizontal and vertical directions according to the rule. 

I I I I 

-.-~ 0 >--1--- == ----f!--~: --- (3.3) 

and basically interesting for us will be the transitions be­
tween spin-up-spin-down configurations of a linear chain of 
the identical two-level systems, which can be described in 
terms of so-called "transition matrices": 

T(lconf I)) = Iconf 2), (3.4) 

like e.g., the mapping 

ss+ls+2s+3s+4s+5 ... ~ .. ·1011)[1) 10)[0)10) ... 
1111 III 1. I till .. ,e I ® e I ® e I ® eo ® eo ® eo" 

ss+ Is+2s+3s+4s+5 

111111[1[1111 .. · 

(3.5) 
'''eo®e l ®eo®e l ®eo®e l 

.. ·10) 11) 10) II) 10) 11) .. ·, 

which in the language of Baxter's diagrams reads 

... (t) 1 ( r (t)! ( ... , (3,6) 

(ii) One immediately finds that whenever the two con­
figurations of the infinitely long spin! chain differ in the 
infinite number of single site entries, then the respective vec­
tors I conf I), [conf 2) are orthogonal within the direct prod­
uct space ,ro = IT, "(hot. (hols = P~(h ),' p;) 

= :exp( -aias): +ai:exp( -a;as):as projecting on the linear 
span of eO,ej in (h)s' 

These two vectors give thus rise to the two unitarily 
inequivalent irreducibility sectors for the spin i algebra 

[®/ ,®,± ]_ = 0, s=j.t, 

[®,+ ,(0,- ]. = Ph, (3.7) 

IDPS ([confl,2», respectively. If not orthogonal, the two 
configurations are represented by product vectors within the 
same irreducibility sector. 

Suppose we have chosen some configuration, i.e., 
Iconf), and hence IDPS ([conf», Mappings between con­
figurations within IDPS (Iconf» influence at most a finite 
(though arbitrary) number of spins i in the chain, and can be 
represented by operators acting in IDPS ([conf», 

To investigate the structure of such configuration-to­
configuration mappings within any fixed IDPS ([conf», we 
can exploit the original Baxter's study of transfer matrices 
for the eight-vertex model, 11,12 vertex configurations being 
just the Baxter's diagrams mentioned before. 

(iii) To proceed along the Baxter's lines, we must admit 
a thermal coupling ofthe linear chain with the environment. 
(See, e,g., for the notion of a "field-reservoir interaction" of 
ours. 14) Then we must assign to the vertices, the appropriate 
Boltzmann weights 

(i)1 = (i)2 = a = exp( - [3£1)' (i)3 = (i)4 = exp( - [3c2)' 
(3.8) 
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Ws = W6 = C = exp( - /3C3)' W 7 = Wg = d = exp( - /3c4)' 

where energies cl,c2,c3,c4' we shall for a while leave unspeci­
fied, /3 being the inverse temperature of our open system. 

Let us now form a related set of parameters: 

WI = !(c + d), W 2 = ~(c - d), 
(3.9) 

W3 = !(a - b), W 4 = !(a + b), 

and notice that transitions between different configurations 
of the N-particle segment of the linear chain, which are real­
ized in a sequence of N steps, can be represented by the 
Baxter's "transfer matrix,,,'1.13,3 on the Baxter's N XN, 
eight-vertex lattice, provided the toroidal boundary condi­
tions are taken into account. One knows that an operator 
representative T of the transfer matrix in IDPS (Iconf») com­
mutes with the spin ~ x-y-zmodel Hamiltonian, 15.'1.12 so that 
the most general Hamiltonian, responsible for quantum fluc­
tuations around a fixed configuration rconf) of the chain is 
one of the form 

(3,10) 
s a 

where a = x,y,z. 

An explicit form of the underlying H xyz operator can be 
deduced for its N-site version (N arbitrary) 11: 

(3.11 ) 

with 

@il = (0 1) @i2 = (0 - i) @i3 = ( 1 0 ) 
10' iO' 0-1' 

Jz = J .. JJy = cn(2t)/dn(2t), (3.12) 

cn(2t) = Jx/Jz' 

and 

P, = ~(WI - W2 - W) + W4)~P; = cn(2t )/sn(2;), 

Pz = ~( - WI + W2 - WI + W4)~P~ = dn(2; )/sn(2;), 

P, = H - WI - W2 + W} + w4)~pi = l/sn(2t), (3,13) 

P4 = ~(WI + W z + W, + W4)~P~ 
= (cn(2;) - dn(2;) - l)/sn(2;), 

sn( V,l), cn( V,l), dn( VI), being the elliptic functions of the mo­
dulus I 

1= [(SI - S2)(S4 - Sd/(S4 - S2)(S, - s,)),12 

X [(J; -J;)/J; -n)]I(2, 

sn2(v,l) + cn2(v,1) = 1, (3.14) 

/2 sn 2(v,!) + dn 2(v,l) = 1, 

where the particular value; of VER+ is chosen to be fixed by 

sn(;,l) = [(S3 -SI)/(S4 -SI)]1/2. (3.15) 

The four parameters I Si I, = 1,2,3,4 are related to the initial 
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Baxter's parameters I Wi L = 1,2,3,4 through formulas: 

w] = p( t - s), (3.16) 

where 

t = t (v) = [(S3 - SI)S4 - S3(S4 - s\) sn2(v,l)]/ 

.[S3-S1-(S4-s1)sn2(v,I)] (3.17) 

and p is one more free parameter of the theory. 
(iv) At {Wj I fixed, bothp, and {Sj I exhibit the V-depen­

dence and the non uniqueness of their choice can be removed 
by assuming that we evaluate them as the initial V = 0 data 
corresponding to {wj L = 1,2.3,4 and at a fixed value of the 
constant t. Then a connection (3.16) between {w) J and {Sj J 
is unique. 

Let us here emphasize an important Baxter's observa­
tion II that the two transfer operators Tis!' Tis'! commute if 
{Sj J = Is; J. It implies that by varying a single parameter 
;ER+ of the theory we have classified all noncommuting 
transfer operators: T/ sl : = T;. 

Commuting transfer operators are associated with the 
same spin! x-y-z Hamiltonian, hence a related one-param­
eter family of Heisenberg Hamiltonians H xyz (t ) emerges, 
each one determining its own spin! algebra irreducibility 
sector IDPS(;). Notice that by fixing;, we have fixed I and: 

Jx = cn2(2t)/ dn(2t), 

Jy = cn(2t )/ dn2(2;), 

Jz = cn(2; )/dn(2~), 

i.e., the coupling constants of the H xyz problem. 

(3.18) 

All this means that: Ifthe Boltzmann weights a,b,c,d, of 
the eight-vertex problem, are once established and fixed, 
there exists a one-parameter tER+ family of inequivalent spin 
~ x-y-z Heisenberg problems responsible for propagation of 
excitations along a linear chain of spins ~ (or a linear Bose 
chain in the spin! approximation) 

SJ =Sj(t)=fj(;,w), j= 1,2,3,4, (3.19) 

and I Wi = Wi (a,b,c,d) L = 1,2,3,4 everthing at a fixed inverse 
temperature /3 of the reservoir. 

The non uniqueness can be removed if I a,b,c,d,; I arise 
as a five-valued function of a single common parameter 11: 
a = a(11 ), b = b (11 ), c = c(11 ), d = d (11 ), ; = ; (11 ), as then 
Sj = sj(l1) is uniquely determined by giving the value of 11, at 
/3 fixed. 

4. DETERMINATION OF BOLTZMANN WEIGHTS 

(i) Within the Kadanoff-Wegner parametrization, the 
set a,b,c,d of Boltzmann factors can be deduced in terms of 
Ising parameters @ijk = ± 1, according to the general 
prescription: 

exp(K +@ijk @ij+ l,k + 1 + K -@ij+ \,k @ij,k + I 

(4.1) 
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wherej enumerates neighboring transition diagrams (rows 
of the Baxter's square lattice), while k enumerates the neigh­
boring spins in the linear chain (columns of the Baxter's lat­
tice). For each fixed (j,k )th transition diagram we have 

-/3E I =K++K-+A, 

- /3E2 = A - (K + + K -), (4.2) 

-/3E3 = K+ -K- +A, 

- /3E4 = - (K + - K -) - A, 

so that a complete partition function of the Baxter's lattice 

I I1exp(K+®jk®J+I.k+1 +K-®J+I.k®).k+1 
(is = ± I) j.k 

(4.3) 

describes the two interpenetrating (crossed bonds) Ising lat­
tices with Ising variables ®jk' ®j + I.k attached at each (j,k )th 
site, and an interaction between the lattices arising due to 
each set offour nearest-neighbor spins, see e.g., Refs. 13, 16, 
and 17. Notice that the (j,k )th diagram: 

(j + l,k) (j + I,k + 1) 

(j,k) (j,k + I) 
(4.4) 

gives account of the crossed mappings between spin-up and 
spin-down states of the two neighboring spins ~ in the linear 
chain. 

Depending on elementary exchange energies during 
site-to-site interactions of the nearest chain neighbors, the 
spin! approximation of the gradient terms occuring on the 
Bose Hamiltonian, gives rise to: 

(a) single Ising system if either K +=1=0, 

K- = A = 0, or K-=I=O,K+ = A = 0; 

(b) two independently living Ising systems if 

K+=I=O,K-=I=O, but A =0; 

(c) the general spin! x-y-z Heisenberg system in the 
either case. 

It needs suitable limitations on the exchange energy values, 
like, e.g.: 

(a) 
EI = - E2-=;.K+ = ({3/2)(E2 - E3),K- = ({3/2)(E2 + E3), i.e., 

(b) EI = - E2, but E2=1= ± £3' 

(ii) Notice that a two-particle Hilbert space (ho)s 
® (ho), + I is four-dimensional. With Po projecting on ho in h, 
we find that V~s + I = P~P~ + I Vs.s + I P~P~ + I acts in (ho)s 
® (ho), + I invariantIy and can immediately be diagonalized, 
thus leading to the four real eigenvalues, which we identify 
with the exchange energies E I ,E2,E3,E4, respectively. 

The particular assignments of energy values of the tran­
sition diagrams, according to (3.1), (3.2), (3.8) rely on the 
form of respective eigenvectors. Let us denote: 
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(4.5) 

Let ! a; J be a complex 4 X 4 matrix: 

(4.6) 

and let the four orthonormal vectors 

la,j) = I a; Ii) (4.7) 

be the eigenvectors of V~,s + I : 

(4.8) 

Then an expectation value 

Cj = (a,jlV~s+lla,j) = Iiijkaj(k 1V~s+\ II) (4.9) 
k.l 

explicitly reveals which transition diagrams give a nonzero 
counterpart to Ej • An identification is here immediate: 
(k I V~.s + I II) corresponds to the arrow diagram describing a 
transition from a configuration associated with Ik ), to this 
associated with II > . 

(iii) Notice that (k I V~,s + I II) makes use of the single 
site basis for the elementary Schr6dinger problem. If the ba­
sis exhibits any parametric dependence (which is the case for 
examples of the anharmonic oscillator or quantum pendu­
lum), then all (k \ V~.s + \ \1 )'s do exhibit also, and hence E) 

= Ej (A )-=;. Wj = Wj (A ) arises immediately (provided there is 
a single parameter, like the coupling constant involved). 
Compare, e.g., concluding remarks ofthe previous section. 

Let us emphasize that to find Boltzmann weights, one 
needs to have an explicit operator expression for V"s + 1 in 
terms of the single site raising-lowering operators: 
V = V(a*,a), 

Remark: For the particular case of the rf i theory in 
I + I dimensions: 

with <PER I, the spin ~ approximation arises in the single site 
anharmonic oscillator basis, and due to the simplest possible 
form of the gradient term 

rfj +-\ - rfj = J2' [(at+\ + aJ+l) - (at + a)], 

i.e.,rfj = (l/v2)(at + a) one gets an immediate expression 
of PoHPo in terms of Fermi variables c*,c (which in turn are 
associated with spin ~ variables via the Jordan-Wigner for­
mulas), according to Ref. 18: 

N 

PoHPo= I !€ctCj+.1 [l-(ct-c)(ct+\ +cj+\)]l, 
j=\ 

(4.11) 
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where.1 =cl(1l<p 10)1 =C<01<p 2 10),E=E, -Eo and 10), 
11) are vectors of the single-site basis. 

By comparing with Ref. 19, one immediately recog­
nizes that for large systems the gradient term 
.1 [1 - (cl - cj)(ct+ I + cj + I )] up to an irrelevant constant 
.1, coincides with the one-dimensional Ising term - JLj S; 
S; + I provided.1 = J /4. 

A dependence of J on coupling constants {T,C J of the 
<p i theory is here manifest, as entering J via the 

(Ol<p 210) = 1< 11<p 10) I factor in the expression for.1. 

5. QUANTUM SINE-GORDON SYSTEM AS THE MASSIVE 
THIRRING MODEL: COMMENTS ON COLEMAN'S 
EQUIVALENCE 

(i) Recall that by virtue of Sec. 4(ii), for the particular 
case of the quantum sine-Gordon chain, the (m,/3) parama­
trization enters the Heisenberg model coupling constants J 
by evaluating at /3 fixed, the explicit values of V~s + I eigen­
values (Ei Ii = 1,2,3,4 The single site problem is quantum pen­
dulum here with m being the coupling constant, and hence 
indeed J = J (m,/3), 

By rescaling the variables H,<p of (1.2) according to 

<p =/3c <P', H=/3~H', (5.1) 

we arrive at the Coleman's form, I of the sine-Gordon energy 
density 

, {(J<P')2 (J<P')2} m
2 

, H = - - c - -(1 - cosf3c<p), (5.2) at ax /3~ 

where c = -1 in the Coleman's case, and /3c is the Cole­
man's coupling constant /3 of Ref. 1. 

The single-site quantum pendulum problem arising in 
connection with the rescaled pendulary chain, is related to 
the previous one by 

(5.3) 

and just the E b, E; eigenvalues are used in the spin! ap­
proximation procedure of previous sections. 

(ii) It has been proved by Luther,2 that in case ofa very 
weak anisotropy of the x-y-z model 

(5.4) 

one should make an identification 

(5.5) 

with the restriction that /3 ~E[0,81T] as within this interval 
only a continuum limit can be taken for the lattice problem, 
and shown to lead to the quantum sine-Gordon system of the 
form (5.2). A massive Thirring model appears here as a me­
diating step both on the lattice and continuous levels. 

By assuming Jz = Jz (m,f3 ) we have a unique connection 
between the (m,/3) sine-Gordon chain and the (J) Heisenberg 
problem, compare, e.g., Sec. 3(iv). But then, we must have 

/3~ = /3~(m,/3) (5.6) 
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and hence in the Coleman's framework varying/3c means: 
(a) varying/3 at m fixed, (b) varying m at/3fixed, (c) varying 
both m and /3 simultaneously. 

In fact, the case (a) only was considered in Ref. 1, as 
then one can "forget" about/3 = lIkT . 

(iii) Take /3 ~(m,/3 )ER+ and assume that at m fixed, 
/3 ~(m,f3) grows monotonically when T -+0 (i.e.,/3-oo ), and 
decreases in the opposite extreme, of T - 00 (i.e., /3-+0). In 
terms of the Coulomb gas of charges ± q,20 at thermal equi­
librium, /3c = (41T/3) 1/2q,q = q(m) and there is a natural 
critical temperature /30 corresponding to the Coleman's 
bound /3 ~ = 81T. Namely for /3 ~E[O,81T) the Coulomb gas 
lives in its plasma phase, while for /3 ~E[81T, 00) a dipole gas 
occurs, and then the system must be kept on the lattice as 
ultraviolet cutoff cannot be consistently removed from the 
theory. 

(iv) The very same Coulomb gas picture arises while 
varying m at /3 fixed. In that case, there is a critical value of 
m = mo, i.e., qo = q(mo) at which a transition from plasma 
to dipoles occurs. A correct variability interval for the plas­
ma phase is here l/mE[O, limo), while lImE[lImo, 00) for 
the dipole phase. In this connection let us recall an old Len­
ard's result,21 see, e.g., also Refs. 22 and 23 that in the zero­
space dimension quantum pendulum stands for an equiv­
alent of the Coulomb gas problem where the dipole and plas­
ma cases (no phase transition here!) appear at the opposite 
extremes of m: m = 0 and m = 00, respectively. 

(v) It suggest the way to understand the Coleman's 
equivalence in terms of the single-site (i.e., quantum pendu­
lum) data. Let us notice that for large m the quantum pendu­
lum spectral problem admits an equivalent description in 
terms of the anharmonic oscillator, spectral problem which 
we choose in the form 0[24: 

(5.7) 

In the (weak) limit v-+O, the corresponding spectral prob­
lem is doubly degenerate and gives 

lim E~ = lim E~+ 1= Y2(j +!) = Ej • 
,. ___ 0 \'- ... 0 

For quantum pendulum, the m----+ 00 limit gives 

E~~-E~~ + I ----+(2n + DE = (dY2)E2", 

(5.8) 

E;~ + I _E;e" +2 -I (2n + 1) + ~lE = (E/Y2)E2n + I' 

(5.9) 

where E is a fixed positive factor, insensitive to the m-oo 
limit. 25.9 

Whenever to rescale H according to Ref. 24, with an 
appropriate redefinition of the original constants of Ref. 24: 

H,. =H:,[{3'(g-l)I!1]-I~H:,/3~, 
(5.10) 

g=ml/3'\ v=g(g_l)-ll2, {3'=/3'({3), 

then, the v-O limit is just the same as m_ 00 limit at fixed /3. 
Obviously the m- 00 limit does make sense for (J ~ itself, as 

(5.11) 
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and it does exist for the rescaled HamiltonianH ~ = Hv/(3~. 
Namely, if v->D, then 

Mv = (E~)' - (E~)' <,A exp( - BgI/2), (5.12) 

where A, B are fixed, g-independent constants. Then (3 ~ 
= 81T would imply 

m = moe (3) = (3'3 + (3' /(81T)2, (5.13) 

i.e., to each value of (3, provided (3 is small enough [to insure 
that moe (3) is sufficiently large], we find its own correspond­
ing mo«(3). 

The smallp-large moe P) limitation means that we need 
a fixed upper bound M~.: 

A exp( - BgI/2)<M~<I, (5.14) 

which induces an appropriate balance of(3 and mo(f3) values. 
Let then, at(3~ = 81T, A exp( - Bg1/2) = M~.<I. It 

fixes the range of variability for P's at m fixed (or m's at (3 
fixed), within which the bound M ~ is not passed by the ener­
gy interval value Mv' 

(vi) By recalling the properties of quantum pendulum 
when varying m at P fixed, we find that with the lowering of 
m a separation between lowest two levels of quantum pendu­
lumL1 = E I - EO increases, while a separation 
.1 ' = E2 - E 1 between next lowest decreases. Hence abound 
M~ can be consistently interpreted as this value of .1, begin­
ning from which a two-level approximation of the pendulary 
chain fails, and a three-level one (at least) should be taken 
into account. 

Remark 1: In terms of the Coulomb gas in zero-space 
dimension, the dipole gas appears when a spin 0 approxima­
tion is reliable (lowest eigenvalue contribution to the parti­
tion function is of interest). The plasma appears when a spin 
~ approximation becomes reliable (double degeneracy of the 
lowest eigenvalue occurs). 

While working in 1 + 1 dimensions, the spin ~ approxi­
mation is the lowest one, exhibiting a nontrivial gradient 
structure, and the nontrivial dipole one, is just the spin 1 (or 
2,3,4, .. ·) approximation of the chain as then next eigenvalue 
contributions to the partition function are taken into 
account. 

Remark 2: In connection with the form of gradient 
terms in the spin 1 approximation of the linear chain, let us 
notice that SU(3) is the largest symmetry group for the three­
level system [while SU(2) was for a two-level one], and hence 
the most general form of the nearest neighbor gradient term 
should be that of the current-current interaction type, with 
the number eight of coupling constants involved. The struc­
ture of the gradient term may vary depending on the explicit 
choice of the model. For example, a three-level approxima­
tion if applied to a system of coupled two-dimensional oscil-
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lators in the plane rotor approximation,26 involves gradient 
terms of the form cos(tP j + 1 - tPj)' Their image in the spin 1 
approximation is simply J(S; + IS; + Sf + IS fl, i.e., the spin 
1 x-y model coupling 

Remark 3: Coming back to the spin} approximation 
framework, let us notice that the minimal form of gradient 
terms oflattice Bose systems, which in the two-level approxi­
mation, give rise to the Heisenberg chain, has been derived in 
Ref. 27. 

Some other aspects of the two-level approximation 
trick in connection with the Bose contents of spinor fields 
can be found in Refs. 28 and 29. The whole program of my 
investigations on the spin ~ approximation concept was initi­
ated in Ref. 30. 
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Perturbation methods for the (almost) zero modes and the Green's, function 
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We formulate an approximation method which can be used to compute the almost zero modes 
and the generalized Green function in the background of an approximate instanton gas solution. 
The main problem of choosing the starting point is solved by requiring that the zeroth-order 
operator Ho annihilates the original isolated single-instanton zero modes. The zeroth-order 
approximation to H 0 - I, on the other hand, is constructed from the free Green function with local 
bumps provided by the one-instanton Green function. 

PACS numbers: 1l.10.Np 

I. INTRODUCTION 

Considerable progress has been made in constructing 
Green functions and zero modes (ZM) in the background of 
exact multiinstanton solutions. 1.2 In dilute gas calculations 
one also uses background configurations that are "approxi­
mate solutions."J These approximate solutions are typically 
linear superpositions of instantons and anti-instantons of 
various sizes and orientations located far from each other. 
Since the configuration is only an approximate solution the 
lowest energy modes are not zero modes but almost-zero 
modes (AZM), whose eigenvalues approach zero as the sepa­
rations of the instantons and anti-instantons increase. In this 
paper we present approximation methods for constructing 
Green functions and the almost-zero modes and their eigen­
values for the case when the background field configuration 
is an approximate solution. 

The difficulty in constructing a perturbative expansion 
for the present problem is that it is not easy to choose a 
known zeroth-order starting point. The parameter that de­
termines the convergence is the distance between the ins tan­
tons: In the limit of infinite separation the local instanton 
determines the behavior of the Green function and the zero 
mode completely in its neighborhood. However, this starting 
point with infinite separations is not very convenient in prac­
tice and we will follow a different route. 

In Sec. II we will choose our zeroth-order operator Ho 
so that the single instanton zero modes (qJ~O) J will stay as zero 
modes of Ho. This means that the original operator H will 
differ from Ho only in the subspace spanned by the zero 
modes located around the various instantons and anti-in­
stantons. For this Ho we then construct the modified Green 
function Go defined by 

(1.1) 

"JPresent address: Department of Physical Sciences, University of Turku, 
Turku, Finland. 

"'Present address: Physics Department, Princeton University, Princeton, 
N. J. 08540. 

where Po is the projection operator to the space spanned by 
the zero modes. The zeroth-order approximation to Go is 
constructed from the free Green function G F and the single 
instanton Green functions Gk 

Go = (1 - Pol( GF + ~ (Gk - GF )}1 - Po) + .... 
(1.2) 

The AZM !/l10) of H, and their eigenvalues A 1°) are then 
computed in Sec. III starting from qJ 1°1 and using Go. Finally 
in Sec. IV we find the generalized inverse G of H, 

using the method of Sec. II and !/l10) and A \0) from Sec. III. 
The expansions that we obtain converge rapidly if the 

gas is dilute. The speed of convergence depends for example 
on how fast the tails of qJ ~)(x) and Gk (x, y) - GF(x, y) ap­
proach zero outside the k th instanton. For the kink gas the 
relevant parameter that describes the convergence vanishes 
exponentially as the average distance increases, while for 
Yang-Mills instantons it vanishes like an inverse power. 

II. THE GREEN'S FUNCTION WITH OLD ZERO MODES 

Let us assume that the operator, whose inverse and 
AZM we want to calculate, can be written as 

H=D+ V(¢), (2.1) 

where D contains derivative parts and is independent of the 
background field configuration ¢ and where V(¢ (00)) = O. 
For example for the kink system defined by 

S[¢] = f:= dtB(J,¢)2+ V(¢)], 

we get 

D= -J;+m2, 

V(¢)= V"(¢)-m2, 

m2 = V"(¢(oo)). 

(2.2a) 

(2.2b) 

(2.2c) 

(2.2d) 

For the fermionic operator in quantum chromodynamics we 
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(2.3) 

where the division (2.1) is obvious. (Here we have suppressed 
Dirac and group indices.) In the latter example the potential 
is linear in the background field AIL' which will bring some 
simplifications. 

For a single instanton or anti-instanton background the 
zero modes rp ~~,Va ofH (11k) are assumed known, 

(2.4) 

where K labels the instanton. It is possible to have several 
ZM, labeled by a, for each instanton. 

Let us next take a background field configuration i that 
is a superposition of single instanton solutions. (In practice 
we will only need the property that near the I th instanton 
i~if> I.) We will now construct Ho so that it will annihilate all 
of the single instanton ZM's rp ~~ V k,a, but is otherwise un­
changed. H 0 will differ from H (i) only in the potential. Let us 
write 

V(i) = Vo(i) + W(i), 

Ho = D + Vo(i), 

then Vo should be such that 

Holrp ~~) = 0, V k,a. 

(2.5a) 

(2.5b) 

(2.6) 

Let us denote by P~ and pO the projection operators to 

the subspaces spanned by Ilrp ~» Va J and Ilrp r~ > V k,a J, 
respectively. For P~ we have trivially 

pO = "lm IO) >(m IO) I k £... T k,a T k,a , (2.7a) 

but we cannot write Po = "J.kP~, because the states Irp r~ > 
are not necessarily orthogonal for different k. Rather let us 
define 

pO = "" ImIO) >(mIO) 1m (0) >-l(m IO)I. 
k ~ ~ or k.a or k.a or 1./3 or 1./3 (2.7b) 

a 1./3 

Then we have 

Po = I p~. (2.7c) 
k 

The p~ 's have the useful property that they separate the zero 
modes of different instantons when operating to the right, 

I.e. 

p~ Irp \~~ > = Dk/lrp \~~). 
The potential Vo may now be written as 

Vo = (1 - Po)V(l - Po) 

+ I [(l-Po)VJ;~ +P~tVk(l-Po)] 
k 

+ I I P~'Vk{P~, 
k I 

(2.7d) 

(2.8) 

where the V's should be determined so that (2.6) holds. We 
find 

(2.9) 

The remainder W involves terms like 
"J.,P7'[ Vii) - V (if> ")]. This term vanishes as the instanton 
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separations increase, because p~ 's and V's vanish far away 
from instantons, and near a particular I th instanton i-if> I, 
and therefore only tail effects remain. 

We will also assume that the free Green function and 
single instanton Green function are known (See Ref. 1 for Y -
M instantons and Ref. 4 for kinks). They are respectively 
solutions of 

D (x)GF(x, y) = D(X - y), (2. lOa) 

and 

[D (x) + V (if> k(X))]Gk(x,y) = D(X - y) - P~(x,y). (2. lOb) 

Let Go be the generalized inverse of H o' i.e., the solution 
of 

To solve Go from this we write 

Go = Go + To, 

Go = (1 - Pol( GF + ~(Gk - GF ))(l - Po), 

(2.11) 

(2.l2a) 

(2.12b) 

where To also annihilates Po. (The ° subscripts refer to the 
ZM-space). The choice of Go comes from the observation 
that the ins tan tons only bring local corrections to the Green 
function. Near the Ith instanton Gk - GF=O,Vk =/=1 and 
therefore GoC::=G,. Cross terms where x and y in Go(x, y) are 
near different ins tan tons are small because the ins tan tons are 
far apart. Substituting (2.12) to (2.11) gives 

HoTo =Jo, 

where 

Jo = - HoGo + I - Po 

(2.13) 

= (1 - Po){~ V(if> k)Gk - Vo[ GF + ~ (Gk - GF )]} 

X(l- Po). (2.14) 

From (2.13) and (2.12) we get an integral equation for Go: 

Go = Go + GoJo, (2.15) 

so that 

Go = Go + f Go J ~. (2.16) 
n = 1 

For the convergence this expression we need IIJol1 < 1. 
But as the instanton separation increase we infact have 
IIJoll---+O, as can be seen from (2.14): At a point far away from 
all instantons we have V =0, and near the I th instanton both 
terms in the curly brackets approach V(if> ')G, and cancel. 

In this way we have constructed the inverse of our ze­
roth order ( = "unperturbed") operator Ho. The essential 
feature was to keep at this stage the ZM's intact, and modify 
Hoonly in the subspace I rpIO)J. Another approach could be to 
find an fio so that Go of (2.12b) is an exact (generalized) in­
verse of fio. This would lead to a more complicated Win 
(2.5a) but avoid a series expansion (2.16) at this stage. 

III. THE ALMOST-ZERO MODES 

To find the almost-zero modes we divideH as in Sec. II: 

H=Ho+ W, (3.1) 
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W= I{(l- poj[v(i) - V(tPk)] 
k 

XP~ +p~t[v(i) - V(tPk)J(I-Po)J 

+ IP~t[v(i)- V(tPk))P~. (3.2) 
k.i 

The degenerate eigenstates of H o are the single instanton 
ZM's { Icp ~~ ). V k,a J . As the separations between instantons 
increase, W-O and the eigenstates /cp ~~) become exact. 

According to usual results of degenerate perturbation 
theoryS the first order results are found by diagonalizing the 
matrix 

( m(O) IWlm(O) = (m(O) IHlm(O). 
.,. k.a .,. I.P .,. k.a .,. I.P (3.3) 

The diagonal elements are the new eigenvalues. Since the 
instantons are in arbitrary locations the degeneracy is usual­
ly broken completely already in first-order. Let us denote the 
diagonalizing eigenvectors by ~? (If the original degeneracy 
was two-fold, ~? cc cp \0) + cp ~), ~~ cc cp \0) - cp~).) 

For the calculation of higher order terms we write the 
AZMas 

(3.4) 

where PoX; = O. To first orderaij = Oandx; = O. Substitut­
ing this in the eigenvalue equation, 

Hr/;i = E; r/;o (3.5) 

gives 

HoXi = Eit/Ji°) - Wt,f}?). (3.6) 

Since the inverse of Ho only exits in the space orthogonal to 
the old ZM's we must project from the left with Po, which 
gives the condition 

(~2IEi - Wlr/;~O) = 0, Vk,i. (3.7) 

For k = i we get 

E; =€: + (~?IWlx;), 
and for k #i 

<~~IWlx;> 

where 

€J = <~JI WI~J>. 
This leaves 

(Ho-E;)X; =A" 

( 
~o AO) A; = - (1 - Po)W t/I; + j~ aijr/;j , 

where we have also used the fact that 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(1 - Po)W(l - Po) = O. From (3.11) we can iterate for X; 
and get 

X; = f (E;GotGoA;, (3.12) 
n=O 

Equations (3.8)-(3.10), (3.12) determine the eigenfunc­
tions and eigenvalues order by order. The first order results 
were given above. To the next order 

(3.13a) 
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E\2) = €: - (~?I WGoWI¢?), 
aW = - (~~ I WGoWI~?>/(€: - €k)· 

(3.13b) 

(3.13c) 

To this order we may take Go instead of Go, since the differ­
ence is one order higher. 

The convergence of the expansion (3.12) depends on the 
eigenvalues of the almost-zero modes. But since they go to 
zero as the instantons get separated, the expansion will al­
ways converge for large enough separation. 

IV. GREEN FUNCTION FOR THE FULL OPERATOR 

In Sec. II we showed how the generalized Green func­
tion can be computed for the operator Ho with zero modes 
{cp \0) J. For the full H we should now solve 

H(x)G(x,y) = 8(x - y) - It/Ji°)(x)t/Ji°)(y). (4.1) 
; 

Here {r/;\OlJ are the normalized almost-zero modes of H: 

H (x)r/;\O)(x) = A-ir/;\O)(x), (4.2) 

where A-;-o as the instanton separations increase. Although 
the r/;'s are not exact zero modes of H it is still necessary to 
project that subspace out, because we want a well-behaved 
inverse. Note that the norm of G is for most purposes 
~ l/min; { IA-; I J , and blows up for dilute gas unless the AZM 
are projected out. 

Let us denote by P the projection operator to the space 
spanned by the AZM's. Following the method of Sec. III we 
may calculate the AZM's and that way obtain P. One can 
also use direct expansion methods for P, e.g.,s 

P = Po + PoWGo + GoW Po + .... (4.3) 

Anyway, for the purposes of this section we may assume that 
P is known. To calculate G we may again start with a similar 
zeroth-order approximation as in Sec. II, namely 

G= 0' + T, (4.4a) 

0' = (I - PI( GF + ~ (Gk - GF))!I - Pl. (4.4b) 

This differs from (2.12) only in that the projection operators 
are different, e.g., Tnow annihilates t/Ji°)'s rather than cp ~~ 'so 
Substituting (4.4) to (4.1) gives 

HT=J, (4.Sa) 

where 

X(1 - P) + (I - P) I P~(I - Pl. (4.Sb) 
k 

The result is again very similar to (2.14) except for the term 
(1 - P)'l:kP~(l - Pl. This term does not vanish, for al­
though the spaces spanned by the original zero modes and 
the almost-zero modes have the same dimension they are not 
identical. 

The terms in J are known, small, and annihilate P. The 
Eqs. (4.3) and (4.4) allow then for a iterative determination of 
Gfrom 

(4.6) 
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00 

G=G+ L Gr. (4.7) 
n=l 

The result has the same form as in Sec. II, except that now all 
operators have different subspace projected out. The conver­
gence properties are the same as before. 

V. DISCUSSION 

Calculations with dilute instanton gas are made subtle 
in many places due to the existence of (almost) zero modes. 
In this paper we have studied the problem of computing the 
generalized inverse of an operator H in an instanton gas 
background, assuming that the problem has been solved for 
a single instanton background. There are two problems in 
computing H - \: 1) The inverse is well-behaved only in a 
certain (at the moment unknown) subspace perpendicular to 
the AZM, 2) There is no simple way to isolate the "unper­
turbed" Ho. 

In this paper we have chosen Ho so that it annihilates 
the individual zero modes (rp r~ V k, a J of all ins tan tons, 
i.e., HoPo = 0, but is otherwise identical to H. In this way we 
know the subspace where H 0- \ exists. The zeroth-order ap­
proximation to H 0- I is obtained from the free Green func­
tion with bumps at the location of each instanton supplied by 
the local exact Green function: 

H 0- 1= (1 - Pol[ GF + + (Gk - GF )](l - Po) + To· 

(2.12') 

To is the small perturbation that was computed in Sec. II. 
After H 0- \ is known it is straightforward to compute 
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the AZM of H, this was done in Sec. III. Once the AZM's are 
computed we also know the subspace where H - I is well de­
fined, and then H -\ can be computed according to Sec. IV 
starting with 

H- 1 =(1-P)[GF + ~(Gk-GF)](l-PI+T. (4.4') 

Following the above method one can now compute the 
needed almost-zero modes and Green functions in a dilute 
gas background. The expansion method presented here and 
its speed of convergence could be tested with exact multi­
instanton solutions, where the AZM's and Green functions 
are known in closed form. 1,2 
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We show that in the Minkowski space, a self-dual gauge field can be linearly superposed with 
either another self-dual gauge field or a non-self-dual gauge field to give a new solution of the 
Yang-Mills equation. From these new solutions, Euclidean solutions are constructed. Some of 
these new solutions are valid in any dimensions of space-time. 

PACS numbers: Il.lO.Np, 11.1O.Qr 

I. INTRODUCTION 

Recently there has been much interest in searching for 
new classical solutions of the Yang-Mills (YM) equations I 
and their properties. 2 The technique involved is usually to 
employ an ansatz for the gauge field A ~ and the most well­
known one is the Corrigan-Fairlie-'t Hooft-Wilczek 
ansatz3 

A" (x) = g ~ A ~ (x) = iu"v av In¢ (x) , (1) 

where g is the gauge field coupling constant, di = l€l}kuk , 

and in the Minkowski space, cl° = id /2 whereas in the Eu­
clidean space cl4 = d /2. Here d are the Pauli matrices. 
With this ansatz, the SU(2) YM equations reduce to a non­
linear equation for the function ¢ (x), 

o ¢ (x) +).¢ 3(X) = 0, (2) 

and the self-anti-duality condition gives rise to 

O¢(x)=O. 

Thus the single instanton solution4 corresponds to 

¢ (x) = 4/(2 + ).r), r = xl' xl' , 

while a single meron5 is given by 

¢ (x) = (). )-1/2 ~ , 
r 

(3) 

(4) 

(5) 

where)' is a constant. In Ref. 6 the meron solution IS recov­
ered from the real part of a complex self-dual solution in the 
Minkowski space and in Ref. 7, specific examples of self-dual 
complex solutions in the Minkowski space are constructed 
which can be summed up to yield the meron solution. These 
results suggest that the superposition principle may be possi­
ble for classical nonabelian YM fields. In fact, in Ref. 8 it has 
been pointed out that functions of the form ¢ (u), with 
u = px + e, p2 = P" pi' = 0, and e being a constant, will lead 
to self-dual gauge fields A I' which can be linearly superposed 
to produce other self-dual solutions. Of course trivial linear 
superposition can always be achieved for the YM fields by 
writing an ansatz of the formA ~(x) =gO BI'(x). Withg U be­
ing a constant vector, one automatically gets rid of the non­
linear term in the field strength F~l' and reduces the nonabe­
lian equation to the linear field equation. Hence, solutions 
with such an ansatz are linearly superposable. This type of 
solutions has been discussed in Refs. 9 and 10. 

In this paper we exhibit self-dual gauge field configura­
tions in the Minkowski space which can be linearly super­
posed with self-dual or non-self-dual fields to give nontrivial 

solutions to the YM equations. Some of these solutions so 
obtained by superposition can be analytically continued to 
the Euclidean space. In this way, we obtain a family of solu­
tions which can be made regular everywhere in the Euclid­
ean space and as a result, their topological charge, action, as 
well as energy-momentum densities vanish. These solutions, 
however, possesses nonzero complex electric and magnetic 
field strengths. Examples of complex zero-action solutions 
in the Euclidean space have been considered before. 9 In Ref. 
9, however, an ansatz of the form 

A" = ai' (x) M, (6) 

with Mbeing a constant nilpotent matrix, is employed which 
essentially linearizes the YM equations, and, consequently, 
the resulting solutions are not truly non-Abelian. As is well 
known, in the Euclidean space the self-dual solutions, e.g. 
the instanton,4 possess finite actions II and it has been conjec­
tured that all finite action solutions of the YM equations 
must be either self-dual or self-anti-dual. 2 Some of the solu­
tions obtained here in Sec. III seem to confirm the 
conjecture. 

In Sec. II, linearly superimposable YM fields in the 
Minkowski space are displayed and some of their properties 
are given. In Sec. III we show that by making the constant in 
the solutions in the Euclidean space-time to be complex, 
nonsingular finite action solutions are derived. Some solu­
tions obtained in Secs. II and III are valid in any dimensional 
space-time and the corresponding static ones are hence writ­
ten down in Sec. IV. These static solutions are complex and 
singular along a straight line. They can be regarded as the 
generalization of the cylindrical solutions given in Ref. 13. 
The complex static gauge field solution can be understood by 
converting it into an exact solution for the real static SU(2) 
gauge field coupled minimally to the triplet Higgs field when 
the self-interaction potential of the later vanishes. 14 We end 
in Sec. V with brief remarks. 

II. LlNEARL V SUPERPOSABLE SOLUTIONS 

The self-duality condition (3) admits any function of a 
single variable u = px + e, withp2 = P" pi' = 0 and e being 
a constant, as a solution in the Minkowski space-time. The 
metric gill' is (- + + +). Consider now two self-dual so­
lutions ¢ (x) = ¢I(U), u = px + e, and ¢ (x) = ¢lv), 
v = qx + f(l = 0, f = constant). If we demand the prod­
uct ¢ (x) = ¢I(U) ¢lv) be a solution of the YM equation (2), 
then the function form of ¢ I and ¢2 is the square root of the 
argument, i.e., ¢I = U-

1/2 and ¢2 = V-
1/2 withpqi'0 in order 
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for ifJ = ifJlifJz be a solution of (2). Obviously, ifpq = 0, 
ifJ = ifJlifJz is again a self-dual solution. Thus, starting from 
two self-dual configurations, AfL = ia fLV av InifJI and AfL 

= iafLV av InifJz, the linear sum AfL = (jafLv av InifJI 
+ ia fLV a' InifJz) is again a solution which may be self-dual or 
non-self-dual depending on whether pq vanishes or not. Note 
that 

ifJ = ifJ ~ = ~ = _1_, pZ=j:.O, (7) 
u px+e 

also leads to a self-dual solution if2pz = -,.l". This solution 
and its elliptic generalizations have been discussed in Ref. S. 

The non-self-dual solution 

ifJ = ifJlifJ2 = (uvyI/2, ,.l" = - ~pq, pZ = qZ = 0, (S) 

can be generalized. One finds that 

ifJ = (uvyl/z E (w), (9) 

with w = A In(u/v), A = arbitrary constant, satisfies the 
YM equation (2) provided the function E (w) is a solution of 
the following differential equation, 

E'2+ aE 2 +!bE 4 =e, (10) 

where E' = dE / dw, e is a constant, and for the solution (9), 
a = - l/(4A 2), b = -,.l" /(2A 2 pq). This means that E (w) 
can be anyone of the 12 Jacobi elliptic functions. 15 Note that 
for solution (9) the constraint ,.l" = - pq/2 is not required. 
The solution (S) has singularities on planes defined by u = ° 
and v = O. The generalized solution (9) will not introduce 
additional singularities if we choose for E (w) the following 
elliptic functions, 

EI = dn(w,k), E2 = nd(w,k), O<;;;k<;;; 1. (11) 

The corresponding gauge fields can be written as 

Ali = i afLV {( =+= k 2A sn(w) cn(w) _ ~) pV 
E I ,2 dn(w) 2 u 

_ [+ k 2A sn(w) cn(w) + ~] qV} . (12) 
dn(w) 2 v 

The generalized solution (9) with E (w) given by (11) reduces 
to the original solution (S) when the parameter k of the ellip­
tic functions vanishes. For k = 1, dn(w) = l/coshw, and 
nd(w) = coshw. All the above solutions are valid in any di­
mensions of space-time, 

For the ansatz (1), the energy-momentum tensor is giv­
en by the expression 

el",(x) = (,.l" /g2)[4JI,ifJa"ifJ - 2ifJal,J"ifJ 

- gl,v(,.l"ifJ 4/2 + aaf/JiJ"ifJ ) 1. ( 13) 

One finds for the generalized solution (9), the energy density 
is 

eoo = ~ 2eA 2 [2 (Po _ qO)2 _ pq], (14) 
g2 uv u V uv 

where Po is the time component of PfL' and the momentum 
density is 

eo; = ~ 4eA 2 (P; _ lJ.!..) (Po _ qo). (15) 
g2 uv U V U v 
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The energy and momentum densities for solution (8) are also 
respectively given by expressions (14) and (15) except one 
must now put SeA 2 = - 1. It is interesting to note that al­
though the solution ifJI and ifJ21ead to self-dual gauge fields 
with zero energy-momentum tensor, 16 the sum of these 
gauge fields possesses nonvanishing real energy and momen­
tum densities. Furthermore, we have computed the field 
strengths Fo! and Fij associated with solutions (S) and (9). 
They are complex and singular and their spatial directions 
are fixed. The singularities of the above solutions need the 
presence of external sources to sustain themselves and can­
not be gauge-transformed away. 

The self-dual solution ifJ I can also be combined with the 
non-self-dual meron solution to give another non-self-dual 
soll'tion. Translating the position of the meron from the ori­
gin to the position XfL = - afL gives the solution, 

ifJ = [(x + a)2]-1/2 . (16) 

The product of expression (16) with the solution ifJl' i.e., 

ifJ = [u(x + af]-1/2, p2 = 0, ,.l" = - pa, (17) 

satisfies the nonlinear equation (2). Note that for afL = 0, the 
resulting solution (17) is self-dual. Thus adding the self-dual 
gauge field AfL = iafLV a v InifJl to the single meron solution 
results in a non-self-dual configuration or a self-dual con­
figuration depending on whether afL is non vanishing or not. 
Unlike the previous case, the solution (17) is valid only in 
four-dimensional space-time. One can again generalize solu­
tion (17) to 

ifJ = [u(x + a)2]-1/2 E(w), p2 = 0, (IS) 

with w = A In[(x + a)2/u] and theE (w) is thelacobi elliptic 
function witha = -l/(4A 2),b = -,.l" /(4pqA 2). As before, 
the generalized solution (18) will not give additional singu­
larities only if E (w) is given by the choice (11). 

The energy and momentum densities associated with 
generalized solution (IS) are evaluated by Eq. (13) and one 
obtains 

(19a) 

and 

_ ~ SA 2e (po(X + a); + p;(x + a)o 

gZ u(x + a)2 u(x + a)2 

PoP; 2(x + a>o(x + a)! ----
2u2 (x + at 

(19b) 

For the solution (17), the expressions for the energy and mo­
mentum densities are respectively the same as Eqs. (19a,b), 
except that SA 2e = - 1. Although solution (17) and its gen­
eralization (IS) give rise to complex gauge field and the field 
strengths, their energy and momentum densities are real. 

III. EUCLIDEAN SOLUTIONS 

The solutions discussed in Sec. II, other than the solu­
tion (7), are valid only in the Minkowski space-time as they 
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become trivial in the Euclidean space-time due to the re­
quirement p2 = q2 = O. 

The self-dual solutions (7), parametrized by the four­
vector PI-' and the constant e, are valid in the Euclidean 
space-time and they have some interesting properties. One 
can also directly obtain them from Eq. (2) by regarding t/J as a 
function of one variable u. They are singular on a plane de­
fined by 

PI-'xl-' = -e. 

Ifwe now make the constant e complex and restrict PI-' and 
the coordinates xI-' to assume real values only, then solutions 
(7) are regular everywhere. Their energy and momentum 
densities vanish. The topological charge density for the an­
satz (1) can be written as l7 

1 
D(t/J) = ± 2,i 00 lnt/J, 

whilst the Lagrangian density is given by 

L = ± D (t/J) - 3). 2t/J 4/2g2 . 

(20) 

(21) 

For solutions (7) with e being a complex constant, the topo­
logical charge density is found to be 

D (t/J) = ± 2~ (~:r . 
This leads to zero topological charge and zero action. Solu­
tions (7) are, however, not gauge-transform of a pure gauge 
since the electric and magnetic fields are non vanishing and 
given by 

Ei = F4i = - iCT4i p2/U2 , 

and 

Bi =! Eijk Fjk = -!i Eijk CTjk p2/U2. 

As the constant e is complex, these field strengths are neces­
sarily complex. Thus with e being a complex constant, we 
have demonstrated a complex self-dual 'H gauge field in the 
real Euclidean space-time which is regular and possesses 
zero energy, zero Pontryagin index, and zero action. This 
type of solutions have been discussed in Ref. 9. Solutions (7) 
are, however, different from the voidon of this reference 
since the nonlinear term of FI-'v, which is absent in Ref. 9, is 
retained for solutions (7), and the F:,v here is not proportion­
al to a constant nilpotent matrix. 

Although the solutions in Sec. II are trivial in the Eu­
clidean space-tim~, one can, by manipulations, derive from 
the non-self-dual solution (8) the following expression, 

t/J (x) = (ii 2 + ..0 2x~yI/2, 

(ii = (Pi Xi + e), ..02 = Pi pi , (22) 

which is a solution for Eq. (2) provided A = -[Po This solu­
tion holds in any dimensions of the Euclidean space-time 
and by virtue of the ansatz (I), it leads to real gauge fields 
A~, 

j- 2 

All (x) = ( _ i) CTI-'j ~ U + CTI-'4 P4 X4 (23) 
U 2 + P 2 x~ 

As long as the Euclidean time X 4 #- 0, the gauge field is regu­
lar everywhere. However, at X4 = 0, AI-' is singular on the 
plane defined by 
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(24) 

It appears that this singularity of AI-' is caused by an external 
source which is switched on only at the Euclidean time 
X 4 = O. One can shift the singularity occurring at X4 = 0 to 
X 4 = /(const) by writing 

t/J (x) = [ii 2 + ..0 2(X4 - /)2]-1/2, A = - ..0 2, (25) 

which is also a solution of Eq. (2). Furthermore, in two­
dimensional space-time with coordinates (x,x4), expression 
(22) takes the form 

(26) 

which is regular everywhere except at a point. 
As before, solution (22) can be generalized by incorpo­

rating the Jacobi elliptic functions. Thus we find that 

t/J (x) = (ii2 + p2X~)-1/2E(w), 
(27) 

w =A tan-I (..0;4), 

satisfies the non-self-dual equation (2) if we require E (w) to 
be one of the elliptic functions with a = 1/ A 2 and 
b = A /(A 2..0 2). ChoosingE (w) be given byEq. (11), thegen­
eralized solution (27) introduces no extra singularities. 

For the generalized solution (27), one can evaluate the 
Euclidean energy and momentum densities and one gets 

A eA 2(3..0 2ii 2 _ ..0 2X~) ..0 2 
844 = - ,(28) 

,i (p 2X~ + ii 2)3 

and 

A 4cA 2..0 2X4iiPi 
84i = 

,i (p 2 x~ + ii 2)3 ' 
(29) 

where the constant e is defined in Eq. (10). The energy and 
momentum densities for solution (22) are also respectively 
given by Eqs. (28) and (29) with 2eA 2 = 1. For the solution 
(22), D (t/J ) vanishes everywhere except possibly at the singu­
larity plane defined by Eq. (24). The action diverges due to 
the singularity, but the total energy, as evaluated from 

5 = J d 3x 844 (X4 = 0), (30) 

is zero. 

IV. STATIC SOLUTIONS 

As pointed out earlier, the solutions in Sec. III and 
some solutions in Sec. II are valid in any dimensions of 
space-time. It is then straightforward to write down the stat­
ic solutions. For the ansatz (1) with the function t/J (Xi) being 
time-independent, the static YM field equation is 

(31) 

Expressions (8) and (9) are respectively the solutions of Eq. 
(31), provided we replace u by ii = Pi Xi + e, U by 
V= q; Xi + J, wby w=A In(ii/V), and A by I = - !Piqi. 
However, these solutions are meaningless because of the 
constraints Pipi = q;q' = O. For expression (20), the corre­
sponding solutions ofEq. (31) which lead to complex static 
gauge fields are either 
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¢=--=-, (32) 
U 

or 

(33) 

where u = P A XA + e, p2 = PApA, and the index A runs from 
1 to 2. Solution (32) and its elliptic generalization have been 
obtained in Ref. 8 and can be regarded as leading to a static 
gauge field due to the presence of a plane of sources. The 
elliptic generalization of (33) can be deduced from expres­
sion (25) and one has 

¢ = (u 2 + p2x D- 1/2 E (W), 

(34) 

Solution (33) is regular everywhere except along a line on the 
x I_X2 plane defined by 

u = 0, X3 = O. (35) 

This line of singularity indicates the presence of external 
sources as can be shown by using the method of Ref. 19. The 
elliptic generalization provides no additional singularities if 
E (W) is given by the choice (11). 

The energy density associated with solution (33) is 
negative, 

(36) 

and it increases as x, increases. The momentum density eOI 

for the static gauge field is zero as ¢ (x) here is time-indepen­
dent. For the electric and magnetic fields we find, after some 
calculations, 

EA = ip2¢ 2[¢ 2X3PA(X3PB(TOB - U(TQ3) - (TA], 

and 

B i A. 4 -2 -( - ) 
)= 2'1' P UXYlB(TB -U(T3 . 

In Ref. 13, we have found that 

¢ = ( - AX A XA )-1/2 , 

(37) 

(38) 

(39) 

in a static solution of the YM equation. By settingpl = 1, 
P2 = e = 0, solution (33) reduces to expression (39). Hence 
we can regard (33) as a generalization of (39). 

The complex static gauge field as derived from expres­
sion (33) can be converted into the real SU(2) static gauge 
field coupled minimally to the triplet Higgs field iI> a, when 
the self-interaction potential of the later vanishes. This is 
done by setting l4 

gA f = ClabJh In¢, 

gA ~ = sinhya" In¢, 

gil> a = coshyJ a In¢, 

where yis a real constant. Following 't Hooft,20 one can then 
define the electromagnetic field Y ,,,,. As for the solution 
(39),13 the magnetic field, (1/2) cUk Y j\ vanishes but not the 
electric field 'YOI as 
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p sinhy 
Y OI = (UPBOBI + p2X303/)' g[u2 + p2xj )3/2 

Thus the singularity of (33) arises from external sources 
which are "electric" in nature. In contrast with solutions 
(33) and (39), static solutions known to us in the literature 
lead to a non vanishing magnetic field. 

V.COMMENTS 

We now make some brief remarks on the solutions ob­
tained in this paper. 

(I) The linear superposition principle is, of course, in 
general, not valid for the YM theory. However in Sec. II we 
have constructed examples for which a self-dual gauge field 
ca;, be linearly superposed with either a self-dual or a non­
self-dual gauge field to give new solutions. As these solutions 
are obtained without linearizing the YM equation, they are 
truly nonabelian. What characterizes these solutions to be 
linearly superposable is not clear to us. We merely observe 
that self-duality 1M may playa role here, since linear superpo­
sition of two non-self-dual gauge fields seems unlikely to 
yield a solution, except in the case of the two-meron solution. 

(II) If the arbitrary constant e is allowed to be complex, 
solution (7) leads to a Euclidean self-dual gauge field with 
zero action, zero Pontryagin index, and zero total energy. 
Complex solutions with zero action may playa role in the 
semiclassical approximation of the F eynman functional 
integral. 

(III) Solutions (7), (8), and (20) are valid in any dimen­
sions of space-time. In Ref. 5, the single instanton and a pair 
of merons in the six-dimensional coordinates, S ", are respec­
tively written 

¢ = (2/ A. ) I 12( S"pI')-1 , P" pi' = 1, (40) 

and 

¢=(2A)-1/2[ p"q" ]-1/2, p2=q2=0. 
(pl,SI')(ql,S") 

(41) 

Apart from a factor "i", these expressions are respectively 
the same as solutions (7) and (8). Does this mean that one 
can interpret solutions (7) and (8) respectively as the six­
dimensional instanton and a pair of merons? One can answer 
this question only if one can calculate their corresponding 
Pontryagin index in the six-dimensional space-time. This we 
have not done. 

We note that in a recent preprint, 21 Kovacs and Lo also 
discuss the solution (7). 
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A framework is proposed. in which supersymmetries can be defined in the language of axiomatic 
quantum field theory. This framework contains a nuclear *-algebra into which the Borchers' 
algebra of a general supermultiplet is embedded through a map which, in some sense, generalizes 
the concept of a superfield. The algebra of supersymmetry is represented on the constructed 
~uclear *-algebra as an algebra of graded derivations. Since a graded derivation cannot be 
llltegrated to a usual automorphism group (only to a formal group), it is assumed that conditions 
at the Lie algebraic level are strong enough to produce supersymmetric behavior. Thus it is 
conjectured that if a functional of the nuclear *-algebra is annihilated by the algebra of 
supersy~metry, an? if this functional is related to a state of the Borchers' algebra through the 
e~beddlllg map, this ~tate through the GNS construction gives rise to a supersymmetric 
Wightman theory. This supersymmetric condition produces an infinite number of correlations 
among the n-point functions. The 2-point Wightman functions for a general supermultiplet are 
c~mplet.el~ analyzed and it is found that their behavior is similar to the perturbative results. 
Flllally It IS proved that the free fields satisfy these supersymmetric conditions. 

PACS numbers: 11.30.Pb, 11.lO.Cd, 02.10. - v 

I. INTRODUCTION 

Supersymmetry has been introduced as a graded exten­
sion of the Lie-algebraic symmetries. 1 Accepting supersym­
metry as a symmetry one is expecting some sort of correla­
tions to manifest themselves at some level of the resulting 
theory. But one is also facing the problem of explicitly deriv­
ing these correlations in a consistent framework. 1.2 

In theoretical physics a framework is provided by the 
Lagrangian theories which through the superspace-super­
field constructions can lead to very concrete perturbative 
results. 1 Unfortunately, the concepts introduced in these ap­
proaches, like Grassmann parameters, formal groups, and 
indefinite metric spaces,2-4 are very obscure and very far re­
moved from the usual understanding of symmetry. Formu­
lated in mathematically precise terms this understanding 
takes the form of a duality: "mathematical regularities of the 
framework ~ physical correlations." The purpose of the 
present work is to study the possibility for such a duality of 
symmetries for the case of supersymmetries. The introduced 
new mathematical structures can in turn be used for more 
general dualities concerning new ideas of symmetry. 

The safest, conceptually, domain of mathematical for­
mulations for the duality of symmetries, is the axiomatic 
quantum field theory. The two formulations of AQFT the 
C *-algebraic5 and the Wightman theory6,7 provide us with 
important concepts which can point towards the proper gen­
eralizations needed for supersymmetry. Since Wightman 
theory is more closely related to the conventional quantum 
field theory, we state the problem as follows: 

Can we specify conditions which must be satisfied by a 
Wightman theory so that, if such a theory exists, it is super­
symmetric, namely, that the dynamical correlations (Wight-

Present address: Laboratory of Nuclear Technology, Polytechnic Faculty, 
University of Patras, Panepistimiopolis, Patras, Greece. 

man functions) are characteristic of a supersymmetric the­
ory (supersymmetric in the conventional sense)? 

We note here that there exists a works where supersym­
metry is treated in a Wightman framework. The central issue 
in this reference is whether a graded-Lie algebra can be 
thought of as an extension of the usual Lie algebras of the 
known symmetries and also w hat are the possible extensions. 
But there exist no investigations about the dynamical impli­
cations of such a symmetry, that is studies concerning the 
existence of supersymmetric theories. If such theories exist 
the dynamical correlations are consequences of conditions of 
symmetry. 

Such conditions of symmetry are understood in a satis­
factory level in the C *-algebraic frameworks. For this reason 
we are going to use the Borchers' algebra formulation of 
Wightman theory and generalize to it "most naturally" the 
results already established in the C *-algebraic frameworks. 
In the latter and for usual symmetries (no grading) one has 
the following situation: 

The Lie algebra :f' acts on the C *-algebra 2[ as an alge­
bra of derivations. These derivations may be bounded or un­
bounded. One can integrate :f' into a group [1 of automor­
phisms of 2[ (for unbounded derivations certain conditions 
should be satisfied first).9 Then an invariant under [1 state of 
91, through the GNS construction, gives a covariant repre­
sentation of2[ on a Hilbert space. In the same time yo anni­
hilates this state. 

In order to obtain a Wightman theory in a direct way 
one has to start from the Borchers' algebra Y, which is not a 
C * but a nuclear *-algebra. 7 For.'! one can~ possibly, 10 gen­
eralize the theory of symmetries arising from usual Lie alge­
bras and it is expected that the only difficulties will come 
from the more difficult topological structure of Y, being a 
nuclear space and not a Banach space. But even if one had a 
complete theory for derivations on Y it is not at all obvious 
how to consider a graded-Lie algebnl(supersymmetry) as an 
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algebra of derivations acting on ~. We want to enlarge ~ in 
such a way so that this is possible. 

We propose the following scheme: 
(1) Construct a nuclear *-algebra, call it ~1..~ on which 

the algebra 2" of Super symmetry acts as a graded-Lie alge­
bra of derivations. 

(2) Construct a map Y : Y --+TAS from the Borchers' 
algebra Y, corresponding to a give;~-permuItiplet, into 
~~ as a natural generalization of the superfield concept. 

(3) Let (TAS)' and Y' be the topological dual spaces of 
TAS and Y. L~t-FE(TAS)' be such that there exists a Wight­
rna; state -WEY' sO th~t 

Jf(D = ~(Y D, V {EY. (1) 

IfQis any element of the graded-Lie algebra..r, let~satisfy 
additionally the condition: 

~(Qif!.) = 0, V<PETAS. (2) 

For a usual Lie algebra (2) would be one of the necessary 
conditions for the integrability of 2" to a group of automor­
phisms. Here we cannot integrate 2", at least for algebraic 
reasons. Then we have to make the following conjecture: If 
W is a Wightman state arising from an Fthrough (1) and this 
(satisfies (2) then Jf gives a Wightman-theory (by the GNS 
construction) with correlations characteristic of 
supersymmetry. 

In the present work we construct the algebraic skeleton 
of the above scheme, without touching deep topological 
problems, or questions of existence. Then we use (1) and (2) 
to derive correlations for the 2-point Wightman functions, 
where we use in a decisive way the ansatz that the 2-point 
components of Fhave the structure of the Kallen-Lehmann 
representation {KL). We obtain correlations very similar to 
those in the perturbative calculations. 

For a general n-point function we need some sort of a 
generalized KL representation, and thus we did not do any 
calculations for n;>3. But we were able to prove that for any 
n the free fields satisfy (1) and (2) and thus we conclude that 
they are supersymmetric in our sense. We consider it as sup­
porting the consistency of our framework. 

We will omit nearly all details of the construction in 
order not to overburden the reader with technicalities which 
can be found in Ref. 11. We collect the necessary formulas 
and technical points in the Appendix along with the conven­
tions and identities used in the work. The various proposi­
tions are stated without proofs since they are not difficult 
and can also be found in Ref. 11. 

II. THE ALGEBRAIC AND TOPOLOGICAL STRUCTURES 
OF THE THEORY 

A. The Borchers' algebra of a scalar superfield 

The framework we are going to construct can be 
thought of as a prototype for the treatment of any graded-Lie 
algebra and in the case of supersymmetry any supermuIti­
plet. Nevertheless for reasons of concreteness and simplicity 
and also for comparison we are going to deal with the scalar 
supermultiplet of Salam and Strathdee (general superfield). 
Being interested only in a scalar supermultiplet, we consider 
as the irreducible set of fields, which will generate our 
Wightman theory, the set of independent fields appearing as 
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coefficients in the O-parameter expansion of a classical scalar 
superfield. 

Now, taking as more primitive object the Borchers' al­
gebra that generates a Wightman theory, the former must be 
an algebra of test functions that incorporates the appropriate 
representations of SL(2,q. This means that, when the 
Borchers' algebra is represented on a Hilbert space as an 
algebra of generators, there is a well-defined prescription to 
obtain fields with definite transformation properties under 
SL(2,q. 

This is achieved as follows. Start from a 4-dimensional 
vector space Vand consider its basis! Oa' a = 1, ... ,4) to be a 
Majorana representation of SL(2,q. Construct the Grass­
mann algebra A (V). 12 Then the representation of SL(2, q 
can be uniquely extended to A (V), 13 and one can define co­
variants formed out of the Grassmann parameters! Oa ). Let 
us equip the vector space [A (V)] with its Euclidean topology 
and let y(]R4,[A (V)]) denote the spaceofC"" functionsf(x) 
from]R4 to [A (V)] such that for all pairs ofpolynomialsP,Q 
in four variables with complex coefficientsP(x)Q (J /Jx}f(x) 
remains in a bounded subset of [A (V)] as x varies over 1R4. 
We equip Y(1R4,[A (V)]) with the topology of uniform con­
vergence of the functions P(x)Q (J /Jx}f(x) on the whole 
space ]R4 for all possible P and Q. Every element of 
Y(1R4,[A (V)]) is of the form 

<P (x" ,Oa) = A (x) + ea ¢a(x) + ... + n(eO )2D (x). (3) 

It is straightforward to define the classical scalar super­
field as the elements (3), which satisfy 

<P(x",Ou) = <P(x:"O~), 
for appropriate transformations x--+x', 0-+0 '. Let 
(EA ,E", , ... ,E D) be vector spaces associated with the represen­
tations appearing in (3) and let! en, T = A,¢ ... ,D, be the 
corresponding basis. Consider the following definitions: 

'fir r = ET ®''''0ET ' •.•. " 1 n 

'fI" = I 't/ T, ... r" (algebraic direct sum), 
T.o .. T" 

'f ~' = I fEI 'f·t n' ?f ~'o = C (topological direct sum). 
n 

Equipping each Er. with its Euclidean topology, ~ ~' 
becomes a nuclear topological vector space.14.15.11 The ele­
ments of ~ ~? are terminating sequences of functions with 
values in tensor products of finite dimensional vector spaces. 

Let..cE~.r. We have 

..c = !.0.fJ, ... £, , ... ), .0EC, (4) 

(5) 

T, ••• T" 

where 7, is a tensor/spinor index corresponding to the repre­
sent. T, and 1', means that this index transforms under the 
represent. t, which is the adjoint of T, for the spinor and 
coincides with T, otherwise. 

We want to turn g' Y into an algebra. The vector space 
structure is introduced as in the usual Borchers' Algebra. II 
The product and the star operations are introduced similar-
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ly. The precise definitions appear in the Appendix. We have 
the following Proposition 1: The space '!? Y equipped with 
the operations defined above is a nuclear .-algebra. 

For the topological dual (i!" ~)' we can prove easily that 
its elements are of the form 

~ = ! J!:'o, J!:'" ... , J!:'n , ... J (infinite sequence), 

where J!:'n = \ J!:' ~ .... T"l are finite sequences and 

with! ei-
i

T

, J basis of E}i dual to ! e;: I and n W ~'::::'''E~'(JR4n). 
Then from the duality of the bases we have 

(6) 
n T1".TII 

with/E'!? Y, WEI'!? Y)'. 
Gi;e~ a state -Jf of i!" ~ we can construct a representa­

tion of '!? ,5'" on a Hilbert space dY' w with a straightforward 
extensio-n of the procedure followed in the Borchers' algebra 
Y." 

It can be seen that the representation 1T w 

: i!" ~' ~2" (dY' w) defined by ~ 

!wLO[.[l = [..[X.[], 

has the property 

1T~w(L_) = '" '" n1T~, ... T"(f".!··.T,,), L ~ " ... T" T, •.. T" 
(7) 

', ••• T" 

with n1TEY'(JR4n ,2"(JY' W i), the space of tensors of rank n 
with components operator valued distributions acting on 
JY' w' Also 

Finally we point out that the locality ideal,7 must be 
generalized to accommodate the locality concept for fer­
mions. See Ref. 11 for details. 

B. An indexing algebra 

(8) 

As it has been stated in the Introduction the scheme we 
propose contains a big algebra on which supersymmetry can 
be represented as an algebra of graded derivations. At the 
same time its elements must contain the necessary test func­
tions to reproduce the component fields of the theory. Thus 
the elements must be hybrid consisting of test functions and 
Grassmann elements. But as we are going to see shortly, they 
must contain an extra bit of information, which is needed in 
order to have the correct representation of supersymmetry, 
on one hand, and appropriate generality and consistency on 
the other. This third bit of information comes from the ele­
ments of an extra algebra, the indexing algebra, which with 
the Grassmann algebra A (V) and the Borchers' algebra i!" ~ 
are fused to form the big algebra 1)!~: A typical element of 
T AS is going to be of the form 
---M,® ... ®M" ®a®/~(x" ... ,xn)' (9) 

where MiEA (V),f~E'!? Y, and a is an element of the index­
ing algebra. We proce~d to motivate the introduction and 
the structure of the latter. 
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Let the product of n classical superfields with argu­
ment(x " ... ,xn ). Its form is <P (x" ... ,xn ,Oa) for some function 
<P. Consider an infinitesimal supersymmetric 
transformation 

x~~x~ + ey'O, ... ,x~~x~ + Ey"O, Oa~Oa + Ea' 

Ifwe expand <P(x~ + Ey"O, ... ,x~ + Ey"O,Oa + Ea) in powers 
of E we see that always appear the sum ~7 = ,alaxf. It will be 
seen below, that from translation invariance, the symmetric 
states of the big algebra TASwill annihilate the terms involv­
ing this sum. But we want to-have the representation of Qa as 

Ca(3 ~ - i (y'")a(30{3 ~, 
aO{3 axp 

or at least modify it without loosing the part containing the 
derivationsalaxf. We can solve this problem if we define Qa 
in such a way that apart from the sum ~7 = ,a lax;' all possi­
ble partial sums appear like 

rio. I + rio. 

L alaxf, 
i= r" I + I 

where r k is defined by r, + ... + r, = n, O<;rk <;n, l<;n. 
But as it turns out we must have these sums associated 

with the factors Mi in (9) in a specific way. To produce this 
appearance of the partial sums the action of Qa must be 
guided by the element a in (9). a must be associated with a 
set of integers which are indexing the subset of the set of the 
arguments (x,,. .. ,xn ) with respect to which the derivations 
must be taken. 

But due to the operations of product and conjugation 
there happens that the various subsets of arguments inter­
mingle in a complicated way. If we want to have possible 
some theorems on desired properties, we must take into ac­
count this fact and equip the elements of the indexing algebra 
with this faculty as well. Some details of the construction of 
the indexing algebra of order k, s!\ can be found in the 
Appendix. It is a *-algebra (associative). 

C. A possible generalization of the Borchers' algebra 

In this paragraph we finally introduce the big algebra 
?: ~~ as a possible generalization of the algebra i!" ~J. 

We define the vector space over C: 

(?:~~)~, ... n' 

= [~(V)l® ... ®[A(V)l ® [s!~, ... n~]®JI/~JR4"). 
!~ fI_!/ + ... +n 
, laclo" (10) 

Both A (V) and [.~~, ... ",] are finite dimensional vector 
spaces. See the Appendix for the definition of .c1'~, ... n" We 
equip them with their Euclidean topology so that they are 
Hausdorff and complete. Then we define the complete vec­
tor space 

(r,{~)~· ... n' 

= .Y'(JR
4n

,[A (V)] ® ... ® [A (V)] ® [.0.1~' ... n' ]). (11) 

Let 

1JlS= 
k - o.u.··· 
N ~ 1.2 .... 

Gl(TA"S)". " ___ 11 ••• 11 ( 12) 
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(topological direct sum), k<nJ,j = 1, ... ,N. The elements of 
:r -!~ are terminating sequences 

~=UtPo'~I""'~n""ll, (13) 

(14) 

~~ = I ~~' ... n" (15) 
I'N.n N 

"'"'.J~I"" . .v. nl+ ... +n =N. 

and tP " ,is linear combination of elements of the form =" ... 11 

MI® ... ®M" ®alnl ®/IIl.TI, 

where M, and a I n l are basis elements of the vector spaces 

[11 (V)] and [.if~, ... n' ] correspondingly. TheM, are covariant 
monomials in 11 (V). The coefficient functions/ ln•T1 are in 
.Y(R4n

), and transform under Lorentz transformation as ten­
sors of rank k. In the Appendix some explanation for the 
notation can be found. 

We define below the operations with tP, I/IETAS, AEe. 
Sum and multiplication by scalar = = ---

~+A~= {ltPo+Al/lo""'~n +A~n, ... l}, 

~n +A~/I = I~~ +A~~",,,,~~ +A~~l· 
Product 

(~ X I/I)n = I (tP X 1/I)~, ... ,(tP X I/I)~ J, 
- = = = = = 

11 - k 

= I I I tP ~' ... /I' X 1/1:, ... ",,, 
p~kl.N.,p I·.M./I-p 

k<n', s = 1, ... ,N, k<m', t = 1, ... ,M, 

n I + ... + n N = p, m I + '" + m M = n _ p, 

tPk, ,xl/I', " 
= II ••• 11 = In .,.In 

= I( - 1)" 
I I 

(16) 

(17) 

(18) 

(19) 

(20) 

XMIN I ® ... ®MkNk ® (alnl xa'im II ®(fIIl.TI xg lm•al ). 

(21) 

The explicit from is very lengthy. MN is the product of 
M,Ninl1 (V), aXa' the product of a, a' in d k and/xgthe 
Borchers' product. The above is a direct generalization of the 
product in the algebras which are tensor products of two 
graded algebras. 12 In the Appendix the notation is explained 
a little. 

We define the star operation in :r -!~ as follows: 

~ * = {I (~*)o,(~ *)I""'(~ *)/1 , ... j }, 

(~*)o = c£o (22) 

(~*)n = I(~*)~, ... ,(~*)~j, (~*)~ =(~~)*. (23) 

Let ~ ~ be of the form 

~~ =MI® ... ®Mk ®a®! (24) 

We define 

(~~)* = Mt ® ... ®MT ®a* ®/*. (25) 

We have propositions 2 and 3 as follows. 
Proposition 2: The space :r-!~ equipped with the oper­

ations defined above is a *-algebra (associative). 
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Proposition 3: TASis a nuclear TVS. For the topological 
dual one can easily se-e-that we have I I: 

(:r-!~)' = X I Ell [(:r~~)~, ... n' T, (26) 
n l.;;.N~n 

[(:r~~)~' ... n' l' = Y'(R4n ,[A (V)]* ® ... ® [11 (V)]*, 

[.if:', ... n' ]*), (27) 

where [11 (V)]* and [d~' ... n']* are the algebraic duals of 
[11 (V)] and [d~, ... f1' ] respectively and Y'(JR4n) the topologi­
cal dual of Y(JR4n

). 

The elements of (:r -!~)' are infinite sequences, 

lJIFo'~I'''''~n, ... I}, FoEC (28) 

~/I = I~~, ... ,~~, ... ,~~ J, 
and we have for tPET AS 

~(~) = I~n(~n) = I i ~~(~~) 
n k = I 

(a finite sum since ~ is a terminating sequence), where 

~~EY'(R4n,[11 (V)]* ® ... ® [A (V)]* ® [.af~' ... n'])· 

~~EY(R4f1,[11 (V)] ® ... ® [A (V)] ® [d~' ... n'])· 

It can be seen, using the dual bases in [A (V)]*, 

[.af~' ... /I']* that 

~~(~~) = IIw(f) 

(29) 

(30) 

(31) 

where wEY'(R4n), and all the tensor indices can be easily 
added. 

Now we come to a crucial point. We want to map 'l/ Y 
into TAS in such a way that the images in TAS of the ele-­
ment; or ~ ~ are the most likely generaliz~ti;ns of the su­
perfield concept. 

Let 'l/~ be the dual of 'l/ n and let 

~:::n='l/~®[A(V)], ~~=}:nEll~~n' (32) 

~ ~ is a vector space over C. We turn it into an algebra by 
defining the product: 

'l/~Il X 'l/Y'j m-+'l/'#n+m' -- -- --
(e} ® ... ®e}n ®MITI)X(~ ® ... ®~ ®NISI) 

I I !PI 

(33) 

where I T I, IS j are sets of tensor indices and MN is the 
product of M,N in A (V). 

Let the elementjE ~ ~ : 

(34) 

and/, = jXjX .. j, n, factors. For every (n,k ) positive inte­
gers I. <k~n "itnd ~ partition of n, n I + ... + n k = n, let the 
map (see Appendix for the notation): 

(35) 
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(36) 

where Q (ip ... ,i,,) means summation over all the permuta-
tions of(I, ... ,n), and 1T(Q) = the number of times two spinor 
representation are interchanged in order to obtain the con­
figuration t T;, , ... ,7;" I from [T" ... ,T" I, 
" ='2 = ... ='" = 1, and 

etc. are defined as follows: 

Sincel" is a sum of terms of the form 

e*rTj, ® ... ® e*T,,,, ® M T 
T T' 

J, '''1 

we define 

(37) 

Thus.[' are maps if ",-+[1'1 (V)]. 
Let P 2 be the number of partitions of n into k parts 

n, + ... + n k = n such that O<n, <n, S = 1, ... ,k. We extent 
the map (36) to ~ ~ with the definitions: 

"1 + ... + n" = n 

.'T = { 1 c;-, 1~" } 
n -;;,':1 ", ... , -;;,':1 n , 

and the infinite sequence 

~= p,~"···,~,,,···l· 
This defines a linear map of graded modules: 

,'T:?! ~ -+~{~ 

~(.O = (! ···,!:!,,(ft, ), ... j J, 

,,!n(~)= { ... ,~!:!~(~),- .. }. 

(38) 

(39) 

(40) 

(41) 

(42) 

III. REPRESENTATION OF SUPERSYMMETRY AS AN 
ALGEBRA OF GRADED DERIVATIONS ON TAS. 
PHYSICAL INTERPRETATION 

A. Representation of supersymmetry 

We need some definitions. 
Definition 1: Let tJ> ~ be an element of the form (24). We 

call the number 

(43) 

the degree of tJ> ~ in TAS, where v(M;) = 0,1 is the degree of 
M; inA (V). = ---

According to this definition it can be easily seen that 
TASis a semigraded algebra. Let us recall two known defini­
tions from the theory of semigraded algebras. '2 

Definition 2: Let E = E. + K be a semigraded algebra. 
The map 

J:E-+E, »~x', x = x. + x_, x' = x. - x_, 

is called the main involution of E and it is an involutive auto­
morphism of E with the property 
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J(xXY) = J(x)XJ(y). (44) 
Definition 3: Let ¢> be an homomorphism of a semigrad­

ed algebra E into E '. A ¢>-derivation of E into E' is a linear 
mapping D:E-+E " homogeneous of some given degree v, 
satisfying for every x,yEE 

D (xy) = D (x)¢> 0') + ¢> (J '(x»D (y), 

where 

J" =J, v odd, 

= 1, even. 

If E = E' then D is called a graded derivation. 

(45) 

Now we want to construct a representation of the spin­
orial charges Qa in such a way that they act as derivations on 
~ 1..-?:: It will turn out that they will act as graded derivations, 
while the rest of the generators of supersymmetry will act as 
usual derivations. 

Every element of s/k is a linear combination of k-tuples 
of symbols. Let us write compactly for a k-tuple 

t:.::t n I = [ 't:.::(n,k ), ... ,'t:.::(n,k ), ... /t:.::(n,k) I 
Let't:.::(n,k) represent the symbol [n, IJlm" ... ,mp J. For ev­
ery s let us define the map ind, from the set of basis elements 
to (Z·),,: 

(46) 

Let Y(.J"(R4n» denote the vector space of the linear 

operators on Y(R4n). We define the linear maps 

D;, : [s/;, .... n' ]-+Y(Y(R4n», n = n' + ... + nN, 

t:.::t n j ........ D;, (t:.::! n j), s = 1, ... ,k, Ji = 0,1,2,3, 

(D;, (t:.::l n j)(f)(x" ... ,xn ) = (-r ~j)(X"."'Xn)' 
, ax, 

tEind, (a ( n J), t # 0. (47) 

Let (t:.::! n 1 } and { !{! n j } be the bases of [':!~' ... n'] and 
[.:!~, ... ", J*, respectively, n = n' + ... + n N. We define the 
linear maps 

Q~;"k)l:(t.{~)~-+(t'{~)~, a = 1,2,3,4, 

Q ~.k}S(~ ~) 

I iCa {3 [I A ® ... ® 1 A ® D (3 ® 1 A ® 
.~1h position 

t, = a* 

.":. ®)A ® (t:.::0!{) ®1, ) 

- i(y')a{3 [fA ® ... ® fA ® (}{3 ® fA ® ... 

®IA ®(t:.::0()®D~(t:.::)](~~), (48) 

where D(J = ala(){3' and 1A and 1, are the identity maps in 
[A (V»), and Y(R4n). 

g;n,k):cE.{~)~-+(r.{~)~, s= l, ... ,k, 

g;",k)(M, ® ... ®Mk ®q(n] ®j1n,T!) 

= (_l)'~M,)+ ... +,~M, ')(M, ® ... ®Mk ®a!n) ®j1n.TI), 

where v(M;) is the degree of M; in A (V). We define 

Let 

k 

Q (n,k ) = "" g(n,k )oQ (n.k )s 
_a £.. sa' 

s= 1 

(49) 
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Q (n) _ (Q(n.l) Q(n.k)l 
_(1 - t _a ""'_a 

q" = {lQ~I>, ... ,Q~n>, ... }} infinite sequence). 

Then q" acts on ~ ~~ as follows: 

q,,(~) = UO,Q~)~I, ... ,Q~n)~n,,··J}, 
Q~n)~n = IQ~,I)~~, ... ,Q~.n)~~ J. 

(50) 

(51) 

(52) 

Q" is defined everywhere so that its domain D (Qa) is all of 
'lAS. We have, therefore, Proposition 4. 
- --Proposition 4: qa acts on ~ ~~ as a graded derivation of 

odd degree. 

We want to examine the star properties of qa' In a star 
algebra a derivation 6 is called symmetric if 

6(A "') = (6 (A »*, AED(8) = thedomainof8and"'denot­
ing the star operation. 

Due to the graded behavior of Q" we must generalize this 
definition and for that purpose we introduce the following 
concept. 

Definition 4: Let E be a semigraded "'-algebra and J its 
main involution. A graded derivation 8 on E is called grad­
ed-symmetric of degree v when it satisfies the property 

6(x"') = ( - J t·(6(x»"', xED (8). (53) 

Considering a usual "'-algebra as trivially graded, a 
symmetric derivation is a graded-symmetric with even de­
gree. We can prove Proposition 5. 

Proposition 5: Qa is a graded-symmetric derivation on 
TAS with odd degree. 
- --The last two properties are by-products of the complex­

ity of the definition of Qa' but this very complexity is neces­
sary for the validity ofihe main proposition of this work 
which is Proposition 6. 

Proposition 6: The derivations qa satisfy the supersym­
metric algebra, i.e., 

[q" ,qp J = 2(y"·C)a{3·iD,1 , (54) 

where 

D cJ>= {( ... ( .. ·D cJ>k ... J '''l) "=il = t ,t ' J-l = n' , , (55) 

and 

B. Supersymmetric conditions: Physical interpretation 

What we have established up to this point is that there 
exists a *-algebra, TAS, on which supersymmetry can be 
represented as an afg~bra of graded derivations, and such 
that the spinorial charges are symmetric in some generalized 
sense. Also we have a map Y, from the algebra ~ ~ of test 
functions for a given number of fields to TAS, with the prop­
erty that the images in TAS of the elements-of If Yare the 
most likely generalizations ~f the classical supe~fi~lds. That 
is, we have implemented the steps (1) and (2) of the proposed 
scheme in the Introduction. 

From this point, there are two possible routes that one 
could follow. The first is to study the representaions of ~~~ 
on indefinite metric spaces, find the Hilbert subspaces and 
try to interpret the physical meaning of the action of the 
representations of supersymmetry on these subspcaes. 
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The second route is to implement the step (3) of the 
scheme. Here we follow this alternative. We make the fol­
lowing definitions. 

Definition 5: ~E(~-!~)' is called a relative state if~, 
defined by 

Jt'CD = ~(~.o (56) 

is a state in 1:f Y. 
Definiti~n -6: We say that an element ~E(~~)' satisfies 

Q-conditions if 

~(qa~)=O, a=I,2,3,4, 'tJcJ>ETAS. (57) 

(~-!~)Q denotes the set of all such elements. ~E(~-!~)' satis­
fies nth order Q-conditions if 

F (Q cJ» = 0, 'tJcf>ETAS, a = 1,2,3,4. (58) 
D~fi~ition 7: We calfa stat~ Wof 1:f Y an inherited state 

if it comes from at least one relative state 'Of ~ ~~ i.e., if there 
exists a relative state F such that: 

(59) 

We call a state WE(1:f Y)' Q-invariant ifit is an inherited 
state and at least on -;'fits relative states is in (~-!~)Q' 

Now we can restate the conjecture made in the step (3) 
of the scheme 

Conjecture: A Q-invariant Wightman state gives a 
Wightman theory and a representation of super symmetry in 
this theory in such a way that the field operators transform 
covariantly under supersymmery. 

If this conjecture is true then the Eq. (2) gives correla­
tions of the structure functions appearing in the form of F, 
while Eq. (1) transfers these correlations to the structure -
functions appearing in the form of W. These last functions 
are the Wightman functions of the theory generated by W. 

Thus we need the structure of F's which are relativ; 
states and satisfy Q-conditions. For that purpose one must 
investigate the topological structure of (~A~)' in general and 
try to establish representations of its elements in the form of 
generalized Kallen-Lehmann representation. Here we will 
not touch this general problem but we shall restrict ourselves 
to the 2-point functions and try to show that at this level the 
proposed framework does indeed point to the right direction 
(i.e., the correlations are of the type of the perturbative re­
sults). As we will see below, for the free fields we can have 
general results. 

IV. APPLICATION AND CONSISTENCY OFTHE 
FRAMEWORK 

A. Two-point functions for a general scalar 
supermultiplet 

For the 2-point functions for a general field theory one 
can derive the Kallen-Lehmann representation (KL),16 
which for our scalar supermultiplet is, for X O > yO 

Wxx(x - Y) = if" dm 2 cr(m 2)L1 I +)(x _ y;m 2 ), 

X=A,F,G,D, 

W:I(x - y) = (lt w ,1T:(X)17J(y)lt w ) 

= if" dm 2 ! wi(m2) + wJ(m2)iy"al' J a{3 

XL11 + I(x _ y;m 2). 
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(61) 

nw is the vacuum for the functional Wand iT means adjoint 
spin or 

W::~'(x - y) = i i~ dm2 ! a1'(m2)g,,,, + a~'(m2)al' a" J 

X.d (+ )(x - y;m 2). (62) 

We have 

aX (m 2»0, x = A,F,G,D; 

wJ(m2»0, 

2mwJ(m 2» [wi(m 2
) - mw[(m 2

) ]>0. 

(63a) 

(63b) 

Motivated by the KL representation we make the fol­
lowing ansatz: 

The functional FE(TAS), which is a relative state and 
satisfies Q-conditions-is ~~h that its F; component has the 
form 

where! l denotes the appropriate summations over parti­
tions as is explained in the Appendix, and! Z;' I is the dual 
basis to ! M n . 

From this ansatz we can derive correlations between 

the structure functions p~'::.:: using the Q-conditions [Eq. 
(2)]. Then, through Eq. (1), we can transfer these correla­
tions to the weight functions appearing in the KL represen­
tation of the 2-point functions. We consider these correla­
tions as the predictions of the theory. Ifwe had at our 
disposal integral representations for n-point functions and 
an analogous ansatz, we could make predictions for such 
functions. (See comments below.) 

We have 

where 

2w~'2(x - y) = (nw,1T~·(X}TT;:(y)nw). 
Now, from the Eq. (1) for n = 2, we obtain a set of relations 
of the form 

aA = HpAA +pA J, 

r/' = -blpD + !pDA + !pAD + 1pFF J, 
etc., 

and constrains like 

pG + ipGA + !pAG -1P/1b = 0, 

etc., 

where 

p!J = piYoa{3 + p[Y(Ys)a{3 
+ pjY(iy'')a{3a,. + pIY(iyvYs)a{3al" 
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y= I/!,y 

We also obtain expressions for the mixed functions W I, I, in 
terms of the p's. 

Now we exploit Eq. (2) for n = 2, and we obtain a set of 
equations involving the functions p. Using these equations 
we can eliminate most of the structure functions from the 
expressions above for the weight functions and the W's, In 
this way we get the following relations among the weight 
functions of the supermultiplet: 11 For m =I ° 

~ = m 2wr', ~. = a G = n pD + ~w~', 
a Av = ...LpD _ IW'" A" _ ( ?I 

I 32 :1 2' a 2 - - l/m-)wl', 

wf = 0, wf = (l/m 2)wr-, 

~ = (l!16m2)w~, 

W AF = W AG = WFG= WFD=O , 
a wAA"=a wFA"_a wGA"_a W DA" 

Ii l' 1" v - 11 V - J-l " == 0, 

W AD . (OOd ? ( 1 \~D I ? 

=1)0 m- 2X32f'L1 +I(x-y;m-), 

W "'x' ,(OOd 2 ( 1 'LD () ? (65) 
u{3 = I Jo m 32 r 15a {3.d + (x - y;m-J. 

Since wf = 0, (63b) does not hold for X and we must 
conclude that X does not represent physical degrees of free­
dom. Then the transitions to the field I/; through 1/!~7J must 
vanish, i.e., 

W~fr = 0, 

and hence WAD = 0, and also, in all other 2-point functions, 
pD will not contribution. Thus we have the independent 
fields A ,F,G,D,A , and 1/;. 

For free fields and mass M "# 0 for the fermion field I/! we 
must have 

w1'(m2) = Mo(m2 - M2), wtCm 2) = S(m2 _ M2), 

pD = 0, (66) 

Then we get 

W:;~'{x - y) = ~ [ - gil' - ~2 alia,,] 

X.d ("(x - y;M2), (67) 

which cannot give the propagator of a free vector field. Thus 
Al' does not provide a physical degree either. 

Let us define the following fields 

tPl = MA, tP2 = v'2F, tP3 = v'2G, tP4 = 4mD. 

Then (68) 

a4" = a4" = a4" = a4'. = wr' = o(m2 - M2)' (69) 

Thus in the case of free fields we have three scalar fields 
tPl' tP2' tP4' one pseudoscalar tP3' and one spinor field 1/;, all 
with equal mass M. We may state the above results as 
follows. 

Proposition 7: If the Wightman state for free fields is an 
inherited state then there exists one relative state which satis­
fies the second-order Q-conditions. 

In Sec. V we indicate not only that the free fields with 
equal mass come necessarily from an inherited state, but that 
this state is Q-invariant (i.e., satisfies, Q-conditions of all 
orders). 
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B. Free fields and Q-conditions 
This part of the work is completely technical and we 

omit all details. We simply indicate the main points. 
Definition 8:Let [T1, ... ,Tn 1 be an ordered n-tuple of 

representations where T; = A,t/; ... ,D and let it contain N (S;) 
representations of S; type and suppose that there exist only 
m types where m<min(n,7) and the spinor representations 
are counted together with their adjoints. We say that the 
configuration [Tp ... ,Tn 1 is properly paired if all N (S;), 
i = l, ... ,n are even numbers. Then n is even. 

A Wightman state WOE( ~ Y)' that gives a field theory 
for free field has the following ~tructure: 

'" OWl',,,.l'),, 
~ _ 2" , 

I l'"".,T,,,l pp 

(70) 

(71) 

where [T1, ... ,T2n J
PP 

means that ()~~~I contains only prop­
erly paired configurations. 

Since WO describes free fields 0 W 1~ I can be written as a 
product offpoint functions. Then by interchanging the fac­
tors and taking into account the various minus signs com­
ming from the fermions we can bring ()W1~1 into a form 
which motivates the construction of an ~ppropriate relative 
state for free fields. Having at hand this appropriate state it is 
straightforward to prove, 

Proposition 8: WO is an inherited state. 
Proposition 9: J!'0 is Q-invariant. 

V. DISCUSSION 

We proposed a framework in which a Wightman theory 
can be embedded in such a way that one is able to give crite­
ria for a supersymmetric theory, without having either to 
mix the Minkowski coordinates and the fields with unphysi­
cal Grassmann parameters or to answer the question of the 
integrability of the supersymmetric algebra. 

Also the possibility of the appearance of indefinite met­
ric Hilbert spaces, in this framework, is elevated to the ques­
tion of the existence of continuous functionals satisfying cer­
tain properties (positivity, locality, etc.). 

Nevertheless the whole approach relies on a conjecture, 
the justification of which is stilI open. Of course the conjec­
ture was motivated by the state of things in the case of C *­
algebras and of usual symmetries and is meant to give a natu­
ral extention for the case of nuclear *-algebras and graded­
Lie algebras. 

Thejustification of the procedure could be made only at 
the level of 2-point Wightman functions and under the as­
sumption that the conventional field theoretic results point 
to the right direction. Ifwe had a generalization of the Kiil­
len-Lehmann representation for n-point functions we could 
study the implications of the framework for this level. Thus 
we have not proved that our characterization of a supersym­
metric Wightman theory is either complete or totally equiv­
alent to the conventional conception of supersymmetry. But 
the scheme does include the case of free fields. 

There are many open problems which have to be solved 
before the proposed framework is fully axiomatic. One cate-
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gory of problems contains purely mathematical questions 
and concerns the generalizations to the case of nuclear *­
algebras and graded Lie-algebras of the results proved al­
ready for C *-algebras and usual Lie algebras. 

Another category of problems concerns the proof of a 
universality property for TAS; namely that TAS is either 
unique or minimal, and that the map: ~ -! -::t.{~ is a natu­
ral extension of the superfield concept. 

Finally one could study the possibility of generalized 
KL representations using the topological properties of the 
dual of If Y, and then use these representations to study the 
n-point Wightman functions of a supersymmetric theory (in 
our sense). 

Concluding this work we should point out that, al­
though our framework is not fully developed, it could be 
taken as a prototype for the study of any graded-Lie algebras 
which are thought to generated a symmetry ofa field theory. 
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APPENDIX 

Conventions and identities 

g'V = (I, - I, - 1, - 1), [1',rVj = 2g'v, 

(jp" = (i/2)[rp ,r" J, 
rs = rOrlr2r3' r~ = /3rl'/3 -I, 

-r;=C-1rI'C, ct=C- I
, C-= -C, Crs =rS'C, 

CrS' = rs C, ¢ = t/;t/3. 

For a Majorana representation we have 

Y'. = - Y', d"". = - d"v, Y" = g'1'Y', 

a~vt = ft'l'gvvd"v, rt = rS' = - rs' 

(rs Y')t = ft'l'rs Y', (rs d"'')t = - ft'l'gW rs d"v, 

f3 = bro, C = cro, 

b = 1, C = - 1. 

More properties of this representation may be found in L. 
Gorwin et al. (Ref. 2). We collect some useful identities used 
in this work: 

a 
-- fJy = 8(3y, 
ae(3 

e(1ey = H - (ro){3yiJe + (rs)(3yiJy.fJ + (ir"rsro){3yiJiy,y.e j, 

a - - -
-- fJfJ = 2fJ8(ro)f38, fJ(3fJfJ = fJfJfJf3 
afJf3 
a - - - -

afJ fJOOy = H8yf3 0fJ + (rs)Yf3 0y.o + (irV

rs)yf3 0iyvY.o), 
f3 
- - 2 

0f3000y = 1(00) (Yo)y(1' 

a -ae fJy.fJ = 2fJy(YoYs ){3y, 
f3 

fJf3 iJy.fJ = iJ(}fJy(rs )Yf3' 
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a -
ae eiy,y,e = 2(YoiyvYs ){3yey , 

(3 

e(3ifiy,y,e = ifeey(YoYs iYvYo)y(3' 

a - 2 -
ae (ee) = 4eeey(Yo)(3y, e(3(ife)2 = 0, 

(3 

OOify, e = ify, eife = 0, OOifiy,(" e = ifiy,.y, eOO = 0, 

~,eifirvr,e = ifiYvYse~se = 0, 

~,eifyS e = (ife )2, ifiy ), eifir y e = (ife )2g . 
I' .5 " 5 J..lV 

The Borchers' algebra ~ ~ 

Sum and multiplication by scalar: 

.{ +,1..[ = {.fa + Ago.6 + ,i.[I''''',t + ,i.[n ",,1. 
Product: 

(.{X~" = i ~ X.[n _ k' 
k=1 -

(il: xgn - k )(xl,· .. ,xn ), Xi ElR4, 

= I I e~' ® ' .. ®e;'®e;' ® '" ®eS
" , 

IT.TIIS.TI " "" 

® yr., ... T! (x ) X" - k (7, ... (7" '( 
T, ... T, 1"",Xk g§, ... §" ,Xk + 1 ""'Xn)' 

Star operation: 

.{* = ! ft,fJ,· .. £~, .. ·l. (L*)" = L~, ft = 10' 
L~(x I'''''X,,) = I [e;' ® ... ® e;" ® 'i'C! ... i'~ ]*(x ... x ) 

I TIT] I or Tlo •. T" ." 11 , 

The indexing algebras s! k 

(AI) 

(A2) 

(A3) 

In the text some motivations were presented for the 
need and the complexity of the indexing algebra. We repeat 
here that the elements of this algebra guide the action of the 
operator Qa on the elements of TAS. This action must in­
volve the operation of taking the -partial derivatives with re­
spect to subsets of the set of arguments (x1""'X,,), This set of 
arguments can appear either as a part of a bigger set, the 
latter formed after multiplication of two elements of TAS, or 
as composite set formed by the multiplication of two or more 
elements. Various inversions of order of the parts of subsets 
or of the subsets themselves due to the star operation, must 
be taken into account, in order to guarantee the desired 
properties of Qa under conjugation. 

The elem~nts of the indexing can be thought of as sym­
bols which contain the information associated to the way a 
given set of arguments is formed from its subsets (permuta­
tions of arguments, inversion of order, permutation of sub­
sets, combination of subsets, etc.). The elements ofthe index­
ing algebra of order k, .s7Ik

, are k-tuples of symbols. We 
indicate how a general k-tuple is constructed. 

Let the following partitions for k<,l<,n: 

'I + ... +,{ = n, O<"i<,n, i = 1, ... ,/. 

n l + ... + n k = I, O<,nj<,l, } = 1, ... ,k. 

R, = 'I + .. , + " -I' R I = 0, 

598 J. Math. Phys., Vo1.22, No.3, March 1981 

R,,=nl+ ... +ns_ l , RI=O. 

Note the possibility of vanishing r j , nJ • We introduce 
the following indexed ordered sets of integers: 

,a~:'.i) = !n,IIR, + 1, ... ,R, +', J, " #0, 
= In,IIO), " = 0, 

a(n.i) 
, r, 

= ! n,/ln - (R 1 + 'I) + 1, ... ,n - (RI + 1) + I J, 't #0, 

= [n,lIO), ,=0. 
We define the composition 

,a~~·/)o,.a~~.i) = [n,IIR, + 1, ... ,R, + '"R,. + 1, 
... ,R,. +rl.l. 
Let the permutation (l, ... ,l)-+(il, ... ,id. We introduce the 
composite symbol 

saln.i. k ) = . a ln./) 0 ... 0. a ln ,!) #0 
[ ~I""~/l{n.\) IIf.. + J rjR~ + 1 iR-.. + ", rilf, -1- ,,\' ns , 

l, ••. t l 

= [n,ll0j, ns = 0. 
These symbols have the structure: !n,llml, ... ,mp J. 

We define a composition rule: 
Sa(n.i. k ) oSa1ii.i:k) 

("·](n.) ("'](ii,) 

= In + if,! + Timl, ... ,mp,n + ml> ... ,n + m
q

). 

This rule guarantees the property of Qa as a derivation on 
~ ~~. We introduce the k-tuples of symbols 

aln,/.k) = Ilaln,l.k) '" k In.l.k) ) 
_( .. ·](n, ... n.l (· .. ](n,)" a("'lIn,) , 

and a composition rule 
aln,l,k) X lii,T,k) 
_(r,"'lIn ,"') l![r, .. ·lIii .... ) 
- I saln,/.k) X salii,T,k) J (A4) 
- ... , (r,"'l\n,) (1',· .. l\ii,)' .. •· 

Let for given k and N pairs of integers ni, fl,) = 1, ... ,N, 
such that, k<,/j<,nj , s!~' ... n" be the set of k-tuples of symbols 

~hat can be constructed by composing the k-tuples ~t~:, {{:.~ j. 
The general element of s!~, ... "N has the form l!\'::!j(',~':;!"('''l1''')' 
Let [ s!~' ... nN ] be the vector space over C generated by the set 

s!~' ... n~' Let 

(AS) 
N.nl ••• n" 

k ... ni 

We define a product .s7Ik in such a way that on every 
[s!~' ... n N ] coincides with the defined above composition of 
k-tuples, A star operation can easily be introduced in .s7I k 

using the elements ta r~n,l) and.#" becomes an associative-*. 
algebra. I I 

The algebra T AS 

We only explain here the notation in the formulas ap­
pearing in the text. We simplified the expressions with the 
conventions: 

M;/ = Mi,M;/ = Mi, l!\'::!j·I·"::):'-[..'Ii"') = a[nJ,f\·::)i·.·.\):~:~:~.'T, 
-f\n,1'\ 
- ITI' 
N 

I 
s= 1 

,-i + -.. + r; .. = n~ 

0<,.;<n"\1 = 1 •...• /·· 

ii ... l;., over all perm. of (1, .•.• 1·') 

O"n~"/' 
q= I ..... k 

n"j+ ... +n"k={' 
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Also 

A = v(N.) [v(M2 ) + ... + v(Md] 

+ v(N21 [V(M3) + ... + v(Mk )] 

.. , + v(Nk _ • )V(Mk)' 
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Upper bound on the spin-flip cross section from unitarity, total cross section 
and the forward slope 
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For the spin O-spin! particle scattering we give a method to construct an upper bound on the spin­
flip cross section with the variational calculus using as constraints the total cross section, the 
forward slope and the full unitarity. 

PACS numbers: 11.80.Cr, 11.80.Et 

I. INTRODUCTION 

Since the 1964 paper of Mac Dowell and Martin I much 
work2

-
13 has been done in the application of the variational 

techniques for finding bounds in particle physics problems, 
so that the topic has become almost a field in itself. Among 
the many advances made one could cite the systematic treat­
ment of the inequality constraints,3,4 such as the unitarity, 
and the generalization of the method to the cases with 
spin. 7

•
s However, the field has its limitations. There are not 

many observables which lend themselves to this kind of ap­
proach. A number of papers are devoted to the derivative or 
second derivative of the imaginary part of the amplitude in 
the forward direction. The method requires a certain consis­
tency in the forms of the quantity to be maximized and the 
constraints. Otherwise mathematics becomes too complicat­
ed. Even so some of the cases investigated require numerical 
calculations. But the work has been fruitful so that today 
there exists several rigorous bounds which are based solely 
on such solid theoretical grounds as the unitarity and such 
well-known experimental quantities as (JT and ,r'. 

To our knowledge the inequality constraints in their full 
form have not been used before in problems involving spin. 
In this paper we are applying the variational technique to a 
spin O-spin! scattering problem to find a bound on the spin­
flip cross section when the total cross section and the for­
ward slope are known and the full content of the unitarity is 
used. For this we follow the elegant treatment of inequality 
constraints by Einhorn and Blankenbccler. 3 Since we are 
dealing with the spin case there are two sets of partial wave 
amplitudes. The variational equations mix those amplitudes 
and the unitarity imposed in the form of inequality con­
straints assigns to the amplitudes characteristics such that 
they can be divided into different classes. The analysis of 
these classes with the purpose of choosing the Lagrange mul­
tipliers for maximizing the spin-slip cross section leads to the 
solution of the problem. 

In Sec. II we set up the equations, write the auxiliary 
function of Lagrange and differentiating it with respect to 
the variables we obtain four basic equations. We define the 
four classes determined by the unitarity equations. Taking 
second derivatives of the function of Lagrange we find next 
the maximum conditions. 

"IOn leave from the Applied Mathematics Department, University of West­
ern Ontario, London, Ontario, Canada. 

"IResearch supported in part by the National Research Council of Canada. 
"'Equipe de Recherche Associee au C.N.R.S. 

In Sec. III we analyze the forms of the partial wave 
amplitudes in the four classes defined before. By imposing 
the unitarity as well as the maximum condition, the forms of 
the partial waves are determined. Also the conditions to be 
satisfied by Lagrange multipliers are found. Subject to these 
conditions fitting of the total cross section and the forward 
slope with those parameters and the 1 values determined by 
the parameters gives us the values of the multipliers. Spin­
flip cross section is then found in terms of aT and the 
foreward slope. 

In the Discussion and Conclusion we summarize and 
discuss our results. 

II. FORMALISM 

To simplify the formulas we define G, Ao and S in terms 
of (JSF-. aT and dA / dt I, ~ 0 as follows: 

k 2 

G = -(JSF 
21T 

,,2/(1+1) [(a,+ -a,_)2+(r'-t -r, n, (1) 
L.. 21 + 1 

k 2 /' 
Ao = - (J = I ((l + l)a,+ + la,_ ], 

41T 
(2) 

S=4k2~ dA I = II(/+ I) [(1+ l)a,+ +Ia,_]. 
vis dt ,~O 

(3) 

Here a SF is the spin-flip cross section, (JT the total cross sec­
tion, A the imaginary part of the scattering amplitude 
dA /dt I, ~ 0 the forward slope, k the c.m. momentum, a,+ , 
a, _ , r" ' r, the imaginary and real parts of the partial 
waves. 

In addition to the equality constraints (2) and (3) we also 
have the inequality constraints of unitarity: 

u,=a,+ -a7+ -0 t >0, 

v/=a,_ -af_ -0>0. 
(4) 

(5) 

We want to maximize G at a fixed energy subject to the 
constraints (2)-(5). 

The auxiliary function of Lagrange is written in the 
form 

(6) 

Here A., >0, f-l, >0 from the theory of inequality constraints. 
The factors (I + 1) and 1 in front of A., and f-l/ are arbitrarily 
chosen by changing the definition of these multipliers to 
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make the resulting equations simpler. To further simplify 
the formulas we shall show the following, frequently appear­
ing combinations of I by Band D: 

B =211(21 + I). D =2(1 + 1)/(21 + 1). (7) 

Next we differentiate L with respect to the four types of 
variables: 

aLlaal + =0 gives (B-AI)a l + -Bal _ 

+~ [a+I(I+l).8+Ad=O, 

aLlaa l _ =0 givesDa l + -(D-IlI)al_ 

- ! [a + I (I + 1).8 + Ild = 0, 

aL larl + = ° gives(B - AI)rl + - Brl _ = 0, 

aL larl _ = ° givesDrl + - (D - III )rl _ = O. 

We now define the following four classes: 

J + J - = {/lu} >O,vl >O}A} = 0, III = 0, 
J + B - = {/lu} >O,v} = O}Al = 0, 1l}'>0, 

J-B+ ={/lul=O,VI>O}AI'>O, III =0, 

B + B - = {/lu} = O,vl = O}Al'>O, 1l}'>0. 

(8) 

(9) 

(10) 

( 11) 

(12) 
(13) 

(14) 

(15) 

It is the definition of these classes which generalizes the for­
malism to the spin case and also makes it possible to study 
even higher spin cases. For the case of spin O-spin ! scatter­
ing there are only two types of partial wave amplitudes and a 
pair J; + ,J; _ defined by a fixed value of I belongs to one and 
only one of these four classes. 

To find the maximum conditions we take the second 
derivatives of L, 

a2Llaal +aa}+ =2(/+ 1)(B-Ad, 

a2L laal+ aal _ = - BD(21 + 1), 

a2Llarl + arl + = 2(1 + 1)(B -Ad, 

a2Llarl+ar}_ = -BD(2/+ 1), 

a2L laal _ aa,_ = 2/(D - Ill)' 

J2L la'l_ a,,_ = 21 (D - Ill)' 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

All other derivatives vanish. Negative definiteness of the sec­
ond variation for the maximum gives the conditions 

AI>B, (22) 

(23) 

III. FOUR CLASSES OF THE PARTIAL WAVES 

Class J + J - : Since in this class A I = 0, III = ° the basic 
Eqs. (8) and (9) become: 

B(al + -al_)+![a+/(/+IVJ]=O, (24) 

D(a}+ -al_)-![a+/(I+IVJ]=O. (25) 

These two equations are incompatible except when 
a + I (I + I VJ = 0. But a and /3 are I-independent and can 
satisfy this only when they are zero. This would mean no 
constraints and therefore are not acceptable. Thus the class 
J + J - must be empty. 

Class J + B - : In this class A I = 0, III ,>0. The four Eqs. 
(8)-(11) become: 

Bal + -Bal _ +![a+/(/+IVJ]=O, (26) 
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Dal + -D-Illal_ -~ [a+/(/+ l)f3+lld =0, (27) 

B'I+ -B'I_ =0, (28) 

D'I+ - [D-Ild ,}_ =0. (29) 

Equation (28) gives rl + = '1_ . Equation (29) gives 
1l1'1- = 0, for r,_ =1= 0, 1J., = 0. In this case Eq. (27) becomes 

D(a}+ -al _)-! [a+/(/+ IVJ] =0. 

But as we saw before this is not compatible with Eq. (26). 
Hence we must have 

rl_ =0. 

In this case also 

'1+ =0. 

Because in this class AI = 0, we have VI = al _ - a; _ = 0. 
Hence 

and 

___ 1 
a,_ =--....0. 

1) If al _ = 1, Eqs. (26) and (27) give 

a 1+ = 1 - [a + I (I + 1 VJ ]!2B 

III = [a + 1(1 + IVJ] (21 + 1)11. 

(30) 

(31) 

We now impose the unitarity condition O..;;;a l + ..;;; 1 on Eq. 
(30) and the maximum conditionlll>D on Eq. (31) and 
obtain 

O..;;;a + 1(1 + IVJ";;;411(2/ + 1), 

a + 1(1 + IlL"~2/(1 + 1)1(21 + 1)2. 

(32) 

(33) 

The contributions of a l + = 1 and al_ as given by Eq. (46) to 
Ao and S are obtained as before by summing the series. 
addition formulas for powers of integers except one term in 
Ao. The results are 

Ao = (L2 + 1)2 - L i -la [(L2 + 2)2 - (LI + 1)21 

~1 -!a L - - Vi [(L2 + I)(L2 + 2) 
L, I 

X(3L ~ + 7L2 + 3) - LI(L I + 1)(3L i + LI - 1)], 
(34) 

s =! [L2(L2 + I)2(L2 + 2) - (LI - 1)L i(L I + 1)] 
- f,p. [(L2 + I)(L2 + 2)(3L; + 7L2 + 3) 
- LilLI + I)(3L i + LI - 1)] - z!I3 [L2(L2 + 1) 
X(L2 + 2)(2L2 + I)(2L2 + 3)(5L2 + I) 
- (LI - I)LI(L I + I)(2LI - I)(2LI + 1)(5LI + 6)1.(35) 

Hence L I and L2 give the lower and upper ends of the range 
of I values which satisfy the inequalities (32) and(33) for given 
values of a and /3. 

2) If a l _ = 0, Eqs. (26) and (27) give 

al+ = - [a+/(/+ IVJ]lB (36) 

and 

III = - [a + 1(1 + IVJ J(21 + 1)11. (37) 

In this caSe both unitarity and III >0 show that 
[a + 1(1 + IVJ]mustbenegative.Againimposingtheunitar-
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ity condition O<al + < Ion Eq. (36) and the maximum condi­
tionlll>D on Eq. (37) we find 

0< - [a + 1(1 + 1)131< ~ (38) 
21 + 1 

-[a+/(/+Ilf31> 2/(/+1). (39) 
(21 + 1)2 

Contributions of al _ = 0 and al + as given by Eq. (36) toAo 
and S are: 

Ao = - !a [(L2 + 2)2 - (LI + If1 -!a t-.!.. 
L, I 

- -b,f3 [(L2 + I)(L2 + 2)(3L ~ + 7L2 + 3) 

- LI(L I + 1)(3L i + LI - I)], (40) 

S = - -b,a [(L2 + 1)(L2 + 2)(3L ~ + 7L2 + 3) 
- LI(L I + 1)(3L i + LI - 1)] 

- L [L2(L2 + I)(L2 + 2)(2L2 + 1)(2L2 + 3)(5L2 + I) 
240 

- (LI - I)LI(LI + 1)(2LI - 1)(2LI + 1)(5LI + 6)]. (41) 

Class I - B + : In this class III = 0, Al .;;;0. The four Eqs. 
(8)-(11) become: 

(B-Adal+ -Bal _ +! [a+/(/+l)13+Ad=O, (42) 

Dal + -Dal _ -! [a+/(/+ 1lf31 =0, (43) 

(B - A/)rl + - Brl _ = 0, (44) 

Dr, + - Drl _ = O. (45) 

Equation (45) gives r, + = rl_ . Equation (44) gives 
A,rl + = O. Forr, + :;i:OA, = O. In this case Eq. (42) becomes 

B(al + -a l _ )+! [a+/(/+ 1lf3] =0. 

But we saw before that this is not compatible with the Eq. 
(43). Hence we must have 

r,+ =0. 

In this case also 
rl _ =0. 

Because in this class III = 0 we have UI = al + - a; + = O. 
Hence 

............ 1 
a l + =--"0' 

1) If a, + = I, Eqs. (42) and (43) give 

a l _ = 1 - [a + 1(1 + 1)13]1W (46) 

and 

A, = [a + 1(1 + 118 ](21 + 1)/(/ + 1). (47) 

Imposing the unitarity condition O<al _ < 1 on Eq. (46) and 
the maximum condition Al >B on Eq. (47), we find 

O<a + I (I + 1lf3<4(1 + 1)1(21 + 1) (48) 

and 

a + 1(1 + 1)13>21(1 + 1)1(21 + If (49) 

The contributions of al_ = 1 and al + as given by Eq. (30) to 
Ao andS can be explicitly calculated by using the well-known 
addition formulas for powers of integers except one term in 

Ao. The results are 
L 1 

Ao = (L2 + If - L i -!a [L ~ - (Ll -If] -!a!. ~+ 1 
L, 
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- til [L2(L2 + 1)(3L ~ + 5L2 + 1) 

- (LI - I)Ll(3L i - Ll - 1)], 1(50) 

S =! [L2(L2 + If(L2 + 2) - (Ll - 1)L i(L I + I)] 

- -b,a [L2{L2 + 1)(3L ~ + 5L2 + 1) 

- (Ll - I)Ll(3L i - LI - I)] 

- ~O [L 2(L2 + I)(L2 + 2)(2L2 + 3)(2L2 + I) 
X (5L2 - 1) - (LI - I)LI(LI + 1)(2LI + 1) 

X(2Ll - 1)(5Ll - 6)1. (51) 

Again L I and L2 are determined for given a and f3 by in­
equalities (48) and (49). 

2) If a, + = 0 Eqs. (42) and (43) give 

al _ = - [a + 1(1 + 1)13 ]/2D (52) 

and 

AI = - [a + 1(1 + 118 ](21 + 1)/(1 + I). (53) 

Again both unitarity and the positiviness of the inequality 
mUltipliers require that [a + I (I + 1l8] be negative. As be­
fore we impose the unitarity condition O<a l _ < Ion Eq. (52) 
and the maximum conditionAI>B on Eq. (53) and find: 

0< - [a + 1(1 + 1lf3 ]<4(1 + 1)/(21 + 1) (54) 

and 
- [a + 1(1 + 118 ]>2/(1 + 1)1(21 + 1)2. (55) 

Contributions of a l + = 0 and a l _ as given by Eq. (52) toAo 
andSare: 

Ao = -!a [L ~ + (L I - 1 f] - !a t _1_ 
L, / + 1 

- -b,f3 [L2(L2 + 1)(3L ~ + 5L2 + 1) 

- (LI - I)Ll(3L i - LI - 1)], (56) 

S = -b,a [L2(L2 + 1)(3L ~ + 5L 2 + 1) 

- (LI - I)Ld3L i - LI - 1)] 

- L [L 2(L2 + 1)(L2 + 2)(2L2 + 3)(2L2 + 1) 
240 

X(5L2 - 1)] - (LI - l)LI(LI + 1) 

X(2LI + 1)(2LI - 1)(5LI - 6)1. (57) 

Class B + B - : In this class neither Al nor III is zero. We 
thus have to solve the four Eqs. (8) -(11) for al + ,al _ ,rl + 
and rl_ . We note that the determinant of the Eqs. (8) and (9) 
is equal to determinant of the homogeneous equations (10) 
and (11). Thus when the determinant does not vanish Eqs. 
(10) and (11) have trivial solutions 

rl+ = 0 and rl_ = O. 

This leads to 
__ 1 __ 1 

al + =--'0 and al _ =-......0· 

We now consider these four possibilities: 
I)Whenal + =al _ =0, 

a+/(/+ 1lf3+AI =0, a+/(/+ 1l8+1l1 =0. 

Hence 

Al = - [a+/(/+ 1l8]>0, 

III = - [a+/(/+ 1l81>0. 
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This case does not contribute to G, Ao or S. 
2) When 0,+ = 0, 0,_ = 1, Eqs. (8) and (9) give 

A, =2B- [a+/(/+ 1).8]>0 (59) 

and 

#, =2D+ [a+/(/+ 1).8]>0. (60) 

We shall look later at the inequalities which determine the 
range of I for given a and {J. Here we want to mention that 
y = a + I (I + 1).8 represents a parabola in the variable I with 
its extremum at I = -~. Whether this extremum is a maxi­
mum (downward looking parabola) or minimum (upward 
looking parabola) depends on the sign of {J. In the first case 
(maximum) {J is negative, in the second case (minimum) {J is 
positive. 

One can see now from the inequality (59) that only if 
{J> ° can the range of/be limited. Together with (60) this will 
determine a range for I. On the other hand inequality (60) 
shows that the range of I given by it can only be finite if {J < ° 
and together with (59) this will give the range of I. Since both 
inequalities must be satisfied simultaneously it is sufficient 
that the range of I is restricted by one of them only. 

Inequalities of the type (59) and (60) are best studied by 
plotting say here 2B = 4//(21 + I), 2D = 4(1 + 1)1(21 + 1) 
and y = a + I (I + 1).8 against the variable I. 

3) When 0,+ = 1,0,_ = 0, Eqs. (8) and (9) give 

A,=2B+[a+/(/+l).8]>0, (61) 

#, = 2D - [a + 1(1 + 1).8 ]>0. (62) 

4)Finallywheno,+ = 1,0,_ = I,Eqs.(8)and(9)give 

A, =#, =a+/(/+ 1).8>0. (63) 

It is to be noted that this case does not contribute to G even 
though it contributes to Ao and S. Thus one would not want 
to use this set to maximize G which in turn indicates that 
a + I (I + 1).8 should be taken negative. When the determi­
nant of the Eqs. (10) and (11) vanishes we have another possi­
ble solution. This is obtained when the other determinants of 
the inhomogeneous set (8) and (9) also vanish. In this case we 
have 

B-A, B 
--=--= 

D D-#, a+/(/+l).8+#, 
(64) 

One solution is a + I (I + 1).8 = ° which leads to a = (J = 0, 
that is, no constraints at all. 

The other solution is 

A, = #, = 2. (65) 

In this case Eqs. (8) and (9) become identical. Also Eqs. (10) 
and (II) become equal. We thus have, together with the uni­
tarity equations the following set to solve: 

Do,+ +Bo,_ -Ha+I(I+I).8+2]=0, (66) 

Dr,+ +Br,_ = 0, 

0,+ -o~+ -~+ =0, 

0,_ -o~_ -~_ =0. 

(67) 

(68) 

(69) 

The solutions of these equations are: 

=l.-a+/(/+I).8+2[a 1(1 1).8 D-B] (70) 
4 [a+/(/+I).8]D + + + , 
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o =l.-a+l(/+ 1).8+2 [a+/(/+ I).8+B-D] (71) 
,- 4 [a+/(/+I).8]B ' 

~+ =_1_ a+/(/+IJP+2 [a+/(I+I).8+D-B] 
16 [a+/(/+I).8]2D2 
x[B2-(a+/(/+ IJP-D)2], (72) 

~_ =_1_ a+/(/+I).8+2 [a+/(/+I).8+B-D] 
16 [a + I (I + 1).8 ] 2 B 2 

X[D2-(a+/(/+ l).8-Bf], (73) 

The contributions these amplitudes to Ao and S will be 

I L 
Ao=- L [a+/(/+ 1).8+2](2/+ I) 

4 L, 

= a + 2 [(L 2 + 1)2 - L n 
4 

+ .Ii. [L 2(L2 + If(L2 + 2) - (L( - I)Li(L( + I)], 
8 

I~ S = - L [a + 1 (I + 1).8 + 2] / (/ + 1 )(21 + 1) 
4 L, 

= a + 2 [Lz(Lz + 1)2(Lz + 2) - (L( - I)L((L( + I)] 
8 

(74) 

+ iz [L ~(Lz + W(Lz + 2f - (L( - WLi(L( + 1)2]. 

(75) 

In their contribution to G there is an ambiguity in the sign of 
the square roots of the real parts. But in order to maximize G 
one has to chose the signs of r, + and r, _ opposite. With this, 
the contribution to G becomes: 

1~ G = - L {4 - [a + I (I + 1 W}(21 + I) 
8 L, 

= 4 - a
2 

[(L
2 
+ W _ L n _ a{J 

8 8 
X [L 2(L( + I)2(L2 + 2) - (L( - I)L(\L( + 1)] 

- ~: [L ~(L2 + W(L2 + 2f - (L( - WLi(L 1 + W]' 
(76) 

For this case the maximum conditions are automatically sat­
isfied since A, = #, = 2. Unitarity imposed on Eqs. (70) and 
(71) in the form 

0<0,+ ,0,_ < I 
gives two possible domains which are common to both 
amplitudes, 

2/(21 + I)<a + 1(1 + 1).8<2 

or 

- 2<a + 1(1 + 1).8< - 2/(21 + I). 

(77) 

(78) 

This completes the analysis of the four classes. We obtained 
the forms of the partial waves in all classes. Also the unitar­
ity and the maximum conditions gave relations in form of 
inequalities between a, {J and I. 

Now the bound on G is found in principle as follows: a 
and{J determine the lower and upper limits L(, L z of I. Thus 
L( andL2 are functions ofa,{J. When weexpressAo andSin 
terms of all contributing amplitudes, they become functions 
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of a and {3 only. Hence a and {3 can be found in terms of Ao 
and S. Once a and (3 are found, the limits L), L2 for all 
contributing classes can be found and G calculated. 

In order not to clutter expressions we used the same 
symbols L), L2 for each class. But is in understood that they 
will in general be different for each class. Also Ao and S were 
used for each classe's contribution. To find the total Ao and S 
those have to be added. 

The signs of a and{3 are related to the rate of change of 
G with Ao and S. Thus (see for example Ref. 3) 

JG/JA o= -a 

and 

JG/JS= -{3. 

Thus if physically one expects G to grow with Ao, a should be 
negative. Similarly if G increases with incrasing dA / dt, {3 
should be negative. 

When a and {3 are negative (77) is not valid. Thus (78) 
gives the upper and lower limits of I. They are obtained by 
equating a + I (I + 1){3 to - 2 and - 2/(21 + 1). In the first 
case the equation is quadratic and one choses the positive 
root. In the second case the equation is cubic with only one 
real root which is positive. AlII's between these two values 
will contribute toAo, Sand G in the forms (74), (75), and (76). 

Going backwards we next proceed to case 4) ot 
B + B - . It is obvious that with a and (3 negative (63) will not 
be satisfied and this case will not contribute. 

In case 3) solving the equality (61) will give the lower 
and upper values of I for this set. Then (62) is automatically 
satisfied. 

In case 2) solving the equality (60) we find the range of I 
for this set. Then (59) is automatically satisified. 

In class I - B + for the amplitUdes of type (52) solving 
(54) and (55) determines L) and L2 ofthis case. 

When the amplitude has the form (46), inequality (49) 
can not be satisfied with a and (3 negative. Thus this set does 
not contribute. 

In class I + B - for the amplitudes of type (36) solving 
(38) and (39) with equalities determinesL) andL2 of this case. 

When the amplitude has the form (30), inequality (33) 
can not be satisfied with a and {3 negative. 

Thus we have covered all cases which will contribute to 
Ao, Sand G when a and (3 are negative. Other cases can be 
studies in a similar way. 

IV. DISCUSSION AND CONCLUSION 

We extended the method of variational calculus with 
inequality constraints to a spin case. Even though the paper 
deals only with spin O--spin ! particle scattering the tech-
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nique is general and can be applied to arbitrary spins. The 
basic idea is the definition of classes such that a set of partial 
wave amplitudes with the same I value belongs to one and 
only one of these classes. The values of the inequality multi­
pliers in those classes together with unitarity and the maxi­
mum condition obtained from second variation determine 
the form of the partial waves. They also impose conditions 
on Lagrange multipliers. 

Since a and{3 are global multipliers, not depending on I, 
one has to find compatible solutions of these conditions, 
which appear in form of inequalities for given a and{3. These 
solutions determine the range of values which contribute to 
Ao, S, and G for the type of partial waves in a particular class 
or subset of a class. Ao and S are expressed in terms of a, (3 
and L) (a, (3) and L2(a,fJ) where these last are the lower and 
upper limits of the contributing I values for each set. Solving 
for a and (3 in terms of Ao and S gives the values of the 
Lagrange multipliers which in turn determine L) and L2 for 
each type of amplitude. Finally, a, (3 and L 1 's and Lz's deter­
mineG. 

The results of this paper can be applied to cases like UN 
or KN scattering. However the determination of the multi­
pliers has to be made numerically, since some of the equa­
tions which determine the limits of I are cubic and quartic 
[e.g. (55)]. 
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Since its start nuclear theory has lived with the dichotomy of viewing the nucleus microscopically, 
as a system of nucleons, or describing it macroscopically in terms of collective coordinates. In the 
last decade though, a point transformation has been introduced in which single particle 
coordinates can be expressed in terms of collective ones plus others, opening the possibility of 
deriving a microscopic collective model. In the present paper we confront the macroscopic and 
microscopic collective models, first in a space of two dimensions, in which we find explicitly the 
unitary representation in quantum mechanics of the canonical transformation that relates them. 
We then show how to extend every step of the analysis to the three-dimensional problem, though 
there some of the states required are not yet available in analytic form. One of the fundamental 
problems in collective models of the nucleus is that of shape. We indicate what are the operators 
whose expectation values give a reasonable description of the shape in the macroscopic and 
microscopic collective models and confront them critically. 

PACS numbers: 21.60.Ev 

I. INTRODUCTION 

Almost from the initial steps of nuclear theory, after the 
discovery of the neutron in 1932, there has been a dichotomy 
in its attitude toward its subject of study. On the one hand, 
the nucleus has been viewed microscopically as a system of 
nucleons, first through the shell model l

•
2

,3 and later through 
a more realistic Hamiltonian in which shell model states pro­
vided the initial approximations.4 On the other, a collective 
view prevailed, first in the liquid drop model of Niels Bohr 
and later in its extension in the work of Bohr and Mottelson,6 

continuing up to the present time in such work as that on 
transitional nuclei by the Frankfurt group 7 or-in a concep­
tually different, but mathematical similar, formulation8-the 
interacting boson approximation.9 

One of the authors of the present paper (M. M.) has 
recently confronted8 different collective models, such as 
those mentioned at the end of the previous paragraph, to 
show the similarity of their group theoretical background. 
Another (V. V.) has discussed 10 the group theory underlying 
the Hamiltonian of A particles, in an appropriate system of 
coordinates, II that brings out their collective behavior. Thus 
it seemed to the authors that the time is ripe for confronting 
the collective models derived from macroscopic and micro­
scopic views of the nucleus. 

At the start it became clear that a full understanding of 
the conceptual structure of the problems was required, be­
fore getting involved in their mathematical complexities. 
Thus the main part of the present paper is concerned with 
the situation in an hypothetical two-rather than the real 
three-dimensional space. We shall discuss in Sec. II this two­
dimensional case of the Bohr-Mottelson collective model 
and its different generalizations, with particular emphasis on 

alMember of the Instituto Nacional de Investigaciones NucleaTes and El 
Colegio Nacional. 

the problem of shape of the nuclei. Then in Sec. III we turn 
our attention to the microscopic picture of A particles inter­
acting through harmonic oscillator forces, to derive from it 
the Hamiltonian for the collective part. Once this is available 
we discuss its solutions, symmetries and again the problem 
of shape. In Sec. IV, we then confront the macroscopic and 
microscopic collective Hamiltonian of the previous sections 
and derive the canonical transformation that relates them. 

In the final Sec. V, we then turn our attention to the 
three-dimensional case and show how step by step we can 
implement the program developed fully for two dimensions. 
However, there are analytic expressions for states in two 
dimensions, whose counterpart we have not yet determined 
explicitly in three dimensions, but we plan to do this in later 
publications. The outline in Sec. V leads from a system of A 

particles interacting through harmonic oscillator potentials, 
to the collective part of this Hamiltonian using appropriate 
coordinate transformations, then through a canonical trans­
formation to the oscillator Hamiltonian of the sod interact­
ing boson model, of which the Bohr-Mottelson oscillator 
collective Hamiltonian is a particular case. Through all of 
this analysis, we take particular interest in the shape of the 
states, which is a very central problem in the collective 
model. 

II. THE MACROSCOPIC COLLECTIVE MODELS 

In this section we start from a two-dimensional Bohr­
Mottelson model l2 and then generalize it to situations in 
which we can deal both with the vibrational and rotational 
limits, as well as with states in the transitional region be­
tween the two. 

A. The Bohr-Mottelson (BM) model 

In two dimensions in which the polar coordinates will 
be denoted by (p, X ), the "liquid drop" instead of being 
bound by a surface13 will be bound by a line12 
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p =Po[1 + ax cos2X + a ysin2x] 
=Po[l + (lIv2)(a+ei2Y-a-e-l2y)], (2.1) 

where we limit ourselves to quadrupole vibrations character­
ized by the two coordinates a, , ay or equivalently 

a cL = (+)(1Iy'2)(ax ±iay);a± = -a=F' (2.2) 

corresponding to the five6
, 13 a rn of the three-dimensional 

problem. For small vibrations we get for the Hamiltonian 
the usual two-dimensional oscillator in ax, a y.12 

Passing to the coordinate system fixed in the body we 
can write 

a:± = + (l/v2),8exp( ± i2if j, (2.3) 

where if,,8 are, respectively, the sole Euler angle and defor­
mation parameter. In units l2,13 in which fz = B2 = C2 = 1, 
the Bohr-Mottelson vibrational Hamiltonian becomes 

Ho = ~( - ~ ;,8 ; - 4~2 O~2 +/]2). (2.4) 

and its eigenstates are given by14 

!/Jnln 1fJ, if) = fLm11fJ )(21T) - lexp(i2mif), 

with 14 

I:n11fJ) = [2(n!)lr(n + Iml + l)P 

~L 
X e 2 (3lmlL 1m " IfJ 2), 

(2.5a) 

(2.5b) 

and L ::,,1 being an associated Laguerre polynomial. 15 The 
corresponding eigenvalue Enrn is 

Enrn = 2n + Iml + 1. (2.6) 

Note that exp(i2mif ) appears in (2.5a) with m integer as the 
eigenstates must be invariant under the transfromation 12 
if-+{f + 1T which leaves unchanged the defining equation 
(2.3). 

In the frame of reference fixed in the body the line de­
limiting the boundary of the "liquid drop" becomes 

p=Po[l +,8cos2X']' X'=X-{f. (2.7) 

The two principal axis whose length we denote by P; ,p~ 
correspond then to X • = 0, 1T/2 i.e., 

P; =Po(l +(3), P; =Po(l-(3), (2.8) 

and a good measure of the deformation is given by 

(~; _p~)2 = (p;2 _p~2)2 =(32. 

\P; + p~ 16p6 
(2.9) 

The prime notation is used for p;, p~ to distinguish them 
from P I' P2 that appear later for the microscopic problem. 
Thus the deformation of the vibrational states that are eigen­
functions of the Hamiltonian (2.4) can be estimated from the 
expectation values 1-1 

(ex (" !/J~m (jJ, if )(3 "!/Jnm 1j3, if )(3 d(3 dif = 2n + I m I + 1. Jo Jo 
(2.10) 

Note that in the units we are using the expectation value of(3 2 

must be multiplied by some dimensionless function offz, B2, 

C2 and thus (2.10) allows us only to compare the deforma­
tions of different states rather than give us an absolute mea­
sure of them. This implies that we could equally well have 
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used as a measure of the deformation 16pci/3 2 = (p;2 _ p;2)2, 
where Po is the fixed radius of the nondeformed nucleus. As 
we shall see later (p;2 - p~"f allows a more direct confronta­
tion with results of the microscopic collective model. 

It is not possible to compare (2.10) with the deformation 
in rotational states as they can only be introduced in a Bohr­
Mottelson model in an ad hoc fashion. 13 However, we shall 
see in the next subsections that the BM Hamiltonian can be 
generalized in several ways so as to include the latter. Thus, 
we will be able to compare the deformation of vibrational, 
transitional, and rotational states. 

B. Higher-degree terms in the collective Hamiltonian 

The BM Hamiltonian (2.4) comes from considering 
small vibrations of the liquid drop. Had we considered high­
er-order terms, we would have Hamiltonians H(a + ' 1T + ), 

(where 1T ± = - i%a ± ) subject only to the restriction that 
H is invariant under rotations and reflections, the latter in 
space and time. If the higher-order terms are static, 7 i.e. de­
pendent only on a ± ' the in variance under rotation implies 
that they give rise to a potential dependent only on 
(32 = - 2a +a _. Thus the most general higher-order static 
Hamiltonian can be written as 

H = Ho + V((32), (2.11) 

where VIj3 2) is some function of the argument. In the three­
dimensional case/ where V is function of both (3 2 and 
(3 3cos3y, its form is determined from energy levels and tran­
sition probabilities of the nucleus being studied. 7 In the hy­
pothetical two-dimensional case we shall select 

VIfJ2)=yi2/,82, (2.12) 

with J being an arbitrary constant and show that by varying 
J we can reach the vibrational and rotational limits as well 
as the transitional situation in between. For H of (2.11) and 
(2.12) the eigenstates can still be written in the form (2.5), if 
we retain m in the angular part but replace it in the radial 
part by14 

(J2 + m 2)l. (2.13) 

The corresponding energy levels are then given 14 by 

Enrn =2n +(J2 +m2)l+ 1=2n +J + 1 

+ (m2/U), 
(2.14) 

where the right-hand side holds only if J>m. In this case for 
each value of n we have a rotational band as in the two­
dimensional case m is the quantum number associated with 
the angular momentum. Thus the rotational limit is 
achieved when J>m while the vibrational one is reached 
when J -0 and we also have the transitional situation in 
between. 

The deformation of the eigenstates of H is again mea­
sured by the expectation value of,8 2 with respect to them. 
But, as shown in Ref. 14, this expectation value remains 
equal to that of the Hamiltonian and therefore given by 
(2.14). Thus we see that for the lowest state n = m = ° in the 
vibrational limit, when J = 0, the expectation value of,8 2 is 
1, while in the rotational limit the expectation value offJ 2 for 
the corresponding state is J + 1:> 1. Thus the deformation 
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of the lowest states increases considerably when we pass 
from a vibrational to a rotational limit. 

We proceed now to discuss the group theory behind the 
two-dimensional BM model and show that it can be general­
ized in a way that allows for a different procedure for includ­
ing both vibrational and rotational Hamiltonians. This gen­
eralization, which is the two-dimensional counterpart of the 
interacting boson approximation, will be the one that even­
tually we connect with the microscopic collective model. 

C. Group theory and the u-~ boson collective 
Hamiltonian 

Associated with the coordinates a ± in the BM model, 
we can introduce creation and annihilation operators 

17 ± = (l/v2)(a ± - alaa ±), 

5 ± = (l/v2)(a ± + alaa ±), (2.15) 

which we could call ~ bosons as they correspond to the val­
ues ± 2 of the angular momentum in this two-dimensional 
space. From these bosons we can construct the generators of 
an SV(2) algebra 

Tl = (- l/v2)17+5 -, To = !(17+5 + -17-5 -), 

T_I=(l/v2)17_5+, (2.16) 

with the properties 

[To, T ± 1 ] = ± T ± p [TI' T -I] = - To· 
(2.l7) 

Together with the number operator for .:5-bosons, 

n8 = 17+5 + + 17-5 - = Ho - 1, (2.1S) 

the To 1" = 1, 0, - 1 constitute the generators of a V(2) 
group which is obviously the symmetry group of the two­
dimensional BM Hamiltonian as [TT' nh] = O. 

We can now attempt to include rotational states, not 
through special dependence on /3 2 as in the previous subsec­
tions, but by adding to the <'i-bosons a if boson associated 
with a scalar coordinate we denote by Ci. This would be a 
procedure similar to the one followed!'" in extending the 
three-dimensional BM oscillator model to thes-d interacting 
boson approximation. The creation and annihilation opera­
tors associated with the (J boson then have the form 

ii = (l/v2)(Ci - a laCij, t = (l/v2)(a + a laCij, 
(2.19) 

and with their help we can extend the V(2) group (2.16)­
(2.1S) of the BM model to the V(3) group whose nine gener­
ators are 

(2.20) 

This group wiII be the equivalent ofV(6) in the interacting 
boson model. 

The V(3) of (2.20) has not only as a subgroup SV(2) of 
(2.16), which characterizes the BM vibrational limit, but also 
another subgroup SVJ(2)~0(3) whose generators 

QI = - (17+t + ii5 -), Q-l = (17-t + ii5 +), 

.!fo = (17+5 + -17-5 -) = 2To, 

satisfy the commutation relations 
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(2.21) 

[.!fo,Q±d= ±Q±I' [QI,Q_'] = -.!fo· (2.22) 

The eigenstates of the number operator 

N = 17+5 + + 17-5 - + iit (2.23) 

of the V(3) group can now be characterized by different 
chains of subgroups. If we consider V(3P SV(2PO (2) of 
(2.16), the states wiII be labeled by the eigenvalues of the 
operators 

N, T2= -(TIT_I+T_ITtl+T~ 
= (n812)[(n8/2) + 1] and 2 To, (2.24) 

where the last one is the angular momentum in two-dimen­
sional space. Denoting the eigenvalues, respectively, by N 
(total number ofbosons), v (number of <'i bosons) and m (an­
gular momentum), the eigenket clearly corresponds to a 
state of the three-dimensional oscillator in cylindrical co­
ordinates 1j3, 2tJ, Cij 

INvm) = tP"m 1j3, tJ )¢ N _ v (Cij, 2n + I m I = v, (2.25) 

where tPnm is given by (2.5) and ¢ N _ v (Cij is a one-dimensional 
oscillator function of N - v quanta. For these states the ex­
pectation value of IF continues to be that of(2.1O) i.e., v + 1, 
which is also the energy of the state if the Hamiltonian is 
taken as n8 of the vibrational limit. 

If on the other hand we consider the chain of groups 
V(3PSV'(2)~0(3PO(2) of(2.21), the states will be deter­
mined by the eigenvalues of the operators 

N, .!f2 = - (QIQ_I + Q_IQI) + .!f20, .!fo = 2To, 
(2.26) 

which we could denote, respectively, by N, A (A + 1), m with 
A. = N, N - 2, ... 1 or 0 and m = A., A. - 1, ... , - A.. If we 
introduce the coordinates 

R 2 = if + {]2, tane = (IJ ICij, cP = 2tJ, (2.27) 

we immediately see that .!f2 appearing in (2.26) is the square 
of the vector .!f = - i(R X V) and thus the eigenstates will 
be those of the three-dimensional oscillator in spherical co­
ordinates i.e., 

INA.m) = F~(R )yAm(e, CP), 

where YAm is a spherical harmonic and 14 

F~(R) = {2[(N - A. )/2]!!F [(N + A. + 3)12]}1 

X e- R '/2R AL A +! (R2) 
(N-A)/2 , 

with L being a Laguerre polynomial. 
The kets (2.28) are eigenstates of the operator 

Q2 = QIQ_I + Q_IQI =.!f~ _ .!f2, 

with eigenvalues 

m 2 -A (A + 1), 

(2.2Sa) 

(2.2Sb) 

(2.29) 

(2.30) 

and thus for each value of A we have a rotational band whose 
energy levels are associated with the permissible values of 
the square of the angular momentum m2

• The operator /3 2 

characterizing the deformation is 

(2.31) 

and thus its expectation value with respect to the states (2.28) 
is given by 

(NAm 1/32INAm) 
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= ( N + ~) {~[ I + 3m
2 

- A. (A. + I)]}. (2.32) 
(2A. - 1)(2A. + 3) 

From (2.30) we see that the lowest state corresponds to 
m = 0, A. = N and thus, if N> 1, the expectation value of the 
deformation for it is !IN + ~), much larger than the value I 
we get for the lowest state v = 0 in the vibrational limit. In 
fact this strong deformation holds for all states (2.28) as the 
curly bracket in (2.32) is always of the order of 1. We note 
furthermore that for large N, A. the curly bracket in (2.32) 
goes from! to 1 when Iml goes from 0 tOA, which indicates 

I 

that there is a stretching effect on the shape as the angular 
momentum increases. 

So far we have shown how to get the vibrational and 
rotational limits in the 0'-0 boson picture. A transitional situ­
ation will obviously appear if we take as Hamiltonian 

H=(1-x)nli+XQ2, O<x<l. (2.33) 

To solve it we consider t~ complete set of states INA.m) 
which are eigenstates of N, .5t' 0 that commute with the Ha­
miltonian H. The Q 2 is diagonal in this basis as indicated in 
(2.29) and thus we need only the matrix elements 

(N A. 'm I n I NA.m) = _ [(N - A. )(N + A. + 3)(A. - m + 2)(A. - m + 1)(A. + m + 2)(A. + m + 1)] 10 ' 
o (2A. + 1)(2A. + 3f(2A. + 5) A. A. + 2 

+ {'l,N + ('l,N + 1) [3m
2 

-A. (A. + 1)] }o ' 
3 3 (2A.-1)(2A.+3) AA 

_ [(N - A. + 2)(N + A. + 1)(A. - m)(A. - m - 1)(A. + m)(A. + m - 1) llO 
(2A. - 3)(2A. _1)2(2A. + 1) A'A-2' 

(2.34) 

which follows immediately from the facts that n Ii 

= N - !(P; + Z2) + ~, andp; has the same matrix elementsH 

with respect to the states (2.28) as Z2 and the latter can be 
written as Z2 = R 2cos2g =!R 2[(161T15) li2Y2o(g, l/» + 1]. 

The eigenstates i of H corresponding to definite N, m 
can be expressed as a linear combination of INA.m) 

liNm) = Iai.dNm1INA.m), (2.35) 
A 

where the coefficient aiA are obtained by the diagonalization 
of the finite matrix II (NA. 'miH INA.m) II. The deformation of 
the states jiNm) is then given by the expectation value 

(iNmjp2jiNm) = I {a;';.,(Nm)aiA(Nm) 
A,A' 

X [ - (NA. 'm jR 2cos2g INA.m)] 

+ (N + ~)o A 'AI, (2.36) 

where, from the above discussion, we have that 

(NA. 'm IR 2cos2g jNA.m) = (N + !)OA'A 

- (NA. 'm Ino WA.m), 
(2.37) 

with the last right-hand term given by (2.34). 
We have extended the Bohr-Mottelson macroscopic 

collective model in two different ways, one through a poten­
tial energy depending on P 2 in a more complex way than an 
oscillator and the other through a 0'-0 interacting boson 
model. In both cases we can describe the transitional situa­
tion, as well as the vibrational and rotational limits, and we 
have also been able to discuss the shape of nuclei in all of 
these cases. In the next section we turn to the microscopic 
problem of A nucleons interacting through harmonic oscilla­
tor forces, to derive from it a collective Hamiltonian which 
we later compare with the macroscopic one. 

III. THE MICROSCOPIC COLLECTIVE MODEL 

The macroscopic BM collective model discussed in the 
previous section starts from the oscillator Hamiltonian (2.4) 
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I 
associated with small vibrations of a liquid drop. In the mi­
croscopic case we shall also start with an oscillator Hamil­
tonian, but now of A particles interacting through harmonic 
oscillator forces. 

A. Many-body oscillator Hamiltonian 

We shall consider a system of A particles of mass M in a 
two-dimensional space, interacting through oscillator forces 
offrequency wA -!. We designate by JY'o the Hamiltonian 
just defined from which the kinetic energy of the center of 
mass has been subtracted. Thus we have 

A 2 

')Yo = (2M) - 1 2: 2: (P;'f + (M 12A )eu" 
s=li=l 

A - 1 2 2 

X 2: 2: (x;' - x;'f - ~fuu 2: (P1)2, (3.1) 
.\>1=1i=1 i-=1 

where we denote by x;" p;', i = 1, 2, the coordinates and 
momenta ofparticles = 1,2, ... ,A in standard units, whilep1 
is the center-of-mass momentum defined by 

A 

p1 = (Mfuu) - \A - ~ .Ip;'. (3.2) 
<;-.: 1 

Introducing now the dimensionless Jacobi coordinates 

x; = (Meulli)l[s(s + 1)] - ttlx;' - sx;s+ I], (3.3) 

and theircorrespondingmomentap~ = - iJIJx;. weimme­
diately see that the Hamiltonian (3.1) in units of fuu 

becomes l7 

The H 0 will be the basic Hamiltonian of the following 
discussion as Ho of (2.4) was for the macroscopic problem. It 
will be worthwhile though to consider an H with arbitrary 
two-body interaction which, in the present two-dimensional 
case, can be restricted to a central one l'.S>1 V(lx'S - X'I 11, 
where x\ X'I stand for two-dimensional vectors and 
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Ix'S - X'I I is the magnitude of the difference. Adding and 
subtracting an oscillator interaction we see that H, in units of 
1Uu, can then be written as 

H = Ho + (1Uu)-II [V( Ix's - x't I) 

(3.5) 

Before proceeding to derive from Ho (and later from H), 
its collective part, it is useful to discuss the unitary symmetry 
group of Ho and subgroups of it, that will be relevant later. 
Denoting by 

.,,; = (1 V1)(x~ - ip~), ~; = (1/ V1)(x~ + ipn; 

i = 1,2; s = 1,2, .,., A-I, (3.6) 

the creation and annihilation operators associated with the 
Jacobi coordinates, we see from 

[s) t, .,,~] = DijDst, 

that the operators 18 

(3.7) 

C~==.,,~~;; i,j = 1,2; S, t = 1,2, ... , A-I, (3.8) 

satisfy the commutation relations of the generators ofa uni­
tary group of 2A - 2 dimension V(2A - 2). These operators 
clearly commuteS with 

A -I Z 

Ho= I I.,,~S~+(A-l), (3.9) 
s= li= J 

and thus V(2A - 2) is the symmetry group of the Hamilton­
ian. Furthermore we can contract with respect to particle or 
component indices to geeS 

A - I Z 

~ij = I Cij, cst = I C~:, (3.lOa),(3.1 Db) 
s= 1 i= 1 

which are the generators of an ~ (2) X UtA - 1) subgroup of 
V(2A - 2) as [~ij' cst] = O. Finally, we can consider the 
chain of subgroups 

ja(2j:)S "'//(2) ::J t'(2), (3.IIa) 
r h,hll j.- ~lnl - h 1 ) m 

UtA -Ij:)O(A -IpDIA-I.I)(SA)' (3.IIb) 
111,11,1 11 / 011 ,) I II 

where () (2),0 (A - 1) are orthogonal groups ofthe dimen­
sions indicated and D [A - \, I I (SA ) is the representation asso­
ciated with the partition [A - 1, 1] of the symmetric group 
SA' Underneath each group we have given the numbers char­
acterizing its irreducible representations (irreps). For ~ (2) 
we have a two rowed partition [h,h z], where hi + hz = ff 
the total number of quanta and !(h I - hz) = j characterizes 
the irrep ofthe unitary unimodular group S~(2), while the 
total angular momentum m corresponds to the irrep of () (2). 
Turning to the group UtA - 1) its irrepl8 is the same as that 
of ~ (2), while that of 0 (A - 1) can have also at most two 
rows lS (;.lIJ1.z) and the symmetric group SA is characterized 19 

by the partition [I I = {II lz .. fA I of A, while its row is given 
by the Yamanouchi '9 symbol r = (rArA _, .... rzrd. Thus the 
eigenstates of Ho can be characterized by 

IA7m;f1 (;.lIJ1.z)w[fj(r)= IAm[/j(r), (3.12) 

where f1 corresponds to the set of indices required to distin­
guish between repeated irreps (;.l Iflz) of 0 (A - 1) appearing 
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in a given irrep [h1hz] of UtA - 1), whilew does the same for 
repeated irreps [Il of SA appearing in a given irrep (p.Iflz) of 
o (A - 1). We shall also usefor these states the short hand 
notation at the right-hand side of(3.12), where A stands then 
for ffjf1 (;.lIflz)W. 

The states (3.12) which, even in three dimensions, zo can 
be derived in a systematic though laborious fashion, are a 
convenient complete basis as m, [I), (r) will remain good 
quantum numbers for the general Hamiltonian H of (3.5). 
Thus the matrix of H will respect to the states (3.12) has 
elements of the form 

(A 'm[/}(r)IH IAm[f}(r) 

= (elY' + A - I)DA 'A + [A (A - 1)12] (A 'm[fj(r)1 

X V [(2-1l/fLW)llx l l] -A -'(x'fIAm[fl(r). (3.13) 

The eigenstates IIm[fl(r) of H enumerated by the index 
1= 1,2, 3 ... , are then linear combinations 

IIm[f)(r) = IaIA(m[fl(r))IAm[fl(r)), (3.14) 
A 

where the coefficients alA come from the diagonalization of 
the matrix (3.13). 

B. The collective coordinates 

The derivation of the collective part of the oscillator 
Hamiltonian Ho of(3.4) or, more generally, of H of(3.5), can 
be implemented if we pass from the Jacobi coordinates to 
those introduced by Dzublik et al. and by Zickendraht. I I In 
the notation of one of us 10 this transformation can be written 
as 

2 

x~ = I Pk D ki(tJ)D ~ _ 3 + k,s(a); i, k = 1,2; 
k~1 

S = 1,2, ... , A-I, (3.15) 

where, 10 as we shall also show later, p~, p~ are connected 
with the principal moments of inertia of theA body system, tJ 
is the Euler angle taking us to the frame of reference fixed in 
the body, and we have 2A - 5 coordinates a that parame­
trize the OrA - 1) group mentioned in the previous subsec­
tion. In (3.15) 

I II I I [costJ sintJ], D (tJ) = D ki(tJ ) I = _ sintJ costJ (3.16) 

is a 2 X 2 matrix defining the irrep characterized by I (which 
is the reason of the upper index) of the 0'(2) group. We have a 
similar interpretation for liD ~s(a)1I only that now the group 
is O(A - 1) and, as we do not need the full matrix of the 
representation but just the rows t = A - 3 + k, we have 
only 10 2A-5 of the a's rather than the full complement of 
[(A - l)(A - 2)/2]. Furthermore, in (3.15), we shall fre­
quently substitute PI' pz for 

PI = P cosy, pz = P siny, (3,17a) 

which implies that we pass from the 2A - 2 coordinates x; to 
P, y, tJ and the 2A - 5 variables a's. 

We now see that in the Hamiltonian Ho of(3.4) we have 
2 A - I 

I I x; =p2, (3,17b) 
i= 1.\'= I 
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where we take advantage of the orthogonal character of the 
matrices liD L(tJ III and liD ;s(a)ll. The situation for the mo­
menta-dependent part L7= I L1 ==-/(p;)2 is more complex, but 
explicit expressions for it have been derived 10,11 and thus Ha 
can be written in terms ofp, y, {}, - ialap, - ialay, 
- iala{} as well as in the a's and their derivatives. 

It is possible to show 10 thatp, {} and essentially y, are 
invariant under permutations of the particles, while the a's 
are strongly affected by them. Thus, because of the interpre­
tation mentioned above for PI' Pz, {}, and their invariant 
character under permutation, we can think of them as collec­
tive coordinates. On the other hand, the a's are more closely 
connected with individual particle motion as they are affect­
ed by the permutations. Thus if we project Ha to the sub­
space of the full Hilbert space of the x:, i = 1, 2; s = 1, ... 
A-I, in which the momenta associated with the a coordi­
nates are zero, we get the collective part of the oscillator 
Hamiltonian. This collective Hamiltonian is not essentially 
sensitive to the number A of particles in Ho from which we 
project it, so long aslO,ll this number is larger than the di­
mension of our space, As the latter is 2 in our case, we shall 
derive explicitly in Sec. 40 the collective Hamiltonian for 
A = 3, but before doing this we discuss the problem of shape 
of a many-body system. This will allow us later to compare 
the operators describing the shape in the macroscopic and 
microscopic collective models. 

C. Shape of many-body systems 

If we have a system of A particles of mass M, its inertial 
tensor with respect to a given frame of reference is 

(3.18) 

+ Lt, (xtXt)Dij - x1x:]), 

where on the right-hand side we substituted the dimension-
A h' h' A 1/" h less Jacobi vectors of (3.3) and X k w IC IS - times t e 

center-of-mass coordinate. If now the frame of reference is 
fixed at the center of mass i.e., X;4 = 0 and we make use ofthe 
expression (3.17b) for p2 we obtain 

A-I 
qij- L x:Xj =pzDij - (OJI'Il)Iij' (3.19) 

s=1 

If we pass to a frame of reference in which the two­
dimensional matrix q = Ilqij II is diagonal, we see from (3.19) 
that its eigenvalues are related with the principal moments of 
inertia. Furthermore we note that x: are given by (3.15) and, 
from the orthogonal character of the matrix liD ;s(a)ll, we 
immediately see that 

n 

m 2 

(dbc + trs) ( - dbs + tre) 
Ilay"Iay;" II = 

2 p( - tbe + drs) p(tbs + dre) 

3 p( - drc + tbs) p(drs + tbe) 

4 p( - dbs + trc) p( - dbe - trs) 
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Z 

qij = L piD li(tJ)D lj (il), (3.20) 
k=1 

which in matrix form becomes 

0) I 
2 D (tJ), 

P2 
(3.21) 

where D'(tJ) is given by (3.16) and D'(tJ) is its transposed. 
Thus, we immediately conclude that {} is the angle of 

rotation that takes q, and therefore I = IIIi} II, to diagonal 
form. Aspz = pi + pL we conclude from (3.19) that the ei­
genvalues pi ,p~ of q are then the principal moments of iner­
tia, and besides PI' PZ give a measure of the deformation of 
the A body system along the principal axis. 

Ifwe are dealing with specific states of H or Ha, such as 
(3.12) or (3.14), the expectation values ofp"pz with respect to 
them provide a measure of the deformation. But as P I' pz are 
not polynomial functions of x: it is better to take a function of 
PI,P2 that has this property. We note from (3.21) that 

trq = pi + p~ = p2, detq = pip~ = (p4sinZ2y)/4, (3.22) 

and 

(trq)2 - 4detq = (Pi - p~)Z = (pz cos2y)z, (3.23) 

where the right-hand side is a good measure of the deforma­
tion and besides is a polynomial function of the qij and thus 
of the x:. In the following discussion, we shall use the expec­
tation value of p 4cosZ2y as a measure of the deformation in 
the microscopic collective model. 

D. The three-body system 

As indicated at the end of Sec. 3B, we can derive the 
collective part of the oscillator Hamiltonian (3.4) even if we 
restrict ourselves to three particles. In this case A = 3, 
2A - 5 = 1, s = 1,2 and thus in the transformation (3.15) 
there is only one a and the D L (a) has the same form as 
D L ({) ) of (3.16). Introducing in this subsection the short 
hand notation 

b = cos{}, r = sin{}; e = cosa, s = sina; 

(3.24) 

d = cosy, t = siny, 0- = sec2y, 

we see from (3.15) that we can write 

x: YI = p(dbe + trs), xi Yz = p( - dbs + tre), (3.25a, b) 

x~ Y3 = p( - dre + tbs), x~ Y4 = p(drs + tbe). (3.25c, d) 

Furthermore we shall also use the notation 

p y;, y y~, {} y~, a y~, (3.26) 

in which case the matrix IlaYnlay;" II, m = n = 1,2,3,4 
becomes 

3 4 

(- dre + tbs) (drs + tbe) 
(3.27) 

p( - trs + dbe) pItre + dbs) 
p( - dbe - trs) p(dbs - trc) 

p(drs + tbe) p(drc - tbs) 
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Inverting this matrix we obtain 

2 3 4 

lIay~/aYm II = 
(bde + rts) p I( _ bte + rds) p I( _ rde - bts)a p I( _ rtc - bds)a 

2 ( - bds + rtc) p-'(bts + rde) p--'(rds - bte)a p - I (rts - bde)a 

3 ( - rdc + bts) p-I(rtc + bds) p-I( - bde + rts)a p-I( - bte + rds)a 

4 (rds + btc) p-I( - rts + bdc) p -'(bds + rte)a p-'(bts + rde)a 

as can be easily checked by direct multiplication, and from it the contravariant metric tensor becomes 

4 ay' ay' 
gmn= L ~_It; l,m,n = 1,2,3,4. 

1= I aYI aYI 

The Laplacian in the Hamiltonian Ho of (3.4), in which A = 3, is then 

~ a2 
,,_ 112 a mit 1/2 a 

~-=~g -g g -, 
1 = I aY7 m.n ay;" ay~ 

where g-I = detllgmnll and thus we obtain 

1 { 1 a 3 a 1 [1 a a 1 (a 2 a z) 2sin2y a 2] 2} Ho=- - --p -- - ---cos2y-+--?- --+--? +------ +p . 
2 p3 ap ap pz cos2y ay ay cos-2y a{} 2 aa- cos2Zy a{}aa 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

It is not enough to have only Ho in the coordinatesp, y, {}, a. We need also to consider the generators of the S~(2) group 
C{; ij of (3.1 Oa) in these coordinates and momenta, as we shall project this group onto the Hilbert space associated with the 
collective variables, thus getting integrals of motion ofthe collective Hamiltonian. It will be enough for our purpose to discuss 
these generators in classical mechanics as the corresponding quantum mechanical operators shall be obtained directly in Sec. 
E, when we transform the collective part of Ho into the Hamiltonian of the pseudo-coulomb problem. 14 

We note from (3. lOa), (3.6), and (3.7) that we can write 

12 5S SS i 2 S5 55 

C{; ij = 7: '?I (XiXj + PiPj) + 7: S?l (XiPj - XjPi)' (3.32) 

Thus if we use for x~ the notationYn, n = 1,2,3,4 as in (3.25) and denote by Pn the corresponding momenta of the latter,i.e., 

PI P:' Pz pi, P3 pi, P4 p~, 
we can define 

KI=!(C{; II - C{; 22) = Hyi + y~ - Y; - y~) + !(Pi + p~ - p~ - p~), 

K 2= - !(C{; IZ + C{; 2\) = - !(Y1Y3 + Y])'4 + PJJ3 + PJP4)' 

K3=~('?J 12 - '?J 2\) = - !(YJJ3 - Y3I'1 + Y1P4 - Y4P2)' 
2 

where the K's satisfy the Poisson bracket relation·( K I , K 2 J = K3 and its cyclic permutations. 

(3.33) 

(3.34a) 

(3.34b) 

(3.34c) 

The coordinates Yn are given in terms of y~ through (3.25) and (3.26). Furhtermore denoting by p~ the canonically 
conjugate variable to y~ we know that 

4 ay' 
Pm = L _n_p~, m=I,2,3,4, 

n = lay", 
(3.35) 

where the matrix lIay~/aYm II is given in (3.28). Thus we can immediately writeKI, K z, K3 in terms ofy~,p;" and we give them 
below where, for clarity sake, we replacesy' andp' n = 1 2 3 4 byp Y {} a andp P P P 

n n' '" '" p' Y' 1J' a 

K I = !cos2ycos2{) {pz + P~ + ;Z [ - p~ + sec22y( - p~ + p~)] } 
1 [ . Sin2{}.] 1 - - sm2ycosUJppPy + --(p"p + sm2yp P ) - - sin2{}p P 

2p cos2y p p a 2pz Y ", 

K z = !cos2ysin2{} {pz + P~ + ;z [ - P~ + sec22y( - P~ + p;)] } 

- -2
1 

[sin2ysinZ{}pppy - cos2ttsec2y(p p" + sinZyp P )] + _1_ cos2{}p P p p p a 2p2 Y a' 

K3= -!p". 
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We notice the K 's do not depend on a though they do on 
p". This we could have predicted from the fact that (r,.) of 
(3. lOa) commutes with C" of(3.lOb). As the generator of the 
0(2) group associated with the variable a is C 12 - C 21, it 
commutes with CC ij and thus the latter is an invariant of 0(2) 
and cannot change its form when a~ + a o i.e., it must be 
independent of a. This property is of interest because then 
K1, Ho (when the latter is considered as a classical observ­
able) will continue to satisfy the Poisson bracket relations21 

{K 1, K 2} = K3 

and cyclically, 

\K/I Hol = 0 1= 1, 2,3, (3.37) 

even whenpa = 0 as can be seen from the fact that, for 
example, 

{K}, Ho} = ± (a~} a~o _ a~} a~o) 
n = I aYn JPn Jpn JYn 

+ (aK{ aHo _ JK{ aHo), (3.38) 
Ja Jpa JPa Ja 

and as the K{, Ho are independent of a, the final bracket on 
the right-hand side will always be zero. 

As a last point in our analysis of the three-body prob­
lem, we would like to derive explicitly the states (3.12) for 
this case, in terms of polynomials in the creation operators "I: 
acting in the ground state 10) . We first notice the behavior of 
the Jacobi coordinates under permutation. As any permuta­
tion can be constructed from the transposition (1, 2) and the 
cyclic permutation of all the particles, 19 we need only to ap­
ply (1,2), (1, 2, 3) to x", s = 1,2,17 i.e., 

(Xl) (-1 
(1,2) x2 = 0 

(3.39) 

The same property holds for the creation operator T(, s = 1, 
2, of(3.6), and thus if we define 17 

"I ± =(l/v2)( + iTJI + "12
), (3.40) 

(1, 2{~:) = (~ ~)(~:). 

( 

.2" ) "1+ e -'3 0 "1+ 
(1,2, 3{TJ_) = i 2" ("1-). 

o e 3 

(3.41) 

It is furthermore convenient to consider the vector "I ± not in 
Cartesian coordinates 7Ji±' i = 1,2, but in the form 

"I! = (1/11'2)( - i7Jt± + "In, 

"I ~ = (1/V2)(i7Ji": + "It), (3.42) 

and similar relations for 5 $ in terms of the 5;. The gener­
ators CC; ij of uJ- (2) and cst of U (2) appearing in (3.10) can be 
transformed then into 

and 

C++, C--, C+, C-+, (3.43) 
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Clearly the generators &(2) and 0 (2) in (3.11) instead of 
CC; 12 - 'Cf 21 and C 12 - C 21 will now be given by 
CC; + + - CC; __ and C++ - C - - . 

The normalized state of highest weight l8 associated 
with the partition [hlh21 = [(ffI2) + j, (ffI2) - 11, wherej 
is integer or semi-integer according to whether Ai" is even or 
odd, is then given bylS 

(2j+ 1)1{[(ff12)+j+ l]![(ff/2)-j]!}-1 

("I! )2j(7J! "1= -7J~ "1-; )P/21- i IO), (3.44) 

as the action of 'Cf + _, C + - on it gives zero. Applying then 
the operator 18 

[ 
(j+m)! ]1(CC;_ )i-m[ (j+,u)! ]1(C-+y-l', (3.45) 

(j - m)!(2j)! + (j - ,u)!(2j)! 

to (3.44), we get the normalized states 1J1;7m,u) correspond­
ing to ff quanta and characterized by the irreps j, m, ,u of 
S~(2), &(2),0 (2), respectively, in the form 

Iffim,u) =(2j+ J)I{[(ffI2)+j+ 1]![(ffI2)-j]!}-1 

X [(j + m)!(j - m)!(j +,u)!(j _,u)!]l 

x I[ [(j - m - s)!s!(,u + m + s)!(j -,u - S)!]-I 
, 

To get now the states IA1m,,u If J (r), corresponding to 
(3.12) for A = 3 we need to apply the permutations (1, 2) and 
(1,2,3) to the states (3.46). From (3.41) we then easily obtain 
that 

(1,2, 3)1./Yjm,u) = [exp( - i21T13\FI'IA1m,u), (3.47a) 

(1,2)IA/'jm,u) =(-I)11I21-JlfiJm_,u). (3.47b) 

Thus we immediately see that 

I
. 13 J ( 111 l) 

.#}m,,u1111J (321) 

= (l/V2)[ I.~;f/jm,u) ± ( - 1)1 J 121- i iffjm -,u) ], 
(3.48a) 

when 2,u=0 mod 3 but,u #0, where the symmetric (antisym­
metric)states correspond to + ( - ) sign on the right-hand 
side. For,u = 0 we have 

I
· PI . I jmO

p11l 

(Ill)) = {I. J jmO>if(. J /2) - j 
(321) I. I JmO)if(. J /2)-j 

Finally, when 2,u=1, 2 mod 3 we have 

I.Yjm,,u(211:~~!~) = (lIv2)[IJYjm,u)] 

± ( - 1)1 J /21- j l./Yjm - ,u), 

Chacon. Moshinsky. and Vanagas 
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with Yamanouchi symbols (211) and (121) corresponding, 
respectively to the +, - signs on the right-hand side. 

As the last point we wish to find the number Ll of states 
/JYjmfl) of total number of quantaff, as well as the number 
of states d of fixed ff but with fl = 0, such that these states 
are symmetric under interchange of all particles which, from 
(3.48b), imply (ff/2) - jiseven. For the former, when ff is 
even, we see that the number is given by22 

(. V/2) 

Ll = I (2j + 1)2 
j~O 

(. '/2) (. I /2) 

= 4 If + 4 Ij + (ff/2) + 1 (3.49) 
j~1 j~1 

= (1/6)(ff + l)(A/' + 2)(% + 3), 

and the same result holds for ff odd. Clearly A represents 
the degeneracy of the basis for the single rowed irreducible 
representation [A1 of U(4). 

For the number d we note that if fl = a thenj must be 
integer and thus ff is even as we remarked before that 
(ffI2) - lis always integer. We then require 

(. 1/2) 

d = I '(2) + 1), (3.50) 
j 

where' implies that} is taken over values such that 
(ff /2) - } is also even. Assuming that (ff /4) is an integer we 
then get 

(. 1/4) 

d = L {2[(%/2) - 2k] + 1} 
k=O 

(. 1/4) 

= I (jY - 4k + 1) = (1/2)[(ff/2) + 1 ][(A/'/2) + 2], 
k~O 

(3.51) 

and the same result holds when (ff/4) is half-integer. Thus 
the total number d of symmetric states i.e., {f J = {3 J with 
fl = 0, corresponding to a given even number of quantaff is 
the same as the degeneracy of the basis for the single rowed 
irrep [A/' /2] of a three-dimensional unitary group. As we 
show in the next subsection that the symmetric states with 
fl = a are the solutions of the microscopic collective Hamil­
tonian, they are then characterized by an irrep of U(3). 

E. The microscopic collective Hamiltonian 

In this subsection we proceed to project out from the 
three-body oscillator Hamiltonian (3.31) its collective part 
and discuss the relevant integrals of motion of the latter. To 
achieve this purpose we first analyze the behavior of the co­
ordinates p, y, {}, a introduced in (3.15), (3.24), and (3.25) 
under the permutations of the three particle system. We 
could use (3.25) to expressp, y, {}. a in terms of the x: and, 
from the transformation properties (3.39) of the latter under 
permutation, we obtain 

(1, 2)P =p. (1,2, 3)p =p; 

(I. 2){} = {}, (1,2. 3){} = {}; 

(1, 2)y = - y, (1,2, 3)y = y; 

(1, 2)a = 1T - a, (1.2, 3)a = a - 21T/3. (3.52) 

Inversely, if we assume (3.52) we easily check that x: trans­
from as Jacobi vectors i.e., in the form (3.39). 
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We note thatp, {} are invariant under arbitrary permu­
tations as these can be constructed from products of (1. 2) 
and (1, 2, 3). The yvariableis not completely invariant under 
permutations as the transposition (1, 2) affects its sign. On 
the other hand, the a variable is strongly affected by the 
permutation. From these properties, together with the fact 
discussed in (3.21) that p~ = p 2cos2y, p~ = p 2sin2y, give the 
principal moments of inertia of the three-particle system and 
{} provides the rotation that diagonalizes the inertia tensor, 
we conclude that the collective part of the Hamiltonian 
(3.31) is the one that is independentofpa = - iJIJa [i.e., its 
eigenstates are scalars of 0(2)] and designating it as He we 
have 

He =~{ _ ~~p3~_ ~ 
2 p3 ap ap p2 

x[_I_~COS2y~+_I_~] +p2}. 
cos2y Jy ay cos22y J{} 2 

(3.53) 

We note furthermore that we are only interested in eigen­
states of this Hamiltonian that would be invariant 10 under 
permutations of the particles. As only y is affected, and this 
by the the transportation (1,2) Y = - y, we conclude that 
the only collective solutions of He are those that remain 
invariant under the operation that takes y_ - y. 

The eigenstates of (3.53) with the above property are 
trivial to obtain as the Hamiltonian is separable. We shall 
prefer though to carry the point transformation 

r = p2/2, e = 2y + (1T12), <p = 21J, (3.54) 

as this reduces the Hamiltonian to the well-known pseudo­
Coulomb problem 14 

!He = !r{ - \7 2 + 1), (3.55) 

where \7 2 is the Laplacian in the spherical coordinates. 
One set of eigenstates of (3.55) is well known 

Inlm) = .91 nl(r)y1m{e, rp), (3.S6a) 

where the Y's are spherical harmonics and the normalized 
8f nl{r) are given byl4 

~ n/(r) = (- 1)/21+ 112 [2(n -l)!/r(n + 1+ 2)] 1/2 

X r'e - rL ~'!/1(2r), (3.56b) 

where L is an associated Laguerre polynomial. The eigenval­
ue14 of He corresponding to the eigenstate (3.56) is 2(n + 1), 
n = 0, 1,2, 3, .... 

Note that the eigenstates (3.56) must be restricted by the 
fact that they are invariant under the operation y_ - y, i.e. 

0--1T - e. (3.57) 

From the properties of the associated Legendre polynomials 
(p. 1015 of Ref. 15) we conclude that the spherical harmonics 
Y'm (e, <p) transform under the operation (3.57) as 

Y1m (e, <p )-( - 1)/- m Y'm (e, <p ), (3.58) 

Thus the only allowed collective solutions (3.56) are those in 
which 1 - m is even. 

There are though other solutions of(3.53) or equivalent­
ly (3.55), that are more interesting. As (3.53) is obtained from 
(3.31) whenpO' = 0, clearly the solutions of the latter with 
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fl = 0 and invariant under permutations, i.e., the upper row 
of(3.48b) are solutions of(3.53). They are characterized by a} 
quantum number associated with the irrepofthe S'2/(2) sym­
metry group (3. lOa). For these states the m takes all the val­
ues m = },} - 1, ... , -} and not as is in (3.56) only those in 
which 1- m is even. Unfortunately the states IAi}mfl) of 
(3.46), of which the upper line of (3.48b) is a particular case, 
are expressed as creation operators acting on the ground 
state and not as functionsofp, y, {}orequivalently r, e, cpo We 
shall proceed to show that, with the help of the generators of 
the symmetry group 0(4) of the pseudo-Coulomb problem,23 
it is possible to express the solutions kV}mO) whenc/V = 2n, 
n -} even in terms of those of the pseudo-Coulomb problem 
in parabolic coordinates or the ones of (3.56) when 1 - m is 
even. 

We recall that the pseudo-Coulomb Hamiltonian23.24 

(3.55), besides the integrals of motion that are components of 
the angular momentum 

L = rXp, (3.59) 

has the components of the Runge-Lenz vector23,24 

A = !(LXP - pXL) + !r(p2 + I), (3.60) 

where r is the vector characterized in spherical coordinates 
by (r, e, cp) and, in the operator case, p = - iV is the corre­
sponding momentum. The commutation rules are then23,24 

[He' L] = [He' A] = 0, 

LXL = iL, LXA = iA, AXA = iL. 

(3.61a) 

(3.6Ib) 

The kets Inlm) of(3.56) are then eigenstates of He' L 2, 

L 3 • Another set of eigenstates is obtained when we consider 
the vector operators24 

M = !(L + A), N = ML - A), (3.62) 

which from (3.61) satisfy the commutation relations 

MXM = 1M, NXN = IN, [M, N] = O. (3.63) 

Furthermore from (3.59) and (3.60) L·A = 0 and thus 
M2 =N 2 . 

From (3.55), (3.60), and (3.62) we also conclude thae4 

H~ = 4(4N 2 + I) = 4(4MZ + 1). (3.64) 

Thus the eigenstates of He can be characterized by the eigen­
valuess(s + \)ofM2 = N 2 [wherefrom (3.64)s = (n!2)],aof 
M.1' and r of N, as these are commuting operators. Denoting 
the corresponding ket by l(n!2)ar) we review in the Appen­
dix its connection with the solution in terms of parabolic 
coordinates. As from (3.62) 

L=M+N, (3.65) 

we immediately conclude thae3
•
z4 

Inlm) = L I (n!2)ar) «(n/2)a, (n/2)rllm), (3.66) 

where the bracket is a standard Clebsch-Gordan coefficient. 
From the orthonormal properties of these coefficients we 
have furthermore that 

" ( 

l(n!2)ar) = L L Inlm) «(n!2)a, (n!2)rllm). (3.67) 
/ () HI I 

The invariance we must require of the collective states 
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when y~ - yor, equivalently, e~1T - e, reflects itself in 
the fact that for Inlm), 1- m is even. For l(n/2)ar) we show 
in the Appendix that the states that have this invariance 
property are 

(1/2) [ I (n/2)ar) + ( - 1)" - a - T I (n!2)7C7) ]. (3.68) 

It is easy to check, from the symmetry properties ofClebsch­
Gordan coefficients,25 that if we multiply (3.68) by «(n/2)a, 
(n/2)rllm) and sum over a, rwe get the states Inlm) with the 
selection rule I - m even. 

While the eigenkets Inlm), l(n/2)ar) of the pseudo­
Coulomb problem (3.55) are well known,23.24 neither pro­
vides the type of solution associated with I c.Yjm 0 ), 
(uV/2) -} even, discussed in the previous section. The rea­
son is that we do not take into account ab initio in the vectors 
L, A of (3.59) and (3.60) the condition of in variance under the 
operation e~1T - e. To find then how to avoid this problem, 
we start by noticing that the components (XI' X 2, x 3 ) of the 
vector r 

XI = rsinecoS<p. X 2 = rsinesincp, X3 = rcose, (3.69) 

transform under the operation e~1T - e as 

XI--+X I ' X2~X2' X 3--+ - x 3. (3.70) 

This implies for the momentum vector p = - iV that the 
corresponding components (PI' P2' P3) transform as 

(3.71) 

Turning then to L, A of(3.59) and (3.60) we have that 

L I--+ - L I, L 2- - L 2 , L3-L3; (3.72a) 

AI-AI' A z--+A z' A.1--+-A3' (3.72b) 

Thus of the six generators L, A of the symmetry group 0(4) 
of the pseudo-Coulomb problem, only three A It A 2, L3 are 
invariant under the transformation e--+1T - e. 

From the commutation relations (3.6Ib) the invariant 
operators satisfy the commutation relations 

[AI,A z ] = iL" [L 3,At1=iA 2 , [Az,LJ]=iA I, (3.73) 

and therefore they are generators of an Su2-'(2) group. Thus 
we could also characterize the eigenstates ofthe He of(3.55) 
with eigenvalue 2(n + 1) by the irreps of this Su2-'(2) group 
and of its &(2) subgroup i.e., as eigenkets In}m) of 

(3.74) 

with eigenvalues}(j + 1) and m. 
We shall now proc~ed to show that]1 = AI' Jz =A z, 

J3 = L .1 considered as classical observables are identical to 
theK 1, K 2 , K .1 of(3.36) if we take in the latter Per = O. For this 
purpose we notice that classically 

A = (LXp) + ~r(p2 + 1) = (r.p)p - ~r(p2 - 1). (3.75) 

Introducing now the spherical coordinates r, e, cp, and their 
corresponding momentapr,PA'P'f" we get for the three com­
ponents (XI' Xl' X 3) ofr the expression (3.69) while for the 
corresponding momenta we have 

ar ae acp 
P, = -a Pr + -a PI! + -a P", i = 1,2,3, (3.76) 

Xi Xl Xi 

from which it follows that 

(r.p) = rp" pC = P; + r - 2P7J + (rsine) - 2p~ . (3.77) 
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Thus we obtain 

. { 2 1 (p2 1 2 )} J I =! smOcoSlp r+ rpr - - () + -. -2- Prp 
r sm 0 

+ cosO COSlpPrP() - (sinlP/sinO lPrPrp, (3.78a) 

J2 = ~ sinO SinlP{r + rp; - ..!..(p~ + + P~)} 
r sm 0 

+ cosO sinlPPrP() + (coSlp/sinO lPrPrp, (3.78b) 

(3.78c) 

We can also express J I , J2 , J3 in terms of p, y, tJ by 
writing r, (), IP in terms of the former using (3.54) and Pr' p(), 

Prp in termspp,Pr'P", again using (3.54), 

Pr=p-Ipp ' plJ=pyI2, p",=p,,/2. (3.79) 

It is immediate then to see thatJi coincides with K i , i = 1,2, 
3 of(3.36) whenpa = O. 

The S~(2) group of the three or, for that matter, A 
particle problem, whose generators are K I' K2, K3, can be 
projected into the subspace P a = 0, still maintaining the 
Poisson bracket relations I K I' K 21 = K 3 and cyclically, as 
shown in (3.38). These projected generators K j , i = 1,2,3 of 
S~(2) are then integrals of motion of the collective Hamil­
tonian and, as we just showed, can be identified with the Ji , 

i = 1,2, 3. 
In the Appendix we show that the eigenstates Injm} of 

the operators H C' J 2, J3 can be written down immediately in 
terms of the l(n!2)cr7}, of the parabolic coordinate solution 
through the relation, 

In)m) = L( - 1)(nl2) - u+ m«(n/2)cr, (n/2)m - crljm) 
u 

l(n/2)crm - cr). (3.80) 

But from the discussion at the end of the previous subsection 
we see that IA]mO) of (3.48b), where JV and (JV 12) - ) are 
even, is aneigenstateK 2 = Kf + K~ + K; andK3 when the 
eigenvalue f.l of Pa is taken as O. Thus we have 

IA]mO} = Injm}, JV = 2n, n - j even, (3.81) 

and the only values ofj of interest to our problem are 

j = n, n - 2, ... , 1 or O. (3.82) 

For a fixed n the number of states (3.80) with the restric­
tion (3.82) is then clearly (l!2)(n + l)(n + 2) and thus, as the 
spectrum of the Hamiltonian (He 12) is equally spaced, we 
could map the states (3.80) on those of a three-dimensional 
oscillator with definite angular momentum) and projection 
m. This will be done in Sec. IV to obtain the quantum me­
chanical representation of the canonical transformation that 
takes us from the macroscopic to the microscopic collective 
model. 

In the final subsection of this section, we shall analyze 
the general collective Hamiltonian and the problem of shape 
for its states. 

F. The general microscopic collective Hamiltonian and 
the shape problem 

In the previous subsection, we took the three-particle 
oscillator Hamiltonian and projected out the part with P a 

= 0 to get the corresponding microscopic collective 
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Hamiltonian. 
We could have started with an arbitrary particle Hamil­

tonian H of the type (3.5) and projected out from ieo the 
general collective microscopic Hamiltonian. Because the ei­
genstates of H are characterized by the irreps (f l of the sym­
metric group SA ,the partH - Hoof(3.5) can be replaced by 

[A (A - 1)12]{(IUu)-1 V [(21iIMw)1/2Ixll 1 -A -1(XI)2}, 
(3.83a) 

as discussed in (3.13), where I x II is the magnitude of the first 
Jacobi vector. We can then project the collective parts lO of 
V [(21iIMw) liZ IXI I], (xlf, by replacing Xl by its value (3.15) in 
terms of p, y, tJ, a, and averaging over the 2A-5 internal 
coordinates a. 

We shall implement this program for V of the Gaussian 
type i.e., 

V= Voexp[ - (x l flb 2
], (3.83b) 

where b 2 = (Mw!2ll)a 2
, with a being the range in normal 

units of the Gaussian potential. From (3.25) and the above 
discussion we see that the collective part of the potential Vc 
is26 

Vc = Vo(21T)-1 

X f 1T

exp [ - (p21b 2)(cos2y cos1a + sin2ysin2a)]da 

= Vo(21T)-l exp( _p2/2b 2) 

xf1T

exp [ - (p2/2b 2)cos2y cos2a]da 

= Voexp( -p2/2b 2)Io[(P2/2b 2 )cos2y], (3.83c) 

where 10 is a Bessel function (p. 958 of Ref. 15). Note that this 
formula is valid only within certain restrictions for its do­
main as discussed by Katkevicius and Vanagas. 26 

Similarly the collective part of (x 1)2 is /p2/2b 2) and thus 
for A = 3 and Gaussian potentials the collective Hamilton­
ian takes the form 

HGC = He + 3{(Volliw)exp( - rib 2) 

X/orr sinO Ib 2) - (rl Ab 2)}, (3.84) 

where Hc is given by (3.55) and we prefer using the coordi­
nates r, 0, IP related to p, y, tJ by the point transformation 
(3.54). The projection from an A-partcle problem gives a 
similar result. 26 

The Hamiltonian HGC still commutes with the angular 
momentum, which for this two-dimensional problem is 
J3 = L3 = - iJIJIP, and thus we can factor exp(imqJ ) from 
its eigenstates, but it is no longer separable in r, e. We can 
though calculate, with the techniques discussed in the Ap­
pendix, the matrix of elements 

(nj'm IHGC Injm), (3.85) 

where !njm) is given by (3.80) and, restricting ourselves to a 
maximum number of quanta O<n <N, from the diagonaliza­
tion of this finite matrix obtain the eigenstates \ im), i = 1, 2, 
... , of HGC as 

lim} = I ajnj(m)\njm}. (3.86) 
nJ 

n - j even 
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We now turn our attention to the problem of shape of 
states ofthis generalized collect;ive Hamiltonian. The discus­
sion following (3.23) indicates that the shape would be given 
by the expectation value with respect to the states lim) of 

p4 cos22y = 4r sinle. (3.87) 

Thus from (3.86), we require the matrix elements of 

(n'j'ml? sinle Injm), (3.88) 

which can be evaluated in parabolic coordinates by the pro­
cedure indicated in the Appendix. We also note that from 

) 

(3.80) and (3.67) we can write 

Injm) = iAj/(nm)lnlm), 
/~O 

where 

(3.89) 

Aj/(nm) = 2:{( - 1)lnl2)-u+m«(n/2)u, (n/2)m - ulJm) 
a 

X «(n/2)u, (n/2)m - ullm)}. (3.90) 

Since the matrix element (n"'ml? sinze Inlm) can be deter­
mined directly, 14.25 we can finally write 

(nJ'm I? sin2e I njm) = f i {AII,(nlm)Ajl(nmH[~I'1 - ( 2/,+ 1 )1 (1m, 201/ 'm) (10,201/10)] 
/'=0/=0 21 + 1 

Xl[ (n -/)!(n' -I')! 1\ _l)n+n'(/' -I + 2)!(/-1' + 2)1 
8 (n+l+ 1)!(nl+I'+ I)! 

X~(l + /' + 3 + t)l(t!(n -/- t)l(n' -I' - t)l(l' - n + 2 + t)I(/- n' + 2 + til) - I}, (3.91) 

where we made use of the volume element (A2) of the Appendix and of the generating functions 15 of the Laguerre polynomials. 

IV. CANONICAL TRANSFORMATIONS RELATING THE 
MACROSCOPIC AND MICROSCOPIC COLLECTIVE 
MODELS 

In Sec. II, we saw that the two-dimensional Bohr-Mot­
telson model can be generalized to a u-~ interacting boson 
model that contains the Hamiltonians of both the vibrational 
and rotational limits. This model is associated with the U(3) 
symmetry of the three-dimensional oscillator and the states 
correspond to the irrep N of this group. They can be further 
characterized by the irrepA of the 0(3) subgroup ofU(3) 
which gives the different rotational bands. Finally the irreps 
m of the subgroup 0 (2) of 0 (3), are associated with the angu­
lar momentum in our two-dimensional space. Thus, we get 
the states (RINAm) of(2.28), where we indicate explicitly 
the coordinate R (of spherical componen ts R, e, f/J ) on which 
they depend. They are eigenstates of N, !fl, !f 0 in (2.26) 
with eigenvalues N, A (A + 1), m, respectively. 

We turn now to the Hamiltonian of a system of particles 
interacting through harmonic oscillator forces. The states 
then are characterized by the total number of quanta A"', the 
irrepsj and m, respectively, of an S u2t (2) group and its sub­
group tJ' (2), as well as on irreps of other subgroups as indicat­
ed in (3.12). With the help of the collective coordinates intro­
duced by Dzublik etal. I I and by Zickendraht, I! we extracted 
the collective part of these states, which turns out to depend 
only on even A/" = 2n, integer j, such that n - j even and 
m =j,j- I, ... , -j.Thesestates,givenin(3.80)or(3.89),are 
denoted by (rlnjm), where we explicitly indicate the coordi­
nate r (of spherical components r, e, cp ). They are eigenstates 
of the pseudo-Coulomb Hamiltonian (He 12) of(3.55), as 
well as ofJ 2,J3' of(3.74), with eigenvalues n + 1,j(j + 1) and 
m, respectively. 

As both (R\NAm) and <rlnjm) are a complete set of 
states, with the same range of values for the quantum num­
bers appearing in them, we could define a unitary transfor­
mation from one of these sets of states to the other by 
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(RIU\r) = t (Rlnjm><njm\r), (4.1) 
n j m= -J 

n - j even j integral 

where we tookN = n, A = j and (njmlr) as the complex 
conjugate of <rlnjm>. 

This unitary transformation is a representation of a ca' 
nonica! transformation. 27 It guarantees, among others, that 
the classical observables H(), !f2, 2/3 of (2.26), which are 
functions ofR, P, transform into (He/2), J2, J3 of(3.55) and 
(3.74) which are functions ofr, p, where P, p are, respective­
ly, the canonically conjugate variables to R, r. The explicit 
form of this canonical transformation i.e., R, P as function of 
r, p or vice versa27 will be discussed elsewhere by Moshinsky 
and Seligman. For Our present purposes all we need is the 
unitary representation (4.1) as given any operator Fin R, 
P = - iV R we can transform it into the corresponding oper, 
afor fin r, p = - iV r or vice versa. This transformation is 
most easily achieved if, for example, we calculate the matrix 
elements of Fwith respect to the states INAm) of(2.28). Then 
from (4.1) the matrix elements of/with respect to the states 
Injm) of (3.80) or (3.89) must have the same value when 
n = N, A = j. As in quantum mechanics we can either work 
in the operator or matrix representation, the possibility of 
mapping the latter on each other in the macroscopic and 
microscopic collective models, provides then the correspon­
dence between them that we are searching for. 

As an example we note that the general Hamiltonian H 
of(2.33) of the macroscopic collective model, can be translat­
ed into the microscopic collective model. We note that 
Q 2 = .Y~ _ ;£'2 appearing in (2.33) actually becomes 
J ~ - P = A ~ + A i with theA's given by (3.60). For the n,l 

of(2.33) we have its matrix element (2.34) and if we replace 
N = n, A = j we have the corresponding matrix elements 
with respect to Injm). Thus we can write in the microscopic 
collective model the matrix associated with the combination 
(1 - xlr,,I + xQ 2, O<x< 1, which includes the vibrational 

Chacon, Moshinsky, and Vanagas 616 



                                                                                                                                    

and rotational limits as well as the transitional region in 

between. 
More interestingly we could start with a realistic two­

body interaction in the Hamiltonian of an A -body system 
and project out its microscopic collective part H Gc , as we 
illustrated in (3.84) for theA = 3 case with a Gaussian inter­
action. Then we can calculate the matrix elements of H GC 

with respect to the states Injm) as indicated in (3.85). Thus 
when we replace n by N,j by A, we have the Hamiltonian 
matrix in a u-t> interacting boson approximation model, cor­
responding to the microscopic two-body interaction that 
was considered. 

Another interesting point concerns the shape problem. 
In the macroscopic collective model we saw that the defor­
mation of a state can be estimated from the expectation value 
of R 2 sin2e with respect to it. On the other hand, in the 
microscopic case, we saw from (3.86)-(3.91) that the defor­
mation of the state can be estimated from the expectation 
value of r sinz8 with respect to it. But the canonical trans­
formation whose unitary representation is (4.1) does not map 
rsin2e on r sin20. In fact the matrix elements 
(N'A 'm\R 2 sinze INAm) given by (2.36) (suitably general­
ized to N' #N through the analysis in p. 247 of Ref. 13) are 
different from those of (n'j'mlr sinzO Injm) given by (3.91). 
Thus the shape problem in collective models has different 
connotations when we approach it from the macroscopic or 
the microscopic end. With other collaborators, we shall ex­
plore this problem further in future publications. 

We have given a thorough discussion of the macroscop­
ic and microscopic collective models, and of their interrela­
tions, for the two-dimensional case. The interesting problem 
though is in three dimensions where the mathematical anal­
ysis is much more difficult. Yet conceptually the problem is 
very similar and in the next section we proceed to outline it, 
leaving for a later article the detailed implementation of 
some of the steps. 

V. OUTLINE OF THE GENERALIZATION TO THREE 
DIMENSIONS 

We wish now to outline the main steps required to im­
plement for the three-dimensional case the analysis given in 
this paper for the two-dimensionsal problem. 

A. The macroscopic collective model 

As in Sec. II we start with the Bohr-Mottelson model, 
where now the surface of the drop is given by6.!3 

R=Ro[ +1~amYrm(e,<p)], (5.1) 

where here R, e, <P are the spherical coordinates in the phys­
ical three-dimensional case. The collective motion in this 
macroscopic model are then characterized by the five am' 
m = 2, 1,0, - 1, - 2 and their corresponding momenta are 
17' m = - ia/aam

• For small vibrations the Hamiltonian is 
then an oscillator in these variables.6.13

•
28 

As in Sec. II we pass from the frame of reference fixed in 
space, in which the coordinates are the am' to those fixed in 
the body i.e., (1, yand the Euler angles 0i' i = 1,2,3 which 
now instead of(2.3) are related by 6.13 
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am = {D~";(Oi)+D~*_2(Oj)](l!v2)13siny 

+ D ~"O(Oi)(J cosy. (5.2) 

The eigenstates of the oscillator Hamiltonian, correspond­
ing to those given by (2.5) in the two-dimensional case, were 
fully determined recently28 and can be written as 

<PyOi jvAtLM). (5.3) 

The quantum numbers are related with the irreps of the 
chain of groups of the Bohr-Mottelson vibrational Hamil­
tonian, i.e.,2s 

U(SPO(SPOPPO(2), (5.4) 
v ~ L M 

and t distinguishes between repeated irreps L of 0 (3) in a 
given irrep A of 0 (5). 

The kets (5.3) represent only vibrational states. We can 
get though rotational or transitional ones by considering 
higher-order terms in the Bohr-Mottelson Hamiltonian, as 
in Sec. B of II for the two-dimensional case, getting then 
what has been called the Frankfurt model. 8 It is more rel­
evant though, for our final objective, to achieve this purpose 
by extending the Hilbert space, as was done in Sec. C of II for 
the two-dimensional case. Thus we can add 16 an s coordinate 
to the five d coordinates am getting a six-dimensional oscilla­
tor whose symmetry group is U(6). In this sod boson model 
one chain of subgroups is (5.4) leading to the state 

(a(JyOi jNvAtLM), (5.5) 

in which N is the irrep ofU(6). This state can be obtained in a 
trivial wayl6 from (5.3) and it corresponds to the 
{aPt} INvm) of (2.25) for the two-dimensional case. 

There are though other chains of subgroups ofU(6) and 
in particular, 

U(6P U(3) :>O(3PO(2) (5.6) 
N [2c,.2e:.2c., } L ,\1 

will be very relevant for the objective of finding the unitary 
representation of the canonical transformation that relates 
the three-dimensional macroscopic and microscopic collec­
tive models. 

In (5.6) we have indicated the irreps of the different 
groups in the chain. For a given single-rowed partition (N] 
that characterizes the irrep ofU(6), the irreps of the sub­
group U(3) are given by three even numbers 2e i , i = 1,2,3, 
with the property that 1(l.11> 

(5.7) 

The irreps L of 0 (3) contained in a given irrep (2e l' 2e2, 2e3] 

ofU(3) are given by the inequalities discussed in p. 520fRef. 
18. 

The states associated with the chain of groups (5.6) can 
then be written as 

(5.8) 

where (J distinguishes between the repeated irreps L of 0 (3) 
contained in a given irrep ofU(3). These states corrspond to 
{Recp INAm} of(2.28) of the two-dimensional case and they 
are associated with rotational properties. 16 The ket (5.8) is 
not presently explicitly available, but as we showed in Ref. 
16 how to calculate the matrix elements of the Casimir oper­
ator ofU(3) in the basis (5.5), we can, by diagonalizing a finite 
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matrix, obtain the coefficients of the expansion of(5.8) in 
terms of(5.5). Thus, at least in principle, we have the rota­
tional states and we could also get transitional ones by con­
sidering, in the basis (5.5), Hamiltonians equivalent to (2.33). 

Having then discussed a macroscopic collective model 
of the s-d interacting boson type, we turn our attention to the 
microscopic collective model in three-dimensional space. 

B. The microscopic collective model 

As in Sec. A of III we start with an A body oscillator 
Hamiltonian from which we want to project out the collec­
tive part. As indicated at the end of Sec. B of III, this can be 
done from any A so long as it is larger than the dimension of 
our space. 10 Thus in the three-dimensional case the smallest 
A we can take is A = 4 for which we have the three Jacobi 
vactors x:, s = 1, 2, 3 of components i = 1, 2, 3. The collec­
tive coordinates are then introduced through a transforma­
tion of the type (3.15) which for three dimensions and A = 4 
becomes 10 

3 

x~ = L Pk D LWj)D ks(aj ); i,j, k = 1,2,3, (5.9) 
k=1 

where liD L II are the standard rotation matrices [e.g. as in p. 
95 of Ref. 13] in terms of the ordinary Euler angles {}j or 
those of the angles in particle index space aj • The p~ 's give 
the principal moments of inertia as discussed in Sec. 3 of III. 

All of the analysis of Sec. A of III applies to the three­
dimensional case if i,j take values 1. 2, 3 rather than only 1, 2. 
Thus the states of the four-body problem in three dimensions 
can be characterized by theirrepffofthe U(3A - 3) = U(9) 
group and its subgroups 

U(9) ::> ~(3) X U(3) [hlh2h)] 
u u 

&(3) L 0(3) r ,(5.10) 

u u 
&(2) M D{3.II(S4) III 

where we indicate to the right of the groups the correspond­
ing irreps. We recall that, as in (3.11), [h Ih2h3] is the irrep of 
both ~(3) and U(3) and besides 18 

(5.11) 

The eigenstates of the oscillator Hamiltonian, corre­
sponding to (3.12) in the two-dimensional case, can then be 
denoted by 

(pj{}ja j I [h,h 2h3 1flLM,iifx !/l(r), (5.12) 

wherefl, ii distinguish between repeated irreps L, r of ci(3), 
0(3) in a given irrep [h Ih2hJ] of "'71(3), V(3), while K does the 
same20 for the repeated irrep If! of S4 in a given L of 0 (3). 

The states (5.12) can be determined as polynomials in 
the 1];, S = 1,2,3; i = 1,2,3 acting on the ground state by 
procedures 1)1 similar to those that lead to the i.,.rjmflll j(r) 
of (3.48). We do not have though at present an explicit ex­
pression of these states as functions Pi{},ai · 

The microscopic collective states can be projected from 
(5.12) in a procedure similar to the one used in the two-di­
mensional case to get (3.81) from (3.48). In particular, this 
implies considering those symmetric states (5.12) that are 
scalars of 0 (3) i.e., in which ill = i 41 andL = 0, which are 
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obviously independent of the angular coordinates a i associ­
ated with the particleindicess = 1.2,3. We note that for Lto 
vanish the inequalities in p. 52 of Ref. 18 indicate that 
h, - h3' h2 - h3 must be even and, as in this case L = 0 ap­
pears only once, '8 theiiindex is irrelevant. Furthermore for 
the state to be symmetric, i.e., !/l = 4. when T = 0 we re­
quire that2° ff must be even i.e., A/ = 2N and thus from 
(5.11) we conclude that the states (5.12) with r = 0, 
If I = 141 must correspond to a partition 

[h lhzh31 = [2e l , 2e2, 2e3 ]; ff = 2N. (5.13) 

where the e/s satisfy (5.7). 
The collective state can then be denoted by 
<.pj, {}j! [2e

" 
2e2, 2e3 ]!1LM), (5.14) 

and as the quantum numbers have the same range as in the 
macroscopic collective state (5.8) (when we writeff = 2N) 
we conclude that for a fixed N the number of states (5.14) 
corresponds to the degeneracy of the representation [N] of 
V(6). Besides as (5.14) are the particular oscillator states 
(5. 12) for whichL = 0, til = 14}, the energy levels to which 
(5.14) are associated continue to be equally spaced. Thus we 
see that both the macroscopic and microscopic collective 
Hamiltonians are related with the same chain of subgroups 
ofU(6) despite the fact that the latter were derived from 
states characterized by the irreps of the chain of subgroups 
(5.10) of U(9}. 

C. Canonical transformations relating macroscopic and 
microscopic collective models 

From the analysis of Sec. IV and the discussion in this 
section we immediately conclude that the unitary represen­
tation of the canonical transformations relating the macro­
scopic and microscopic collective models can be written as 

(a{3y8j \ U IplP2P3{}j ) 

= L L (a{3y8j l[2e., 2ez, 2e3 ]flLM) 
e,e1e3 fJLM 

X ([2e" 2e2• 2e3 ]flLM !PlP2P3{}j), (5.15) 
where care should be taken with the domain of the variables 
as discussed in Chap. II in the last reference of Ref. 10. 

We indicated in the previous subsection that the states 
(5.8) of the macroscopic collective model that appear in 
(5.15), can be obtained as linear combinations of the states 
(5.5) where an explicit expression is available for the latter. 2)1 

The states (5.14) of the microscopic collective model also 
appearing in (5.15) are more difficult to obtain and we pro­
ceed to outline a possible, though not necessarily practical, 
way of determining them. 

To begin with the osci1lator Hamiltonian Ho of (3.4) 
when A = 4, i = 1, 2, 3 can be written in terms of the collec­
tive coordinates p" {}" a, of (5.9), as was done in the 1969 
paper of Zickendraht. II If in Ho we equate to zero the angu­
lar momentum vector L associated with the coordinates aj' 
i = 1, 2, 3 we get a Hamiltonian He of which the kets (5.14) 
are eigenstates. We need though that (5.14) should also be 
eigenstate of integrals of motion associated with the &2-'(3) 
group and its subgroups. Following the analysis given in S6C. 

A ofIlI, we have for, the generators of '~(3), 
3 

'G'ij = I 11ft;, i,j = 1,2,3, (5.16) 
.~ = 1 
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with the definition (3.6) for creation and annihilation opera­
tors. We then write Cf5 I} in terms of the collective coordinates 
Pi' iii' a i to obtain results equivalent to the generators K" 
K 2, K3 ofS~(2) for the two-dimensional case that are given 
in (3.36). Finally, we equate in Cf5 ij the L to 0, to obtain Cf5f 
the generators of uZ,(3) dependent only onpi' iii and their 
derivatives which are equivalent to the generatorsJ" J 2 , J3 of 
SuZ,(2) for the two-dimensional case given in (3.78). Thus 
finally, the kets (5.14) are eigenstates of the operators 

3 

He, G = L Cf5fCf55, L 2, L 3, (5.17) 
i,j= I 

where G is the Casimir operator'H of the ~(3) group. 
We plan to implement in another publication the steps 

given in the previous paragraph, so as to obtain an explicit 
expression for the states (5.14) and thus also for the unitary 
transformation that takes us from the macroscopic to the 
microscopic collective model. 

D. Shape of states in the three-dimensional case 

We discussed extensively in the previous sections the 
deformation of the states for the two-dimensional case. This 
problem is of course much more interesting in the real three­
dimensional case. We proceed to outline the steps that allow 
us to discuss the problem of shape both in the macroscopic 
and microscopic collective models. 

We consider first the macroscopic collective model of 
Bohr-Mottelson and replace in Eq. (5.1) for the surface of 
the liquid drop the am by (5.2) and e, <P bye', <P' where the 
latter are angular coordinates in the frame of reference fixed 
in the body. The deformations R" R 2, R, along the three 
principal axis fixed in the body correspond then to the angles 
e', <P' = 1T/2, 0; 1T/2, 1T/2; 0, 0, and we get'3 

R" = Ro{l + (5/41Tj1!3 cos[y - (21Tk /3)]}, k = 1,2,3. 
(5.18) 

Thus clearly a measure of the deformation along the three 
principal axis can be obtained from the expectation values of 
/3 cos[y - (21Tk /3)] with respect to the states of the macro­
scopic collective Hamiltonian. These states can be expressed 
as linear combinations of (5.5) or, equivalently, of (5.8). 

However, it is more convenient to consider some func­
tions of /3 cos[y - (2JTk /3)], k = 1,2, 3 for the expectation 
values rather than these expressions themselves. We notice, 
for example, that we have the following relation: 

{x - /3cos[ y - (21T/3)]}{x - /3 cos[ y - (41T/3)]) 

X {x - /3 cosy} = x' - ~x/32 _}/33 cos3y, (5.19) 

and thus the cubic equation resulting from equating the 
right-hand side to zero has precisely the roots X k 

= /3 cos[y - (21Tk /3)], k = 1,2, 3. 
We note that 2H 

/3 2 = 5([axa]i;, 

/3 1 cos3y = - (35/2)\[ [aXa]2 Xa ]g, (5.20) 

where the square brackets indicate angular momentum cou­
plings. Then/3 2,/3 ' cos3y are polynomials in thea's and their 
matrix elements with respect to the states (5.5) can be ob­
tained '6.2X with the help of the isoscalar factors for the 
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0(5):)0(3) chain of groups. Thus we can discuss the defor­
mation of states in the three-dimensional macroscopic col­
lective model, corresponding to (2.35) in the two-dimension­
al case. 

Turning our attention now to the microscopic collec­
tive model, we note from the discussion in Sec. C ofIII that 
Pi' P2' P3 themselves measure the deformation along the 
three principal axis. We can use then, for example, the expec­
tation values of p~ ,p~, p~ with respect to the eigenstates of a 
microscopic collective Hamiltonian HGe to get an estima­
tion of the shape of these states. Again though it may be more 
conveniene9 to writep~ ,P; ,p~ in terms ofp, b, 0 through the 
relations 

p~ = (P2/3){1 + 2b cos[o - (21Tk /3)]), (5.21) 

from which it follows that p2 = p~ + P; + p~ . 
Clearly then, by a similar analysis to that of the macro­

scopic case, rather than the expectation values of p~ we 
could take those of 

(5.22) 

and, solving a cubic equation, get the deformation param­
eters. As the eigenstates of HGe can be expanded in terms of 
the complete set of eigenstates (5.14) of He' we require then 
the matrix elements of the operators (5.22) with respect to 
the states (5.14). This is also a problem we intend to tackle in 
a future publication once we obtain the states (5.14) 
explicitly. 

As indicated in Sec. IV, the shape problem in collective 
models has different connotations when approached from 
the macroscopic or the microscopic end. This is due to the 
fact that operators such as/3 2,/3' cos3ydo not transform into 
p4b 2,p6b 3 cos30 under the unitar:Y operator (5.15). Thus, as 
mentioned at the end of Sec. IV, we intend, with other col­
laborators, to confront the derformations obtained for states 
in the macroscopic and microscopic collective models. 

E. Flow diagrams relating the nuclear models 

As a last point, we summarize the relations between the 
nuclear models discussed in this paper by a kind of flow 
diagram given in Fig. 1. We consider first the different oscil· 
lator Hamiltonians and their interconnections and then ex­
tend the discussion to general Hamiltonians. 

We start with the A particle oscillator Hamiltonian­
which is the three-dimensional generalization of (3.1 )-and 
denote it by the circle coritaining A in Fig. 1. We then project 
from it the microscopic collective (MC) Hamiltonian by the 
procedure outlined in this section getting then the three-di­
mensional generalization of He of(3.53). This Hamiltonian 
is indicated by MC in a circle and, as we obtain it from pro­
jection from the particle oscillator Hamiltonian, we connect 
A and MC by a line going from the first to the second. 

We then consider an oscillator boson approximation 
(OBA) Hamiltonian containing sand d bosons and the dis­
cussion in this section indicates that MC and OBA (where 
the latter also appears in a Circle in the figure) are related by a 
unitary representation of a canonical transformation given 
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OSCILLATOR HAMILTONIANS 

GENERAL HAMILTONIANS 

FIG. I. The flow diagram is explained in Sec. E ofY. We indicate here only 
the meaning of the acronymics of the Hamiltonians appearing in the circles: 
A-A-nucleon oscillator; MC-Microscopic Collective; OBA-Oscillator (s-d) 
boson approximation; BM-Bohr-Mottelson oscillator; GA-General A nu­
cleon problem; G MC-General microscopic collective; IBA-Interacting (s-d ) 
boson approximation; F-Generalized Bohr-Mottelson model as developed 
by the Frankfurt group. 

in (S.IS). This fact is shown in the figure by the heavy line 
connecting MC and OBA with arrows in both directions, as 
the canonical transformation allows us to go from the MC to 
the OBA or vice versa. Finally, by projecting out the d-boson 
part of the OBA we get a Hamiltonian which is identical to 
the oscillator Hamiltonian of Bohr-Mottelson (BM) as indi­
cated by the last circle of the upper line of Fig. 1. 

We tum now to the general A particle (GA) Hamilton­
ian which is the three-dimensional equivalent of (3.S). Bya 
procedure similar to the one discussed in Sec. E of II for the 
two-dimensional case, we can project the general microscop­
ic collective (GMC) Hamiltonian corresponding to (3.84). 
This GMC Hamiltonian can be expressed as a matrix with 
respect to the eigenstates (S.14) of the oscillator microscopic 
collective (MC) Hamiltonian, which is indicated in Fig. 1 by 
the dotted connection between the two models. 

Turning now to the macroscopic sod interacting boson 
approximation (IBA) analyzed in Ref. 9, we can express its 
most general Hamiltonian as a matrix with respect to the 
eigenstates (S.8) of the oscillator sod boson approximation 
(OBA) as discussed in Ref. 16. Thus, through the canonical 
transformation relating MC and OBA, we can pass from 
GMC to a kind ofIBA or vice versa as indicated by the two 
lines with arrows in the diagram. Finally, as discussed in 
Ref. 8, there is a procedure by which we can relate IBA 
Hamiltonians with those of a generalized Bohr-Mottelson 
type which we designate as Frankfurt (F) Hamiltonians as 
most work on them 7 was done there. These Hamiltonians 
can be expressed as matrices with respect to the eigenstates 
(S.3) of the oscillator Bohr-Mottelson (BM) Hamiltonian, 
which is indicated by the dotted line connecting BM and F. 

Thus we have outlined a procedure by which starting 
from the Hamiltonian of a microscopic system of A nu­
cleons, we can arrive finally to a macroscopic collective 
model which is a suitable generalization of the one intro­
duced by Bohr and Mottelson. 
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APPENDIX: THE PSEUDO-COULOMB HAMILTONIAN 
AND ITS EIGENSTATES 

In this Appendix we review some of the well-known"-' 
solutions in parabolic coordinates of the Hamiltonian He of 
(3.55)-which we call pseudo-Coulomb'4-and then derive 
from them the eigenstates of He, J2, J3, where the last two 
operators are given by (3.74). 

In terms of the spherical coordinates r, (), rp defined in 
(3.S4) the parabolic ones u, u, ,p are given by 

u=r(l-cos()), u=r(I+cos()), ,p=rp. (AI) 

To derive the volume element in these coordinates we note 
that from the determinant of the matrix (3.27), relating the 
Jacobi vectorsx~, i = 1,2, s = 1,2 withp, y, {}, a, we have 

dV = p3 cos2ydpdyd{}da 

= (r/2) sin()drd()drpda = ldudud,pda, 

o<;u, u<; 00, O<;cf>, a <;2rr, (A2) 

where we made use of the transformations (3.S4) and (AI). 
From the definitions (3.SS), (3.S9), and (3.60) and the com­
mutation rules (3.61), we have that the operators He, A 3 , L3 
commute among themselves and the last two are given by 

A a a 2 
3 = - - r - + tx3(V + 1), 

aX3 ar 

1 a a 
L3 = -:-(x, - - x 2 -). 

1 aX2 ax, 

(A3) 

From (3.69) and (AI) we see that the common eigenstate I/; of 
these three operators satisfies, in parabolic coordinates, the 
equations23 

~Hel/;= {[ - ~u~ __ I_~+~] 
au au 4u a,p 2 4 

+ [- ~u~ - ~~+~]}I/; 
au au 4u a,p 2 4 

=(n + 1)1/;, 

(A4a) 

where we denote by n + 1, a, m, respectively, the eigenvalues 
of H e/2, A 3 , L3' If instead of A 3 , L 3 , we consider the opera­
tors M3 = (L3 + A 3)12, N3 = (L3 - A 3)12, whose eigenval­
ues we denote by fT, T, the I/; is also an eigenstate of them in 
which m = fT + T, a = fT - T. 

The explicit form of the eigenstate I/; of (A4) is then the 
ket 

I (n/2)fTT) = ( - 1 )(n/2) - a(uu) -\(2rr) - lexp [i(fT + T),p ] 

{

F la + TI/2(u/2)F la + TI12(u/2) (n12) - (T (n/2) - T , 
X la + TI/2 la + TI/2 F(n12) + T(u/2)F (n/2) + a(v/2), 

fT + T;;'O 

fT + T<;O, 
(AS) 
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where the factor ( - 1 )ln121 - (7 is required23 for the Condon 
and Shortley22 phase convention and the function F';12I.p), 
m>O of the variablep satisfies the equationl4 

[ 
_ ~ Um12)2 - (1/4)] + 1]FmI21.p) 

p d 2 + 2 n 
'P p 

= (2n + m + l)F,:;/2I.p), (A6) 

so that its normalized form with respect to the volume ele­
ment (AZ) becomes l4 

F':;/zl.p) = 21m + IJ/2[(n!)lr(n + m + l)pplm + 1)/2 

e- PL':;(2p), m>O, 

where L ':; is a Laguerre polynomial. 
The kets (AS) are then eigenkets of the operators 

(A7) 

M2 = N 2, M 3, N 3, with eigenvalues (nI2)[(nI2) + 1], u, 7, 
respectively. Thus with respect to them, the matrix elements 
of L ± = LI ± iL2' L 3; A ± = Al ± iA2' A3 become 

«(nIZ)u'r'IL ± I (nIZ)u7 > 
= {[ (nIZ) + u]( (nIZ) ± u + I ]}l8(7'(7 ± 18r'r 

+ {[(n/Z)+7]((n/Z ±1'+ 1]}l0"'(70r'r±1' (A8a) 

«(nI2)u'r'IL3 1(nIZ)ur) = (u + 7)0"'(70r'7' (A8b) 

«(nIZ)u'r'IA ± l(nIZ)ur) 

= ([(nl2) + u][(nIZ) ± u + 1 ]}\8d(7± 18r'r 

- {[(nIZ) + r] [(nl2) ± r + 1]}\80"'(78r 'r± I' (A8c) 

From the fact that L = M + N it is clear that the eigen­
state Inlm) of He, L 2, L3 is given by 

Inlm) = I «(nI2)u, (n/2)m - o"!lm) I (nl2)um - u), (A9) 
(7 

where (I) is a Clebsch-Gordan coefficient. Then applying 
L to the left- and right-hand sides of (A9) and making use 

± ffi' of (A8a), we see that the Clebsch-Gordan coe Clents must 
satisfy the recursion relations 

[(l + m)(1 ± m + 1)] «(nI2)u, (nI2)m ± I - ullm ± 1) 

= {[ (nI2) ± u][ (nIZ) + u + 1]}1 

X «(nI2)u+ 1, (n/2)m - u ± 111m) 

+ {[(nl2) + m ± u][(nl2) ± m + u + 1]}1 

X «(nl2)u, (nl2)m - ullm), (AIO) 

as is actually the case. 25 

We now wish to obtain the eigenstates Injm) of He' J2, 
J3, where the last two are given by (3.74). These eigenstates 
will have the property that 

J ± I njm) = A ± I njm) = W + m)(j ± m + I) PI njm ± 1\. 

(All) 

If we propose now that 

Injm) = I( - 1)('1/21- <7+ m«(nIZ)u, (nI2)m - ulim) I (nIZ)um - u), (AIZ) 

then applying A ± to the left- and right-hand sides of I njm) 
and using (A8c) rather than (A8a) we arrive at precisely the 
same recurrence relation (A 10) for the Clebsch-Gordan co­
efficients. Thus the states I njm) are explicitly determined 
through (A1Z) and (AS). 

As a final point, we determine the matrix elements of 

(Al3) 

with respect to the states Injm). As indicated in (3.88), this 
matrix element is relevant to the discussion of the shape 
problem in the microscopic collective model. 

From the equation relating Laguerre polynomials (Ref. 

(n'j'm'lr sin28 Injm) 

I 

I 

= L [«(n'/2)u', (n'l2)m - u'li'm) «(nIZ)u, (nIZ)m - ulim) 
a,a' 

IS, p. 1037) 

pL ':/p) = - (v + l)L ':+ 1 /Pi + (2v + m + I)L ;:'/p) 
-(v+m)L':_lfp), (A14) 

we immediately conclude that 

ioc F';'/2fp)F';12fp)dp 

= -[(v+m+I)(v+IJ\8'/V+1 +(2v+m+I)8v'v 

- [v(v + m)J 18"'v_I' (A1S) 

Taking into account then the explicit expression of Injm) 
given by (A12) and (AS) we obtain 

X ~{ - o(n'12)_ d.(n12)- a + I [(nI2) - u + 1 j\[(nI2) - u + m + 1 P + 0(n'/2)- (7',(11/2)- (7 [n - 2u + m + 1 J 
- 8(n'121 _ ,,',(n/2)- <7 _ I [(nlZ) - u]l[ (nIZ) - u + m r} 
X { - 8(102) + a'.(n12) +" + , [(nIZ) - m + u + I Jl[ (nl2) + u + I] j + 8(n'/2) + a',(n12) + a [n + 2u - m + 1] 

- 8(n'12) + o",ln/2) + (7_ I [(nl2) - m + up[(nI2) + up}]. (AI6) 
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The diagonal and symmetric Bianchi type IX models are coupled to a homogeneous spinor field. 
An action for the combined fields is constructed, where the orthonormal basis used is given 
explicitly in terms of the metric. This allows one to vary the action with respect to the metric and 
the spinor fields only. Next, a Hamiltonian formulation is given, and a qualitative solution for the 
problem is presented. We also show that the k = + 1 FRW (Friedmann-Robertson-Walker) 
model is not compatible with a homogeneous spinor field, while the more complicated models are. 

PACS numbers: 98.80.Dr 

I. INTRODUCTION 

Recently Isham and Nelson 1 have studied Friedmann­
Robertson-Walker (FR W) models with matter given by a 
homogeneous spinor field in both the classical and quantum 
regimes. One of the most discouraging results of their work 
was that the k = + 1 models do not admit such a homogen­
eous spinor field. Since the k = + 1 models are special cases 
of the Bianchi type IX models, more general type IX models 
could be compatible with homogeneous spinor fields. 

The reason for the failure of the k = + 1 models is that 
GOi is automatically zero for these models, while TOi is not. 
The constraints TOi = 0 are so restrictive that the Hamilton­
ian for the spinor field vanishes, leaving only the vacuum 
part of the gravitational Hamiltonian. It is well known that 
there are no vacuum solutions for k = + 1 FR W models, so 
the solution breaks down. However, the more complicated 
models all admit vacuum solutions, and we will show that 
the diagonal and symmetric2 (or nontumbling3

) type IX 
models with a homogeneous spinor field exist. In fact, the 
symmetric type IX models have GOi #0, which allows an 
even richer solution structure. 

This paper has three aims: (i) to demonstrate the com­
patibility of diagonal and symmetric type IX models with a 
homogeneous spinor field; (ii) to give a Hamiltonian formu­
lation for spinor fields in homogeneous models; and (iii) to 
present a qualitative solution2 of the combined field equa­
tions in the diagonal and symmetric cases. 

We begin by writing the Einstein-Dirac action 

(1.1) 

where R is the scalar curvature and ::t' M is the Dirac La­
grangian density in a curved background.4 In the usual for­
mulation, ::t'M is a function ofthe spinorfield ¢ and h(Pla' an 
orthonormal basis which satisfies 

(1.2) 

"'Also, Asesor, Department of Physics, Universidad Autonoma Metropoli­
tana-Iztapalapa, Mexico \3, D. F., Mexico. 

and their derivatives. In order to connect this density to R, 
which is a function of gl'v and its derivatives, we can do one 
of two things; we can write R as a function of h (Pla and vary 
with respect to h (PI a to obtain the gravitational equations, or 
we can explicitly give h (PI a as a function of gl'v and vary with 
respect to g"v' We may construct a Hamiltonian formulation 
of the problem for either one of these two approaches. For.lD 
example of the first approach see Nelson and Teitelboim.5 

We will concentrate on the second method. 
One problem with the second approach is that it is usual 

to prescribe a certain variation of h (Pla with respect to g"v in 
order to achieve a canonical form for the energy-momentum 
tensor. However, if we choose a basis for other reasons, the 
energy-momentum tensor may not take the usual form. In 
fact, the bases usually chosen for Bianchi type models, when 
varied do not always satisfy the relations that lead to the 
canonical energy-momentum tensor. This problem is dis­
cussed in the Appendix. 

In Sec. II we develop a Hamiltonian formulation of the 
Einstein-Dirac system, then apply it to Bianchi type IX cos­
mological models. In Sec. III, we discuss the equations of 
motion, demonstrating the incompatibility of k = + 1 
FR W model with a homogeneous spinor field, and the fact 
that other type IX models do admit such fields. Section IV is 
devoted to qualitative solutions of the field equations for the 
cases where such a solution exists. The last section includes 
conclusions and suggestions for further work. 

II. AN ACTION FOR HOMOGENEOUS SPINOR FIELDS IN 
BIANCHI-TYPE COSMOLOGICAL MODELS 

We begin by considering the Einstein-Dirac action 
(Ii = I,e = 1) in the form 

with 

::t'M = ~ - g (F(¢r"¢,,, - ¢;" r" ¢) - m¢¢ I, (2.2) 

where Greek indices run from 0 to 3 and latin indices run 
from 1 to 3. The dot means derivative with respect to XO = t, 
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the ordinary partial derivative will be designated by (>Il) and 
the covariant vector or spinor derivative by (;,tt). 

The first three terms in the action (2.1) correspond to 
the Einstein LagrangianJ = f R (y - g) d 4X reparametrized 
according to the Amowitt-Deser-Misner (ADM) formula­
tion,6 by introducing quantities 

N = ( - 4g00)-1I2, Ni = 4g0i , 

(2.3) 

Here the superscript 4 denotes a four-dimensional geo­
metrical object, and the superscript 3 will be used for objects 
on selected three-dimensional hypersurfaces. The tfj are de­
fined in terms of the 4gflv and the 4F~v' while £"1 and £"i 
are algebraic combinations for the 1IJ, the gij' and their 
derivatives. 

In the matter Lagrangian!!" M' g = det4
g flv , ¢ = t/}'1 

and Y' are the generalized Dirac matrices defined by 

(2.4) 

with signature ( - , + , + , + ) for the metric tensor gllv' 

The covariant spino rial derivative of the Dirac 4-spinor 
is given by 

t/J;Jl = t/J,1l - FIl t/J, (2.5) 

with the connection coefficients 

FIl = - !hlp)a;I' h 1p)/3 yily" . (2.6) 

The vierbein basis hlp)1l satisfies 
A Alp} 4 h h l/3}1' _ {}/3 hlp)llh v = g/w, (00)11 - a' 

h
A 

hAla} 
Iplll = lllpal 11 ' 

(2.7) 

SO that the generalized Dirac matrices are related to the stan­
dard matrices of special relativity ra

) by 
,,11 _ h' lal 
r - I' Yla}' (2.8) 

For the standard y matrices the following representa-

tion is used: 

0] ,)k) = [0 c!'1 
-J' r -c!' 0' 

with 

ylS) = iy(O)yll)yI2)y(31 = (~ 

By definition we also have 

[y',y'] = - 2id", 

(2.9) 

(2.10) 

(2.11 ) 

Our first step is to break Up6 the matter Lagrangian in 
(2.1) into terms such asp dq, N!!"°M and Ni $'iM. We will 
obtain such a Lagrangian density for the Class A Bianchi­
type cosmological models. 

Since the matter Lagl~angian !!" M is a function of gli' 

mainly through the basis h la )Il' we must choose a suitable 
basis. It has been usual7 to write the metric of the Bianchi­
type models as 
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(2.12) 

where.n (t) is a scalar, f3ij is a 3 X 3 matrix, N = Nit), and 
Ni = Ni (t). The forms u/ are invariant one-forms appropri­
ate to the model under consideration and obey 

(2.13) 

where the e}k are group structure constants of the particu­
lar Bianchi type under consideration. For type IX models, 
e'jk = - cijk' 

A convenient orthonormal basis8 is 

(}'(O) = N dt, (}'Ii) = N i dt + h li), dXI, (2.14) 

'th h
A 

Iii th It' d [hA 

(i) h
A 

Ii) ~ WI k an or onorma na I kUij = glk' 
A I A 

hli) h(j)l = {}ij ]. Hereg'k is the metric on t = canst surfaces. In 
order to define our orthonormal triad we take a basis of one 
forms (}'i = e - flef3ijul. 

To calculate the Lagrangian 2' M we need to evaluate 
expressions of the type F lli ) r'l, F lli ) =h(p} a Fa' These terms 
tum out to be functions of the ~) themselves and e lll \a(3)' 

the structure coefficients in the equation 

d(},Ii') = - ~c ill }ja/3} (},Ia l 1\ (}'1/31. 

The e 11<11(1/31 for the basis (2.14), if N = N (t ) and 
N, = Ni(t), are 

elOI(J01 = 0, 

C ill _ 1 ( h: khA Nrh' k hAIl) ) 
(JOI - N - Ii) (/}k + VI.r k' 

e ill _!J..B -/3 -/3 em 
Uk) - e 10 Im e jpe ki pi' 

(2.15) 

(2.16) 

the e m pi are those that appear in Eq. (2.13). Ifwe now calcu­
late Fill) using Eq. (2.6) and insert the results in !.t'M' we 
obtain for the Class A Bianchi-type ~osmological models 

!.t'M = !ie - 3[J¢yIOljp - Ve - 3f1¢yO)t/J 
+ Fe - 3!1¢(ef3

ik
)e - /3

kp
li)ly{O}t/J 

+ Ne - 3fl [le!l.t.ef3 e {3 
8 If/ mr IS 

X e . /3
jt 

C r" ymla),lj}t/J - m¢t/J] (2.17) 

+ N i [le- 3fl·t.e -13 Il ct. "llh·IjOI.I.] 
4 '{/ Jr It lr r 'I' . 

Variation of this Lagrangian density with respect to the field 
variables t/J and ¢ gives the generally covariant Dirac equa­
tions. Variation with respect to the metric tensor gi'" must be 
performed using the tetrad field we have chosen. This vari­
ation is in general not unique and our vierbein basis does not 
fulfill the generally assumed relation 

bh " A 

_I_p,_ = _ Ih 'I'g"'" 
{} 2 II'I ' 

(2.18) 
gil" 

by means of which the "standard" symmetric energy-mo­
mentum tensor of the Dirac field is normally obtained. In 
view of this fact our energy-momentum tensor differs from 
the "standard" one (see Appendix). 

In this paper we will study Bianchi type IX models 
which can be divided into three cases: the FR W k = + 1 
case (/3 ij = 0), the diagonal case /3 if = 13 d'j 

= diag (/3+ + (y3)f3_,fJ+ - (y3)/3_, - 213+), and the 
symmetric case where {3rj = e - "''''f3"e'''".., 
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',~ [~[ ~ H 
We will construct an action for the symmetric case, which 
we can always specialize later to the other two, putting ¢ = 0 
and f3dU = 0 respectively. 

We can now insert the metric (2.12) with 
f3ij = e - 4>K;f3de4>K; in the action (2.1), and substitute 2' M giv­
en by Eq. (2.17). We define 

_ (_8 , -/3 _ 1£ I) Pij - f: is 1r ,e 'j "'flu 1T I , (2.19) 

with 

6Pij = e - 4>K'{(1IP+ + (12fJ-

+ (1 3p", } e"'K, (2.20) 
3 sinh [2(\l3)f3_ ] , 

(11 = diag(l,l, - 2),(12 = diag (\13, - \13,0), 

(13 = [~ ~ ~l· 
000 

Using 

p~ =P4> + 81T-3fl¢uI12lyOlt/Jsinh2[(v3){3_]' (2.21) 

we find 

1= -l-f fp+.B+ + p-.B- + p~¢ - l11r\ 
81T 
+ 41Tie - 3!1¢yOllp _ 41Tie - 3flif,yOl¢ - ~NJVl 
- ~NiJVi] dt dw. (2.22) 

Here dw=w I A w2 A w3
, and 

JV1 

=,1 e211 (1 _ V) + e6!l(1(1Tk )2 _ .lp2 _.lp _ ~~' 
2 6 k (., + 6 - sinh2(2\13.8_) 

e - 3n.7.y I3l,)Sl.,.'P' 
+21T 0/ r 0/. '" -8~e-6ntanh2(v3f3_) 

cosh 2( \I 3.8 _) 
X(¢yI3lyISltf;)2) _ 81Tefl [e2/3'cosh(2\13f3_) + !e- 4/3.] 
X ¢yIO)yS)tf; - 161Tm¢tf;, 

JVI = 41Tcosh(3.8+) sin2¢ sinh(v3f3_)W2
)y Sl¢ 

- 41T sinh(3.8 +) cosh( \13.8 _ )¢y(l)yIS)tf; 

+ 41rcosh(3.8+) cos2¢ sinh(v3f3_l¢yOy(5)t/J, 

JV2 = 41T cosh(3.8+l cosh(\l3fJ_)W2ly5)tf; 

+ 41T sinh(3.8+) cos2¢ sinh(\l3.8_)¢y2lyIS)tf; 

- 41Tsinh(3.8+) sin2¢ sinh(v3f3_)¢yIOy(S)tf;, 

JV3 = - p~ + 41Te - 3!1¢y(3)yIS)tf;, 

where 

V = 1 + ¥4/3, [cosh(4\13fJ_) - 1] 

+ ¥ - gP. _ ¥' - 2p. cosh(2v3.8_). 

III. EQUATIONS OF MOTION 

Given the action (2.22), we only have to vary it with 
respect to fJ ± ' P ± ,p~, ¢, Ni' N, tf;, and ¢ to get all the 
equations of motion. To obtain the final system, we have to 
choose Nand Ni and also solve the constraint equations 
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dY'/l = O. 
For convenience, we choose Ni = 0 and 

N = 6e - 3fl / ~ k [this second choice is equivalent to taking 
fl (t) = t J. We will solve the constraint dY'1 = 0 for 1Tkk and 
define H = 1Tk k' It is not difficult to show that we may solve 
the constraint dY' 3 = 0 for p' 4> in terms of ¢,)3)y(5l¢, thus 
eliminating ¢ from the problem (except as a quadrature). 
Substituting this value for p' 4> into dY'1 and solving for H as a 
function of f3 ± ' P ± fl, ¢, and tf;, the action for f3 ± becomes 

1= J[P+df3++P_df3--Hdfl], (3.la) 

where 

H 2 = p2+ + p2_ + 48~e - 6fl (¢y3)yIS)tf;)2 

X coth2(2\13fJ_) + 481Te - SflVs(f3 ± )¢yO)y(Sltf; 

+ 961Tme - 6fl¢¢ + ge - 4fl(V(f3 + ) - 1). (3.1b) 

The spinor potential Vs(f3 + ) is 

Vs(f3 ±) = e2/3, cosh(2v3fJ_) + !e- 4
(3+. (3.2) 

Note that in this Hamiltonian form we have dropped 
the velocity terms in ¢ and ¢. This is because the action (3.lJ 
with these terms added, when varied with respect to ¢ or tf; 
does not give the Dirac equations. To see the reason for this, 
we have to return to the action (2.22) and vary with respect to 
t/J and ¢, and then impose the conditions Ni = 0 and the 
constraint dY'] = O. Unfortunately, the Ni = 0 coordinate 
choice is incompatible with the action (3.1) with the velocity 
terms in ¢ and ¢ added. In fact, it is easy to see that with 
N = 6e - 3fl I H, the equations for ¢ and ¢ become (. =d I dfl ) 

Ip = ~¢ _ 3;i e - 3/1 (¢y(3)yS)t/J) 

xyO)y])ySltf;[1 + tanh2(v3fJ_)] 

- ~ Vs (f3 ± )e - 2ny(5)¢ - 6: e - 3fly Oltf;, (3.3a) 

¢ = ~¢ + 3;i e - 3fl (¢y3)yI5)tf;) 

X ¢y3ly(5)yOl[1 + tanh2(\l3fJ -)] 

3i V (f3 ) - 2n.7. (5) 6im - 3fl,7~)Ol - - s e o/y - --e 'P(' H ± H 
(3.3b) 

Actually the difference between these equations and 
those obtained by varying (3.1) with the appropriate spinor 
terms consists only in replacing 1 + tanh2(v3fJ_) by 
2 coth2(2v3fJ_) in (3.3). 

Now, varying (2.22) with respect to N j and N2 gives us 
the following constraints on the spin or variables (excluding 
impossible conditions on the metric variables); 

(3.4) 

In order to study the structure ofEqs. (3.3) and (3.4) we take a 
spinor basis in which 

(

ale
ie
,) 

azeie, 

tf; = ble''''' . (3.5) 

b2e'</>' 

The constraints (3.4) tell us that b2 = - a j a21bl and that 
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cP2 = O2 - 0 1 + cPI" The content ofEqs. (3.3) now reduces to 

" ~ 3Vsl.B±) -w . 
a l - 2 1- H e b l sm(cPI - ( 1) = 0, (3.6a) 

. 31T (a2 + b 2 )(a2 
_ b 2 ) 

01 - lie-3D I ~2 2 I [I +tanh2(1/3p'_)] 
I 

+ 2. Vsl.B ± )e - W COS(cPI - ( 1)!!J.. + 6m e - 3f1 = 0, 
H a l H 

(3.6b) 

tiz - ¥I2 + 3 Vsl.B ± ) e - W aJaZ sin(cPJ - OJ! = 0, 
H b l 

(3.6c) 

3 (a 2 + b 2 )(a2 b 2 ) 

Oz + ;; e3f1 I ~2 Z - I [1 + tanh2(v'3p'_)] 
I 

- ~ Vsl.B± )e-Wcos(cPl-Od~ + 6m e- 3rJ =0, 
b l H 

(3.6d) 

61 - !hI + ~ Vsl.B ± )e - w al sin(cPl - ( 1) = 0, (3.6e) 

3 (a2 + b 2 )(a2 b 2 ) 
~I_ ;; e- 3D 

I Ib 22 - I [1 +tanhz(v'3p'_)] 
I 

3 D a 6m + HVsl.B±)e-2 .-!.cos(cPl-Od- _e- 3f1 =0, 
bl H 

(3.6f) 

il +). il 31T _ 3f1 (ai + b i )(a~ - b ~ ) 
172 '1'1 - 171 + - e 

H b~ 

x[1 + tanh2(v'3p'_)] 

3 V l.B ) - W b l (", L1 ) 6m - 3f1 
-- S ±e -COS'f'I-17I-- e 

H az H 
=0, (3.6g) 

_ (a~:2) + i (a~:z ) 
+ ~ Vsl.B ± )e - w a2 sin(cPl - Od = o. (3.6h) 

It is not difficult to show that Eqs. (3.6g) and (3.6h) are conse­
quences of the first six of Eqs. (3.6), which means that the 
constraints (3.4) are compatible with the Dirac equation. On 
the other hand, the addition of (3.6d) and (3.6f) gives 

cPl = - O2 + const, (3.7) 

so in Eqs. (3.6), Eq. (3.6f) can be substituted by (3.7). More­
over, from (3.61) and (3.6b) we can calculate ~I - 01, With 
r=cPl - 01, we get 

. + 3Vs l.B ± ) tal bl) -2t} 12m -:w r cosr - - - e - -- e . 
H b l a l H 

=0. (3.8) 

Now, Eqs. (3.6a), (3.6e), and (3.8) constitute a reduced 
set of equations whose integration, if possible, would allow 
the integration of all of Eqs. (3.6) because, knowing a I> bl' 
and r as functions of n one could integrate (3.6c) and obtain 
a2 • With these four functions (3.6b) would be integrable and 
we would know Op and then cPl could be calculated from r 
and 0 1 and O2 from (3.7). 

626 J. Math. Phys., Vo1.22, No.3, March 1981 

For the diagonal type IX model and the FRW case 
cP = p~ = 0 and we have the additional constraint 

¢rO)yS)1jJ = O. (3.9) 

With IjJ given by (3.5) this equation tell us that a~ = b ~. The 
addition of this constraint to the system of Eqs. (3.6) makes 
Eqs. (3.6c) and (3.6e) equal and some terms zero. However, 
this system of equations is still consistent and could also be 
solved using the reduced set (3.6a), (3.6e), and (3.8). 

For our three cases the symmetric, the diagonal and the 
FRW, the problem reduces to the action (2.22) which gives 
usp' ± ,the constraints (3.4) for the symmetric case and also 
the constraint (3.9) for the diagonal and the FRW cases, and 
the set ofEqs. (3.6) for 1jJ. The only equation we lack is one for 
H. Varying (2.22) with respect to n, and using . 
N 3f1 . -= 6e- IH, and Eqs. (3.3) to substitute for IjJ and 1jJ, we 
find that 

if = - 4; Vs (j3 ± )¢yO)y5)ljJe - Sf} 

_ 1441Tm e - 6{J ~ I/I-.l.f e -4 n [V((3+) - 1] . 
H H -

(3.10) 

Calculating ¢yO)yS)1jJ and ¢1jJ, we see that they are pro­
portional to a~ - b 7 . Thus, in the diagonal and FR W cases 
where we must apply the constraint (3.9), the spinor part of 
the Hamiltonian vanishes, and H as given by Eq. (3.1) re­
duces to the vacuum Hamiltonian. In the FR Wease H be­
comes imaginary, so a homogeneous spinor field is incom­
patible with k = + 1 FRW models, as was pointed out by 
Isham and Nelson. However, in the diagonal case vacuum 
solutions exist and are well known, so we will be able to give 
qualitative solutions for this case very simply. The vanishing 
of the spinor part of the Hamiltonian may imply that spinor 
fields satisfying the constraints (3.4) and (3.9) correspond to 
"ghost" spinor fields. 9 

In the next section we will show that for n- 00 it is 
possible to find qualitative solutions in the sense of Ref. 2 for 
the diagonal and symmetric cases. 

IV. QUALITATIVE SOLUTIONS 

Now that we have the equations governing the behavior 
of p' ± ,H and IjJ as functions of n, we can in principle pro­
ceed to solve them. Because of the highly nonlinear charac­
ter of the equations, the possibility of finding exact solutions 
seems remote. There are several methods for obtaining ap­
proximate solutions for type IX models in the pure gravita­
tional caseZ,lD-12 and these can be extended to models con­
taining a spinor field. We will use the graphical technique of 
Ref. 2 . 

We begin by noting that the equations of motion are 
similar to those of a particle, the universe point, moving in an 
eight-dimensional space with coordinatesp' ± ,ai' az, bl, 0 1, 

O2, and cPI for the symmetric case and a seven-dimensional 
space with p' ± ' ai' b l, 0 1, O2, and cPl as coordinates for the 
diagonal case. Here n plays the role of time. The analogy is 
not exact because the equations for the spinor variables are 
only first order. In the pure gravity case, it is possible to 
display the evolution of P' ± as a trajectory in the P' +P'­
plane, where the potential V(j3 ± ) governs the motion. Be-
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cause of the first order nature of the spin or equations, such a 
potential description in the full eight- or (seven-) dimensional 
configuration space seems impossible. However, the behav­
ior of the spinor variables is relatively simple, and it turns out 
to be possible to construct, at least near the singularity, a 
diagrammatic solution for /3 ± ' where the spinor variables 
are given in terms of quadratures. We can begin by defining 
new spinor variables A I' A 2' and B I: a I = A I e3!1 12, 
az = A2e

3!112, bl = Ble3fl/2; and 8 andp by 

8 = 4( vi 3 )1T(A i + B i )(A ~ - B i )I B i. 
p=481TA I(Bi -A~)cos(cPl-el)lBI' (4.1) 

with C and D constants. Knowing Vs (f3 ± )lH as a function 
of fl we can, in principle, integrate these equations and the 
rest by the procedure described in the preceeding section and 
obtain the remaining four functions A 2, 01, cPl' and e2• 

Now, inserting 8 andp in H2, given in (3.1), we find (if 
we ignore exponentials in minus fl ) that 

H2 = p2+ + p 2_ + 82 cothZ [2(v3)fL] 
+ 2pVs(f3± )e-2!J + ge- 4!1 [V(f3±) -1]. (4.3) 

From Eqs. (3.3)-(3.5) and (4.1) it is possible to show (for the 
symmetric case) that 8 is a constant of the motion and p is 
constant if terms of the form e - 3!1 /H can be neglected (that 
is, near the singularity). Since 8 and p are independent of 
/3 ± ' variations of H with respect to these functions, treating 
8 and p as constants, gives us the correct equations for /3 ± . 

Equation (4.3) can be used to calculate dH /dfl and we find 
(ignoring, again, exponentials in minus fl ) 

H· 2p V (f3 ) -2!J 18 -4!1 [ (f3 
= - H S ± e - He V ±) - 1]. (4.4) 

Ifwe now look at the potentials Vs (f3 ± ) and V(f3 ± ), we can 
justify our assumption that the exponential expressions we 
have been discarding are indeed ignorable. The form of 
V (f3 ± ) is well known, with roughly triangular equipotential 
curves and exponentially steep walls, with soft channels ex­
tending from each comer (see Fig. 1). The function Vs (f3 ± ) 

also has triangular equipotentials and exponential walls, but 
it has no channels at the comers (see Fig. 2). The minimum of 
V(f3 ± ) - 1 is zero, and that of Vs (f3 ± ) is 3/2. For large fl 
and/3 ± such that V(f3 ± ) - 1 and Vs (f3 ± ) are near their 
minima, e - 2!J Vs (f3 ± ) and e - 4!1 [ V (f3 ± ) - 1] are ignorable 
and AI' A2, B I , and Hare essentially constant, and will re­
main constant except during brief periods when the universe 
point is in contact with the exponential walls. Since any 
change in these quantities will be slow in comparison to the 
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For the diagonal casep = 0 = O. Ifwe are interested in solu­
tions near the singularity, fl is very large, and if we assume 
that A I' A 2 , B I' and H change relatively slowly (an assump­
tion to be justified later), expressions of the type 
e- n!1F(A 1, A2, B I , H), where n is positive, rapidly become 
ignorable in the equations of motion. 

If we drop such terms the equations of motion for A" 
Az, B" el , O2, and cPI can be obtained from (3.6), and in this 
case it is possible to reduce to quadratures the solutions of 
the reduced set of equations equivalent to Eqs. (3.6a), (3.6e), 
and (3.8). Following this procedure we get for A I' B I , and 
y: 

(4.2a) 

(4.2b) 

(4.2c) 

rapid decay of e - n!1 we are justified in ignoring terms of the 
type e- n!1F(AI' A z, B I, H) near a singularity. 

Now, it is possible to use Eqs. (4.3) and (4.4) to calculate 
/3 ± and H as functions of fl, substitute these functions of fl 
in Eqs. (4.2) and obtain all the spinor variables. The Hamil­
tonian (4.3) can be treated by means of the wall approxima­
tion; that is, the strong exponential behavior of all the poten­
tial terms allows us to replace them by a series of infinitely 
hard walls that, because of the explicit fl dependence of these 
terms, move with changing fl. The two triangular potentials, 
V(f3 ± ) and Vs(f3 ± ) give us triangular walls, the gravitation 
and spinor walls, respectively, and the triangular symmetry 
allows us to calculate the velocity of these walls when the 
universe point is not touching them by looking only at the 

FIG. I. Equipotentials of V(j3 ± ) for large values of /3 ± • The value of V 
increases exponentially from one contour to the next as one moves out from 
the center. The walls associated with this potential will coincide with one of 
the triangles formed by these lines. 
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FIG. 2. Equipotentials of Vslf3 ± ). The four equipotentials correspond to 
values of Vs that increase by factors of ten from 10 for the smallest triangle 
to 10' for the largest. The walls associated with this potential will coincide 
with one of these equipotentials. 

wall perpendicular to the /3 + axis. For these walls, the entire 
potential terms are 3e - 8{3+ - 4!l for V (/3 ± ) and pe - 4{3+ - 2!l 

for Vs (/3 ± ). Since the position of the walls are given by set­
ting each of these terms equal to a constant and solving for 
/3 + wall as a function of fJ we see that the velocity in both 
cases (in the sense of d/3 + wall I dfJ ) is 1/2. The last wall, the 
centrifugal wall, blocks off a region near the /3 + axis and is 
due to the 8 2 coth2[2(v'3){3_] term in (4.3a). Because there is 
no explicit fJ dependence in this term, this wall is essentially 
static and moves slowly away from or toward the/3+ axis as 
H changes due to Eq. (4.4). 

In the Hamiltonian for the diagonal case only the gravi­
tation potential exists, and diagrammatic2 and piecewise 
analytic l2 solutions have been found for the vacuum case 
near the singularity. These solutions can be used in our diag­
onal case, where we may insert /3 ± and H as functions of fJ 
found from the vacuum solutions into (4.2) to find the behav­
ior of the spinor quantities. 

In symmetric case all the walls playa role, and we must 
study their behavior. Because the velocities of the spinor and 
gravitation walls are both one-half, we can have two cases, as 
shown in Fig. 3. In the first case the gravitation wall is inside 
the spinor wall, and it stays always inside, so that the uni­
verse point only interacts with it and the centrifugal wall. In 
the other case the gravitation wall is outside the spinor wall. 
Here, the gravitation wall always remain outside, but the 
character ofthe interaction depends on the sign of p. There 
seems to be no reason to expect p to have one sign or the 
other, so we must look at both cases. If p is positive, the 
spinor potential is positive, and the reverse of the situation 
described above for the gravitation wall inside the spinor 
wall occurs, that is, the universe point always interacts with 
the spinor wall and never touches the gravitation wall. If 
however, p is negative, the walls perpendicular to the /3+ axis 
are shown in Fig. 4. In this case, the universe point can inter-
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I , , 

.. ' 

FIG. 3. Two possible positions of the spinor wall with respect to the gravita­
tion wall. The solid line represents an equipotential of VIf3 , ). while the 
dotted and dashed lines are equipotentials of Vslf3 . ), outside and inside the 
gravitation wall respectively. Since both walls move with velocity ~. their 
relative nosition will be preserved. 

act successively with both walls. If we can describe the tra­
jectory of the universe point far from the walls and gi.ve a set 
of bounce laws for interaction with them, we can bUlld up a 
qualitative solution. 

It is easy to show that far from the walls, H, p +, and p_ 
are constants, and the universe point mC?ves in straight lines 
with velocity, in the sense of [(/3+)2 + (/3_)2]1/2, equal to 
(1 - 8 llH 2)1/2. If8IH> v'3/2this velocityis!ess than l/~, 
and the universe point can only interact once wlth the centn­
fugal wall, then moves in a straight line out to infinite values 
of /3 ± . If {j I H < v'3/2, the universe point can interact at 
least once with the gravitation and spinor walls. From Eq. 
(4.4), we can see that if p is positive, or the gravitation wall is 
inside the spinor wall, H will decrease each time the universe 
point interacts with a wall, and eventually, {j I H will become 
larger than v' 3/2 and the universe point will stop interacting 
with the potentials (except for the centrifugal potential). If p 
is negative and the spinor wall is inside the gravitation wall, 

:3 

2 

-, 2 

·3 

FIG. 4. The potential V If3 ± ) + Vslf3 ± ) for f3 _ = 0 and p = - 5. The 
dashed line is a hard wall approximating this potential. To the right of the 
minimum the hard wall is positioned so that the areas above and below the 
solid curve are equal. 
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whether or not this type of decoupling takes place will de­
pend on the detailed behavior of the universe point. 

We need only give a series oflaws for reflection and 
refraction, for the case where the universe point does interact 
with the potentials, we have completed our qualitative solu­
tion. These laws are simplest for the centrifugal wall, where 
reflection is specular, and H does not change during a 
bounce. Reflection from the triangular walls can be calculat­
ed using the wall perpendicular to the {3 + axis and extended 
by symmetry. Reflection or refraction from either the gravi­
tation or spinor walls can be calculated using two constants 
of motion valid for the walls perpendicular to the {3 + axis, 
p _ = const, and p + + 2H = const. The laws of reflection 
are 

(4.5a) 

We now have a complete scheme for computing the 
qualitative motion of a type IX model filled with a homogen­
eous spinor field. The universe point moves in straight lines 
until it encounters one of the walls, and then is reflected or 
refracted according to one of the bounce laws given above 
and H changes according to one of the above equations. 

V. CONCLUSIONS 

The coupling between the Dirac field and the diagonal 
and symmetric type IX models has been discussed. We gave 
a Hamiltonian formulation of the problem and showed the 
incompatibility of the k = + 1 FRW model with a homo­
geneous spinor field. We were able to describe the behavior 
of the universe point near the singularity by means of the 
qualitative solution method. What we lack in this paper is a 
quantization scheme. 

A number of approaches to the problem of quantizing 
the gravitational field have appeared 13 from the thirties up to 
today. However, quantized general relativity is not well 
enough understood today and compromise models in which 
homogeneity is imposed before the gravitational field is 
quantized have been proposed. 14.15 In practice this is what is 
known as quantum cosmology and quantum models. 
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(4.5b) 

where 0i and 00 are the angles of incidence and reflection, 
respectively, and Hi and Ho are Hbefore and after refection. 
Equations (4.5) can be used to calculate both 00 and Ho. 
When p is negative and the spinor wall is inside the gravita­
tion wall, the universe point passes this wall, is refracted, and 
eventually reflects from the gravitation wall, returns to the 
spinor wall and is refracted again. The only new information 
we need is a law of refraction. In the wall approximation, the 
potential is given by the dashed line in Fig. 4, where the 
minimum of the potential can be shown to be - p2/12. If the 
universe point passes form the region of zero potential over 
the region of V = - p2/12, the law for the change of Hand 
the law of refraction are 

(4.6a) 

(4.6b) 

(4.7a) 

(4.7b) 

Some of the work which has been done in the past has 
been concerned with quantizing gravity coupled with matter 
in the sense of square-root Hamiltonian methods,7 true ca­
nonical quantization, 16 the Heisenberg picture,1 and others. 
Some of the problems associated with square-root Hamilto­
nians have been discussed. 16 The "true canonical quantiza­
tion" scheme could be attempted in our cases. However, as 
we have seen, unfortunately, the Ni = 0 coordinate choice is 
incompatible with the action (3.1) with the terms in'" and~, 
and a "true canonical quantization" could not be easily 
achieved for the matter field coupled to gravity. Moreover, a 
Heisenberg picture seems more natural for our cases. How­
ever, in order to apply this method one should be able first to 
solve classically equations (3.3) or equivalently (3.6). Al­
though near the singularity, and especially for the diagonal 
case, we discussed how to reduce these equations to quadra­
tures, it is not at all clear how to solve them, even in this case, 
and no obvious quantization scheme springs to mind. 

APPENDIX 

In studying cosmological models with spinor fields one 
must be doubly careful about the variational principle one 
uses. First, one must be sure that the imposition of homo-
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geneity before variation still allows one to obtain Einstein's 
equations, and second, one must be sure that the Tf'v that 
appears in the equations is correct. The purpose of this Ap­
pendix is to show that the Tf'v we arrive at is valid. 

The usual method of obtaining Tf'v is to write the spinor 
action as 

1= 1~1T J (v' - g) W(¢rat/';a - ¢;a r"t/') - m¢t/'] d 4X , 

(AI) 

where t/';a is defined in Sec. II, and to vary I with respect to 
gf"" The problem with this simple prescription is that I is a 
function of h(j;) a, sixteen variables instead of the tengf'v' The 
usual methods for solving this problem are to: (1) Vary both 
the matter action and the gravitational action with respect to 
hlJ;) a, obtaining a first order formulation of general relativity 
coupled to a spin or field (see Nelson and Teitelboim5

), where 
a constraint reflecting in variance under Lorentz rotation of 
this basis hlJ;) a is obtained; and (2) impose some condition on 
hlJ;) a to reduce the number of independent variables in the 
variation. The usual condition for method (2) is (see, for ex­
ample, Brill and Wheeler17

) 

dr" = - !yagrla dgaT , 
for both variations and derivatives of r". 

In general, the variation of (A 1) is 

8I = 1 ~1T (~) J (v' - g)[ ¢8r"t/';a - ¢;a 8r"t/' J d 4X 

+ _1 (.!...-)J(v' _g)(_ v' -g.a ¢~at/' 
161T 8 v' - g 

- ¢.a~ at/' - ¢~ at/',a 

- ¢~ 0 at/' - ¢(r"8rfiY(3;a - r"rfi;a8Y(3 

(A2) 

+ 8rfiY(3;ar" - rfi;a8Y(3r")t/') d 4x, (A3) 

where~a = r"8rfiY(3 + 8rfiY(3r" - r"g'" V8gf' V , and 
~ a a = r".a 8rfiy (3 + 8rfiy (3 r".a - r".ag'"v8gf'v· If we now 
impose (A2), the second part of (A3) becomes zero, and the 
first part gives us 

(A4) 

the usual spin-I12 energy-momentum tensor. If, however, 
the basis we choose does not satisfy (A2), then we must keep 
the extra terms in (A3). Actually, since there always exists a 
basis which satisfies (A2), there should exist a spino rial rota­
tion which operating on t/' should allow us to recover (A4) 
without changing probabilities. 

Unfortunately, the bases that have been generally used 
to study the Bianchi models are of the type 
h

A 

v - I h- V hA 

IJ;) h- (a) h th h- v 
IJ;I = q of' (a)' v = qf'a v' were e (a) are an 
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invariant basis which is not varied, and the quf' form a 
"square root" of the metric gf'V in the invariant basis, in the 
sense of gf'V = qaf'q(3v 1/a(3' Also, the qf'V are given as algebra­
ic functions of gf"" It is not difficult to show that if qf'V is not 
diagonal, then the extra terms in (A3) remain. 

The basis that is used in the body of the paper is 
11(0)0 = 1, I1(O)i = ° 11 (i)O = 0, and l1(i)j(Xk

) appropriate to the 
Bianchi type in question. The invariant basis of one-forms is 

W
O = dt, Wi = 11 lij dxj

• 

The matrix q is 

qoo = N, qOi = 0, qiO = qi;; INk' 

(AS) 

qij = qji = e~nef3ij' (A6) 

where Ni gOi and gij = e - W e2(3 ij' With this prescription it 
is not difficult to show that for Class A models Too and TOi 
are the same as would be given by (A4) (the fact that TOi is the 
same is unexpected, but true), while Tij is not, except when 
/3ij is diagonal. Notice that this means that our results agree 
with those oflsham and Nelson l for FRW models. Ifwe 
accept the Tij given by (A3), we can show that the homogen­
eous action (2.22) does indeed give us the Einstein equations 
for class A Models. 

Note added in proof After this paper was submitted, we 
received a preprint by Marc Henneaux treating some of the 
same material in a slightly different formalism. 
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ERRATA 

Erratum:Towards a factorization of M4 [J. Math. Phys. 21,1024(1980)] 
Patrick L. Nash 
Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North 
Carolina 27514 

(Received 21 October 19S0; accepted 7 November 19S0) 

PACS numbers: 02.40.Vh, 99.10. + g 

In the first sentence after Eq. (SO), X a should be re­
placed by ;fa. In the second sentence after Eq. (91), e~,41 

should be replaced by e~I' and e0.2 1 replaced by eul ' 

The minus sign should be deleted from Eq. (99). 

Erratum: Inverse Scattering. II. Three Dimensions [J. Math. Phys. 21,1698 
(1980)] 

Roger G. Newton 
Physics Department, Indiana University Bloomington, Indiana 47405 

PACS numbers: 03.65.Nk, 99.10. + g 

The Corollary to Lemma 2.2 should start: "For almost 
all x andy, and all k> 0 ... " and in both integrals Kk should 
be replaced by K ~ . 

In Lemma 3.2 delete the words "for each ko." Eq. (4.2) 
should have - 00 as the lower limit on the integral. Eq. (5.1) 
should read 

Ok =! arg det Sk' 

The equation above (5.24) should read 

yb*Qll'- 1= 0, 
K" ik 

and Eq. (5.25) should state: 
For real k, 

TIt = TI k-
1 

(5.1) 

(5.24) 

The parenthesis in Eq. (5.26) should be raised to the 

power N n • In Eq. (6.4) the second TI _ k should be replaced 
by n k- 1. In Eq. (6.6) the power N n should be replaced by 
2Nn • 

In Lemma 6.1 the hypothesis should read 

log det Sk = 0 = lim (log det Sk + ik V 121T). 
k-o<> 

The right-hand side of (6.21) should have a factor of Q on its 
left. 

In Lemma 6.2 it should be added that the hypotheses 
are the same as those of Lemma 6.1. 

In Eq. (S.3) delete one fde /. The left-hand side of the 
equation on line 16 of Appendix I should be replaced by 

(S1T)3 f: 00 dk Ilk (x,yW· 

On line 4 from the bottom of the right hand column of p. 
1712, k should be replaced by K. In footnote 26, (S.I) should 
read (S.4). 
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